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Shear viscosity in the Nambu-Jona-Lasinio model with ®-derivable approximations
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Within the Nambu—Jona-Lasinio model the temperature dependence of the shear viscosity is calculated
to the first nontrivial order in the 1/N. expansion with ®-derivable approximations. The two-particle
irreducible effective action is computed to next-to-leading order, from which the integral equations for the
3- and 4-point vertices are obtained. These sum infinite sets of diagrams contributing to the shear viscosity
at the same order in the 1/N,. expansion. We find that the shear viscosity decreases rapidly when the chiral
crossover is approached. Comparing with the hadron phase, the quark-gluon plasma phase has a low shear
viscosity, which is consistent with the measurements. The ratio of the shear viscosity to entropy density is

also calculated.
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L. INTRODUCTION

It is believed that a strongly interacting quark-gluon
plasma (QGP, or sQGP) is observed in ultrarelativistic
heavy ion collisions at the Relativistic Heavy-Ion Collider
(RHIC) [1-8]. The collective behavior of the sQGP is
almost like that of an ideal fluid, with a ratio of the shear
viscosity to entropy density 17/s very close to the Kovtun-
Policastro-Son-Starinets (KPSS) lower bound 1/47 [9]. In
fact, the extraction of the transport coefficients from flow
measurements finds 1 <47 (n/s) < 2.5 near the critical
temperature [10-12].

Motivated by the experimental studies of the transport
properties of strong-interaction matter, theoretical predic-
tions for the shear viscosity of the QGP have attracted
much attention. Employing kinetic theory, transport coef-
ficients were calculated in high temperature gauge theories
in the weak-coupling expansion [13] and the large N limit
[14]. Recently, the contribution of the gg <« ggg process
to the shear viscosity of a gluon plasma is discussed in
perturbative QCD [15,16]. Transport coefficients are also
calculated in a weakly coupled scalar field theory using
field theoretical methods [17], in which an infinite class of
diagrams contributing to the leading weak-coupling behav-
ior is summed through an integral equation. Similar calcu-
lations were also performed in the real-time formalism
[18]. It should be emphasized that these types of calcula-
tions rely on perturbative treatments of the system and
become unreliable near the QCD (pseudo)critical tempera-
ture. A way to overcome this problem is to employ lattice
simulations [19]. However, before lattice results become
quantitatively reliable, one has to solve the problem of how
to reliably perform the analytic continuation from imagi-
nary to real time based on a discrete set of data points [20].

A quite different approach to calculate the shear viscos-
ity is to adopt the AdS/CFT correspondence, where the
strong-coupling limit in a conformal field theory is mapped
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onto the weak-coupling limit of a gravity dual with anti—de
Sitter metric. Then the shear viscosity of the conformal
field theory can be calculated from graviton absorption,
and one obtains the lower bound 1/47 for the shear
viscosity to entropy density ratio 1/s [9]. This bound is
modified by higher-derivative gravity corrections [21]. One
should mention that it is doubted whether the lower bound
is universal [22], and it is argued that quantum field theory
appears to impose no lower bound on 7/s, at least for
metastable fluids [23].

In this work we will study the shear viscosity in the
Nambu—Jona-Lasinio (NJL) model within a ®-derivable
approximation [24,25], which is also known as the two-
particle-irreducible (2P]) effective action formalism [26]
and is a nonperturbative approach to quantum field theory.
The ®-derivable approximation has also been widely used
to study the thermodynamics of quantum fields [27], quan-
tum dynamics far from equilibrium [28], and to formulate
efficient nonperturbative approximation schemes com-
bined with the exact renormalization group [29]. The shear
viscosity in the O(N) model has also been computed using
®-derivable approximations [30]. Furthermore, in a scalar
theory with cubic and quartic interactions, the four-loop
four-particle irreducible effective action is studied [31].
The NJL model, as a low-energy effective field theory of
the QCD, is very successful in describing the static prop-
erties of light hadrons and the chiral phase transition at
finite temperature [32,33]. The NJL model incorporates
chiral symmetry and its dynamical breaking mechanism
in a similar way as QCD. It is therefore interesting to
calculate the shear viscosity and study its evolution from
low temperatures towards the chiral transition. For this one
has to go beyond the leading-order mean-field approxima-
tion, in a symmetry-conserving fashion. A systematic
scheme is provided by the 1/N, expansion [34,35]. In this
paper we will compute the shear viscosity at first nontrivial
order in 1/N.,.

The paper is organized as follows. In Sec. II we
introduce the ®-derivable approximation and derive the
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integral equation for the 4-point vertex formally. In Sec. III
we study the meson propagators and quark self-energy in
details. In Sec. IV we solve the integral equation for the
3-point vertex numerically and obtain the shear viscosity
from the Kubo formula. Section V summarizes the results
and draws pertinent conclusions.

II. ®-DERIVABLE APPROXIMATIONS

We begin with the Lagrangian density for the two-flavor
NJL model:

Pliy,o* —mo)y + Gl ) + (fiysT)?]
(D

where m is a small bare quark mass and 7%(a = 1, 2, 3)
denote Pauli matrices in flavor space. The four-fermion
interaction with effective coupling strength G for scalar
and pseudoscalar channels has SUy(2) X SU4(2) X Uy (1)
symmetry, which is broken to SUy(2) X Uy (1) in the non-
perturbative vacuum.

The corresponding generating functional with a
two-point source for the NJL. Lagrangian is given as

£NJL

Zin, 7. K] = f [y LddTexp(lIGh, ) + 7

+ g+ yKyl 2)

Here, I(¢, ) = [d*xLyy is the classical action, and
in the expression above we have used the following
abbreviated notations:

i — [ T f dx ()0,
FKY = j dxdy F K (x y) (7). 3)

Introducing the generating functional for the connected
Green functions

Wi, 7, K1= ~ilnZ[n, K], (4)
it then follows that
Wg’;’(f)’ ) (5)
K o ©)
SWin, 9, K]

KO~ W) s, )
In the case of vanishing sources, ¥ .(x) and ¢ .(x) become
expectation values of the corresponding fields i (x) and
(x), and iS(x, y) is the propagator.

The generating functional for the vertex Green functions
is defined as the Legendre transform of W
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F[lﬂcv (_pc’ S] = W[T” 7, K] - ﬁ¢c - ‘_Pc’fl
+ T K(p . +iS)], (3)
where
TR (e +i9)] = [ dxdyKx )00 007
+ iS(y, x)). C))
It can be easily proved that
STYe ¥ S] _ .
Sy~ A+ [ v wrow. a0
61—‘[1//(., Jjw S] _ _ 4
T oh) 7(x) [d YK, »)p.(y), (1D
Iy, ¥, S]
7&?(% ) = iK(y, x). (12)

Using the ®-derivable theory [24,25], the effective action
I' in Eq. (8) can be computed as follows:

F[wcr 'Zcr S] = I(lzbc’ lz_bc) - iTrlnS‘l - iTI‘SJl(l/jc, ch)S
+ Tyl ¥, S]+ const, (13)
where the Sy ' (i, .) satisfies

&
8.
and I'; is the sum of 2PI vacuum graphs governed by

vertices of Ly (¥, ¥.; ¥, ) and the propagator iS [26].
Here I (., o5, ) is given as

08y e 00 = (7 ) o b0, (14)

Iint(lpcr lZc; lp’ l_ﬁ) = I(lﬂ + lpcr l_ﬂ + l_pc) - I(lpc’ l_pc)
L) (Y )
L T 172
=Sy (Yo b)Y (15)

Since we are only interested in ., = . = 0, it then

follows that

Solx —y) = (iy, 0% —m)é*(x —y),  (16)

Lin (i, ) = GL(Y )* + (diys7i)*] (17

We should note that in Eqgs. (15) and (17) we have used
abbreviated notations, where the integrations are not
indicated.

Using the 2PI formalism above, we can easily obtain an

integral equation for the 4-point vertex function I'®. Tt
follows from Eqgs. (7) and (12) that

0’1 [S]  0?W[K]
aSiﬂSk/l/ aKl/k/aK]k

= L (18)

where 1,1 = 60, ij... stands for all the degrees of
freedom of the Dirac ﬁeld and a summation is assumed in
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the case of repeated indices. Here we use the ordinary
differential 0 in place of the functional differential &.
Employing Eq. (4) one obtains

’W[K] - -
— = - = T / !
aKl’k’aKlk l(< (¢k wl lr//kwl»conn

—(TWpp DXTWipr)),  (19)

where the first term in the right-hand side is the connected
4-point Green function. The connected Green function can
further be expressed as

(T(Puthp i ))eom = (S, )(isl,1’)(i5kk2)(i5121)rg)1, kol
(20)

Differentiating I'[S] in Eq. (13) with respect to S, we arrive
at

al'lS e e al,[S
—as[ij]=1(5 Dji —iSg )i + 2151

21

Requiring stationarity, i.e. the left-hand side to vanish,
the gap equation emerges:

STt=g51-3, (22)
with

_iarz[s]

2= S

(23)

Differentiating both sides of Eq. (21) with respect to S once
more, one obtains

9°T[S]
= i(i8);} (i9), ! +
35,0851 i(i )jk (i )11

9%T5[S]

—_. 24

Substituting Egs. (19), (20), and (24) into Eq. (18) one
obtains the following integral equation for I'®:

F(A;)kl = Njju — Aij;k’l’(isz/if)Fgf?/;k,(isj/k'l (25)

ty
The scattering kernel is given as

A — 9°To[S]
ikl T e g,
1081k

(26)

In the following we will calculate I',[S] to next-to-
leading order (NLO) in the expansion of 1/N.. The leading
order (LO) and NLO terms of I'; are shown diagrammati-
cally in Figs. 1 and 2 respectively, and their expressions are
given as

Iio[s]=Gy f d*xtr(iS(x, )T )e(iS(x, x)T,),  (27)

TYLO[5] = % Tr.,InB, (28)

with

PHYSICAL REVIEW D 88, 036012 (2013)

FIG. 1. Leading order (LO) contribution to I';. The solid lines
represent the dressed quark propagator, and the wavy line the
local four-point interaction.

Baya,(x,y) = 8*(x = )840, = 2G11 4 0,(x,y),  (29)

I, 0, y) = —it[iS(y, X)L, iS(x, )Ty, 1, (30)

where II, ,,(x,y) are the quark-antiquark polarization
functions. The scalar and pseudoscalar interaction
channels correspond to I'y—g =1 and I',—, = iys7,,
respectively. We should note that the different trace nota-
tions in the equations above have different meanings: tr
only acts in the inner space (Dirac, flavor, and color), and
Tr., in the coordinate space and « index. Since the
coupling strength G ~ O(N; '), it is obvious that I'50 ~
O(N,) and THLC ~ O(1).

Following the method in Ref. [30], we introduce the
“meson propagators’ as

Daya,(x,y) = 2GBga, (%, y). 3D

The meson propagators are related to the polarization
functions through

Dy o y) = 26[%1% 5(x — y)

+ Zfd4ZHala3(x! Z)Da3a2(Z’ y)] (32)

Substituting Egs. (27) and (28) into Egs. (23) and (26)
and after a calculation which is presented in Appendix A,
we obtain the expressions of self-energy and scattering
kernel in the 1/N, expansion in NLO. Here, we just list
these results in momentum space:

S(p) = 2O(p) + INO(p) + - - -, (33)
with
d* .
SI0(p) = 26 [ G S0 (34)

FIG. 2. NLO contribution to I',.
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FIG. 3. Quark self-energy at LO and NLO. The dashed line
denotes the meson propagator.

SN0(p) = - j i Dalp ~ OTLS@T. GS)

The polarization functions and meson propagators are
given by

4

a(p) = ~i [ 5% ulisla — pLais@r.L - Go)
2G

D,(p) = Tﬂa(m (37

Figure 3 shows the diagrams of the self-energy at LO and
NLO.
The integral equation for 4-point vertex I'® is given by

d*r
Th(p, p'50) = Ajaa(p, P'3 @) = f 27 Aijwr(p, r:.q)

O (1 P S e (1)),

X (iSp(r + TS,

(38)
where the scattering kernel takes the following form:
Niju(p.rig) = Afu(porig) + ARG (porig) +--+ (39)
with

ASu(p, s q) = 2zGZF“FgI, (40)
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()=~ E0.p- it - ¥ [

a ay

NLO
Alj 3kl

X (Fal lS(P + l)raz)ijDal(q -
X (FaziS(r + l)Fal)kl

-3 [ gispror.,

aa

DD, (1)

X Da] (CI - l)Daz(l)(Fal ZS(r tq— l)raz)kl-

(41)

Figures 4 and 5 show the integral equation and NLO
contributions to the scattering kernel, respectively.

III. MESON PROPAGATORS AND QUARK
SELF-ENERGY

In the section we calculate the meson propagators
and quark self-energy at finite temperature. We will adopt
the imaginary-time, i.e., Matsubara formalism throughout
this paper. In the imaginary-time formalism, the energy
is replaced by discrete Matsubara frequencies iw, with
w, =2nwT for bosons and w, = 2n+ 1)7T for
fermions. Furthermore, the 4-momentum integrations in
the last section are replaced by

I

with 8 = 1/T being the inverse of the temperature.

From Eqgs. (34) and (35) one finds that the LO part of the
quark self-energy 310 is of order O(1) in the 1/N, expan-
sion. Therefore, the real part of SN can be neglected,
because it is O(N;'). Furthermore, we should emphasize
that the first nonvanishing imaginary part of the quark self-
energy occurs at the order of O(N;'). The same also
happens in the O(N) model [30]. As a consequence we
only need the LO part 31O of the quark self-energy in the
gap equation (22) and the polarization functions in (36),

iD= i8S [ &2 fion 5. @

Y

»- »-

A 4

&

FIG. 4.

& &

Integral equation for 4-point vertex I'®

[ E—

FIG. 5. NLO contributions to the 4-point scattering kernel.
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which simplifies the calculations considerably. The gap
equation is given by

g M

q

(1 —2n4(E,), (43)

with

E, =y + M (44)

1

nf,b(Eq) = W; (45)

where M is the dressed or constituent quark mass. From
Eq. (36) one obtains the scalar polarization function which
reads

ReH()(pO + i0+, ]_5)
1
= 4NC.Nf[1l + E(pg — p? —4M*)Rel(p° + i0™, ﬁ)],
(46)
ImHO(pO + i0+, ﬁ)
= 2NCNf(p% — p? —4M»)ImI(p® + i0*, p), (47)
and the pseudoscalar polarization function
Rell,,(p° + i0", p)

1
_ 4zvczvf[11 + 55} = pIReI(pO + 0", ;9)], (48)

ImII,(p° +i0", p) = 2N N (pj — pH)ImI(p° + i0*, p),
(49)

with

d*q 1

L= - —
! (2m)’ 2E,

(1 = 2n4(E,)), (50)

pp(p) = i(Dg(p) — D§(p)) =

PHYSICAL REVIEW D 88, 036012 (2013)

. R 1 1 fo
Rel(p®+i0", p) :Wﬁf dqi

0 E,
E.—E)*—p}
><[_”f(Eq)ln (+—q)2p(2)|
(Ef_Eq) — Do

(E+ +Eq)2 _p(Z)
(E, +Eq)2 _P(z)

| S——

+ (%— nf(Eq))ln
(5D

Im/(p® + i0*, p)

11

_ - 2 .2
167”,{2T®<p Po)]n(

T
1+ e VPi +1"12/T)

+ O(p3 — p* — 4M2)|:\/p2, + M? — \/pi + M?

1 + e~ NPE+MYT
_l’_ .
2T1n(1 - — )| (52)
where we have
E. =[(q % p? + M*]'2, (53)
1 I 0 4M?
p==5|pEPHY1 =] (54)
2 P — P’

From Eq. (52) one sees that the imaginary part of the
quark-antiquark polarization functions are nonvanishing
only when s <0 (s = pj — p?) or s > 4M?. Therefore,
in these regions, one can employ Eq. (37) to obtain the
retarded and advanced meson propagators D%(p) =
—D%(p° +i0", p) and D$(p) = D%(p)*. It then follows
that the meson spectral density is given by

8G*ImIl ,(p° + i0*, p)

In the region 0 < s < 4M?, we should investigate whether
there is a pole in the meson propagators, in other words,
whether the mass of the mesons is less than 2M. For the
pion this is fulfilled below the Mott temperature T,
defined by

m(Ty) = 2M(Ty). (56)
However, in the scalar channel, the mass of the o meson

m,, is always larger than 2M. (See the left panel of Fig. 6.
The three parameters of the NJL model are fixed as

(1 = 2GRell (p° + i0*, p))* + 2GImII(p° + i0*, p))*

(55)

A =651 MeV, G =5.04 GeV~2, and m, = 5.5 MeV,
which are obtained by fitting the following physical
quantities: m, = 139.3 MeV, f, =923 MeV, and
(i, )3 =251 MeV. Same as the usual NJL litera-
tures, e.g. Ref. [36], we only employ the cutoff A for the
vacuum contribution. Since the thermal contribution is
finite, it does not need a regularization.) Therefore, we
only need to include the single particle contribution to
the spectral density for the pseudoscalar channel. In sum-
mary, the spectral density for the o meson is given by
Eq. (55), while that for the pion is changed to
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FIG. 6 (color online).

with |p| = 100 MeV. Right panel: f;, as a function of temperature with |p| =
8GZImH1
pp(p) =
(1 — 2GRell)? + (2GImII,)?
+ fp2msgn(po)d(pg — p* — mz)OC2M — my,),

(57)

where we use index 1 to denote the pseudoscalar channel,
while f}, is the residue of the pion propagator at the pole.
Figure 7 shows the scalar and pseudoscalar spectral density
(without the isolated single-particle contribution) for sev-
eral different temperatures. One observes that there is an
obvious peak in p%, which originates from the pole of the
o meson propagator. However, in p},, there is no such peak

ENLO(iwnPr P) Z_[(Z )3B lqua(ia)nq -

0 " 1 " 1 " 1 N
50 100 150 200 250

PHYSICAL REVIEW D 88, 036012 (2013)

50 100 150 200 250
T (MeV)

Left panel: Quark constituent mass M, pion mass m,, and ¢ meson mass m, as functions of the temperature

100 MeV.

when the temperature is low. With increasing temperature,
the isolated single-particle contribution to the spectral
density becomes smaller and smaller and vanishes even-
tually at the Mott temperature (see the right panel of Fig. 6
which shows f}, as a function of the temperature), while
the continuous spectral density coming from the pole of the

pion propagator becomes more and more important.
In the following, we calculate the NLO of the quark

self-energy from Eq. (35) (details of the computation are
presented in Appendix B and we just list the results here),
whose expression in the imaginary time formalism is
given by

iw,,, G — PTaSliw,, Pl (58)

where w, = (2n, + 1)w/B and w, = (2n, + 1)ar/B. In order to complete the summation over n,, we adopt the
Holstein summation formula [37,38], i.e.,
B D> Fliw,) =5 n,p(z)Res(F,z=2z)* ) f —n,, #(€)DiscF, (59)
even,oddm poles cuts

and find

(i, §) = 3 f oo [3Erip.te-

n,,’ 6_1) - 5)1—‘ap5(§’ q))ranf(‘f)

+iph(§,G — PITaSE +iw, , OT 4ny(£)], (60)

where pg is the spectral density for the Hartree quark propagator

ps(q) = 2msgn(q®)8(q3

After analytic continuation, we arrive at

ImEII\eILO(Po, p)=

1 U o
—.[ENLO(po +i0%, p) — ENO(py —i0*, p)]

— E2)(y,uq* + M). 1)

2[(2 )4[90(61 =% 4= P (vug") +pp(a° —p% G- PIM]pc(q°, Pln(q°) +n,(g° — p°))  (62)

with
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FIG. 7 (color online). o meson (left panel) and pion (right panel) spectral densities as functions of p, with || = 100 MeV at several
values of the temperature.

pc(q°, §) = 2msgn(q°)6(q5 — EZ), (63)
5@ @) = p%(4° ¢) +3p5(° §). (64)
pp(@° @) = p%(g° §) — 3ph (4" §). (65)
We express ImSRLO as
Im3RC(po, p) = —y°p°ImCr(po, p) + ¥ - pImAR(po, p) + ImBg(po, p). (66)

After some calculations, one obtains

1 1 fo q f[atp
ImAg(py, p) = — — | dg—= dkk(p® + ¢*> — K[ pH(E, — p°, k)(n/(E,) + ny(E, — p°
r(Po, P) 97 pgﬁ qEq v (p*+4q Wep(E, — p°, k) (ng(E,) + ny(E, — p°))
- pg(Eq + po’ k)(nf(Eq) + nb(Eq + po))]) (67)
1 M [~ q f[atr
ImBg(py, p) = — —— — dg— dkk[p,(E, — p° k E)+ ny,(E, — p°
mBg(po, p) 672 p ﬁ) qEq . [pp(E, — p° k) (ny(E,) + ny(E, — p°))
ImCa(po, ) = —— — fwd [‘”” Ak pE(E, — pO. k) (E,) + ny(E, — p)
Po P) = qq p -p, -
e 1672 pp Jo l=pl O [T
+ pg(Eq + p07 k)(n)‘(Eq) + nb(Eq + po))] (69)

As we have mentioned above, Im3N'© is proportional to 1/N,. Therefore, we can approximate the quark propagator as
prop pp q propag

> Yy pt+tM
Sg(p°, p) = ~ . —, (70)
K pe— B2 — M2+ iFp(p°, p)
with

FR(POy p) = 2[p(2)ImCR(p0, p) — ﬁZImAR(pO, P) — MImBg(py, p)]. (71)

We define

o ) s 1

Gr(p®, p) = G(p° + i0", p) = — (72)

po — P — M? + iFg(p’, )’

In the following, we adopt the method in Ref. [30] and obtain the corresponding spectral density as
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FIG. 8 (color online). Left panel: ImAg(E,,, p), ImBg(E,, p), and InCg(E,, p) as functions of | 5| at 7 = 130 MeV. Right panel: T',

as a function of |p| at T = 130 MeV.

pc(p’, p) = i(Gr(p®, p) — GA(p°, p))
2Fx(p)
= . (73)
(P5 — E3)* + Fz(p)
This spectral density can be approximated as its leading
order contribution in the 1/N,.. expansion, i.e., Eq. (63). In

the following we wusually encounter the product
Gr(p)G4(p), which is of order N,. This is because

_ 1 _ pcp) _ pc(p)
(714)
with
0 = >
Fp — FR(p H P) _ FR(Ep’ P) (75)

2p° PO=*E, 2E,
being the thermal width of a quark. ImAg, ImBg, ImCp,
and I',, as functions of | p| with T = 130 MeV are shown in
Fig. 8. One can see that the thermal width increases with
|p| when the temperature is 130 MeV. In order to inves-
tigate the dependence of the thermal width on temperature,
we show I, as a function of 7" at several values of mo-
mentum in Fig. 9. In the regime of low momentum, which
contributes to the shear viscosity mostly as Eq. (86) shows,
we find that I', has a maximal value at the pseudocritical

700y | 50 MeVI g
600r ___ E=100 MeV 27
500 p=200 MeV / .
S 400f —-—--p=500 MeV / g
2 300} '
—
200}
100 |
00—
50 100 150 200 250

T (MeV)

FIG. 9 (color online). Dependence of the thermal width on the
temperature at several values of momentum.

temperature of the chiral crossover. When the momentum
is high, temperature corresponding to the maximal T',
becomes larger.

IV. SHEAR VISCOSITY

According to the Kubo formula, the shear viscosity is
related to the spectral density of the energy-momentum
tensor through [17,39]

.0 -
m Tim, a—qoprr(qo, q), (76)
with
prr(d®, §) = fd4xeiqot7ié'}<[Tij(X), T,;00)], (77

where T is the traceless spatial energy-momentum tensor

1= (i, - 3oumae. a9
Defining the Green function as
iGrr(x) = <T(Tij(x)r Tij(o)»’ (79)
we have
prr(q’ @) = —2ImGrr(q° + i0%, g). (80)

One easily obtains that
d*p
Grr(q® = iw,,0)=B""'Y .[W Tr(L;;(p + 4. p)

XS(p)Y(p,p+@)S(p+ @l (81

and the corresponding diagram is shown in Fig. 10, where
F?j is the bare 3-point vertex, given by

1
F?j(P +q,p)=vip; — gaiﬂ’kpk’ (82)

and I';; is the fully dressed 3-point vertex. It is convenient
to express I';; as
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b
— 49

rptq

FIG. 10. Diagrammatic representation of Eq. (81), where the
dot and black circle denote the bare and dressed vertices,
respectively.

Typ+q.p) =T%(p +q p)T(p +q p). (83)

The dressed 3-point vertex has a relation with the
4-point vertex, which is shown in the first line of Fig. 11.
Employing the Bethe-Salpeter (BS) equation for the
4-point vertex shown in Fig. 4, one obtains the BS equation
for the dressed 3-point vertex as the second line of Fig. 11
shows. This is analogous to the method used by G. Aarts
et al. to obtain the BS equation for the 3-point vertex in the
O(N) model [30].

Employing the Holstein summation formula in Eq. (59),
we obtain

tim prr (4.0 = S NN 6° [ LD (01— (%)
4°—0 3 2m)

XT(p®+¢q°+i0", p® —i0*; p)

X pAH(—2M?* — p* + 2p3)Gr(p°, p)

X G0, ). (84)

Therefore, in order to calculate the shear viscosity one
should analytically continue the 3-point vertex to

V(p° p) =T o_o(p° + ¢° +i0*, p° — i0*; p). (85)

Inserting Eq. (74) into Eq. (84) and employing the Kubo
formula in Eq. (76), we finally arrive at

1 0 1
=——N.N dpp® ——
n 1577_2 c f:B'/;) pp F[,E?,

FIG. 11.
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In the following, we will solve the BS equation for the
dressed 3-point vertex

d*r
ny;ij(p +4q,p) = ng;ij(p +4q,p)— fWAij;k’l’

X (p, r; Q)(iSl’i’(r + Q))ny;i’j’(r tgq, I")
X (iSj/k/(r)), (87)

where we use x, y to denote spatial components of the
energy-momentum tensor and i, j... the degrees of free-
dom in Dirac, colors, and flavors. The scattering kernel is
given in Egs. (39)—(41). Multiplying the two sides of
Eq. (87) with y,p, and performing the trace, one obtains
the following scalar integral equation:
d*r
WMP’ r;q)

X G(r+qG)I'(r+q,r), (88)

I'p+qgp =1+

with
Alp.riq)=A(p,r;q) + My(p, riq) + As(p.r59),  (89)

where

Ay(p,r;q) =i[D°(p — r) + 3D (p — r)]Fo(p, r;q), (90)

As(p,riq) = I%G(p +DG(r + D{D(g — HD(D)
+3D'(q — DD'(DIF(p, 1, I; q)
+[D%g — )D°(1) — 3D' (¢ — 1)D'(1)]
X F3(p, 7. D}, 1)

As(p.riq) = /%G(p +0)G(r+q—D{D(g—HD(1)
+3D' (g —)D'(D]F:(p, 1, 159)
+[D%g—1)D°() =3D' (¢ —)D' ()]

X F5(p, 7, D)} (92)

Bethe-Salpeter equation for the dressed 3-point vertex and its relation with the 4-point vertex.
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The three terms correspond to the three diagrams of the NLO contributions to the scattering kernel in Fig. 5,
respectively. In fact, the LO scattering kernel does not contribute to Eq. (88). Some expressions included in
Egs. (90)-(92) are defined as follows:

Fo(p,r;q) = F ﬁl: M2—1F2+(r0+q0)r0:|, (93)
p? 2
3NN/, oo o =~ 1. . = . =
F,(p,r,l;q)=—§ ﬁzf{l:r-pr~(p+l)—grzp-(p+l)][(r0+lo)(2ro+q0)—2r-(r+l)]
—[ ﬁ(r-i—l) (p+l)—%r (r-l-l)p (p+l][(r + g% — P —Mz]} (94)
3NN, . . =« 1. =
Faportig) = =5 = [F 57 G+ D =575 G+ D[[00 + ¢~ )@+ ) = 27 (- ]
[7pE =D G =37 G- D5 G+ D ][0+ g0 = 2= w1 ©3)
o= M’T. .. .. = L, o =
F(p7D = 3NN |7 5G4 D - 575 5+ D] 96)

We now return to the Matsubara formalism. After performing the frequency summations with Eq. (59), we should also
accomplish the following analytic continuations:

iw, — p° —i0", o7
iw, +iw, —p’+q"+i0%, (98)
iw, — q° +i0", 99)

due to the requirement of the vertex in Eq. (85). Then, in the limit ¢° — 0, one obtains

d*r
V) =1+ [ 5 VGGG, ), (100)
with

Alp,r) = Ai(p, 1) + Ay(p, r) + As(p, 1), (101)
A(p, 1) = [pp(p = ) + 3pp(p = NIFo(p, Nlng(r°) + ny (10 — p%)], (102)

4 >
A= | %mp T Dpolr+ DIDYDIE + 3IDLDRIF (b, ) + [IDYDE — 3IDYDEIF B, 7 Din (10 + p°)

= 1y (10 + r)]ng(r%) + ny(r° — p2)] (103)

d*l 5
As(p,r) = IWPG(p + Dpe(r = DIIDYDI? + 31D (DI21F(p, v, 1) + [IDY(DI* = 3IDR(DIP1F5 (B, 7, DHng(1° + p°)
—np(I° = )] (r°) + 0, (0 + pO)] (104)
where we have Gg(r) = G(r’ +i0%, 7), Go(r) = G(r* — i0", 7), and Fy1,(p, . 1) = Fo12(p, . ;g = 0)

Inserting Eq. (74) into Eq. (100) and after some calculations, we arrive at the following integral equation:

H (p, r)

V(E,p) =1+ f dr V(E,, r), (105)

with
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Hp,r)=3H (p,r)+ Hy(p,r) + Hs(p, r) + Hylp, 1) (106)
We have
1 r
Hi(p,r)= 222 B [r_ dikkz, \[pp(E, — E,, k) + 3pp(E, — E,, k)][ns(E,) + ny(E, — E,)]
- [pOD(Ep + Er! k) + 3pD(Ep + Err k)][nf(Er) + nb(Er + Ep)]}! (107)
with
r2 + 2 k2
Zp = ;’T; (108)
_3N.N -
H,(p,r) = ! f / le{D D> +3ID 12( 0+M2)+ DY 12—3D112M2}
2(p, 1) o 20 )y ) e [ID%(DI* + 3| DR(DI?] [DR(DI* = 3IDx(DI?]
1 1
X [(§ -, -t 3z,,,z,,)p2r2 + ZZpl(zfl - §>r2pl:|[nf(lo —E,) —ng(l° = E,)nsE,) + ny,(E, — E,)],
(109)
with
B~ I —2E,l B— P —2El
B =" —nr. 11
Zpl 2])1 ’ Zrl 271 > ( O)
3N Ny r
IHp.r) == [ [ arfogaor +1phory(“ 58+ v7) + Uogor ~sipjorie]
1
X [(3 —Zy =t 3zpzzrl>p2r2 + ZZ,,I(Z% - g)rzpl][nf(l(’ —E,) = n;(° = E)ny(E,) + n,(E, = E,)]
(111)
with
3 — 1> =2E,l 3 — 1 —2E,LI
— —“Eplo =" —rrlo. 112
Zpl 2pl s Zrl 27l > ( )
3NN, r -2
3= =N L [ [ aefivgor + sipory(" S0+ ) + ogor - siphore]
m Eip 2
)[(A-2,— 243 22 40z (2~ L) P+E)—ni(l°-E E.)+n,(E, +E
3 2o = 25+ 3220 PP+ 22, 2 3P [n( r) = ng( s (E,) + ny(E, + E,)],
(113)
[
with results of V(p) = V(E »» P) into Eq. (86), we can evaluate

B—1=2E,l

2 — P +2E,l
2pl ’ )

o (114)

ipl = Il =

Here JH | corresponds to the first diagram in Fig. 5. In our
calculations we find that the second and the third diagram
in Fig. 5 contribute equally to the integral equation in
Eq. (105), and H 234 correspond to three different
2 « 2 processes due to the box diagrams in Fig. 5 [30].
Finally, employing the expressions of F |,34(p,7)
given above, one can solve the vertex BS equation in
Eq. (105) numerically. After substituting the calculated

the shear viscosity. Figure 12 shows V(p) as a function of
p at several values of temperature. It is seen that V(p)
increases with the temperature at high momentum, but its
dependence on the temperature is weaker at low
momentum.

We give the calculated result of the shear viscosity as a
function of the temperature in Fig. 13. We observe that n
decreases rapidly with increasing temperature during the
QCD crossover from the confined hadron phase to the
deconfined QGP phase. When the crossover is completed,
the shear viscosity arrives at its minimum value. For higher
values of T, 1 increases slowly.
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FIG. 12 (color online). V( p) as a function of the magnitude of
the momentum p at several temperature values.

So far, we have calculated the shear viscosity in the NJL
model to the first nontrivial order in the 1/N, expansion.
Therefore, the entropy density s also only needs to be
calculated to its first nontrivial order, which has fulfilled
the requirement that the ratio of the shear viscosity to
entropy density n/s is calculated consistently in the
1/N, expansion. The first nontrivial order of the entropy
density is the mean-field LO, which can be easily obtained
from the mean-field thermodynamical potential density,
given by

YR 3
QM, T) = (mo — M)* _ 2NfNC/d—p

4G (2m)3
X[E,+2TIn(1 + e PEn)]. (115)
The entropy density can be obtained by
aQ)
=——. 116
°T (116)

The numerical result of the shear viscosity to entropy density
ratio n/s is shown in Fig. 14. We see that the ratio decreases
monotonously with the increase of the temperature. When
the temperature is above about 160 MeV, the value of 7/s
falls below the KPSS lower bound. 7/ has also been calcu-
lated within the NJL model in the simple relaxation time
approximation [40,41] and in a dynamical quasiparticle
model [42]. Comparing with these calculations, we should
emphasize that the present work is the first consistent

0.20 - B

100 120 140 160 180 200 220
T (MeV)

FIG. 13. Shear viscosity 7 as a function of the temperature.

PHYSICAL REVIEW D 88, 036012 (2013)

0.1

n/s

KPSS lower bound

001 L L L L L
100 120 140 160 180 200 220
T (MeV)

FIG. 14 (color online). Ratio of the shear viscosity to entropy
density n/s as a function of the temperature. The KPSS lower
bound is also shown in this plot.

computation in the 1/N, expansion. Furthermore, the fully
dressed 3-point vertex is also obtained from the BS equation.
We find that our result lies in between Refs. [40,41] at low
temperature but agrees with the latter at larger temperature.
Our result also agrees with that of Ref. [42] qualitatively
below the critical temperature.

V. SUMMARY AND OUTLOOK

In this work, we have calculated the temperature depen-
dence of the shear viscosity 7 in the NJL model in NLO in
the 1/N,. expansion. One has to go to this order, to obtain a
description beyond the trivial mean-field LO result of a
free relativistic gas. The 2PI effective action is computed at
NLO, from which the integral equations for the 3- and
4-point vertex are obtained. The integral equations sum
infinite sets of diagrams contributing to the shear viscosity
at the same order in the 1/N, expansion. The meson
spectral density, self-energy and thermal width of the
quarks are calculated numerically.

Our results demonstrate that 1 decreases rapidly when
the chiral crossover is approached with increasing tem-
perature. Compared to the hadron phase, the QGP phase
has a low shear viscosity, which seems consistent with the
current RHIC measurements. Furthermore, we find that the
shear viscosity has a minimum value when the chiral
crossover is completed and then increases slowly again.
We also calculate the ratio of the shear viscosity to entropy
density 77/s. We find that the ratio decreases monotonously
with the increase of the temperature.

Our model is a quasiparticle model. We should keep in
mind that the validity of the quasiparticle model is
questioned when the thermal width of a quark is large,
which is the case when the temperature is high as Fig. 9
shows.

In view of the experimental search for a chiral critical
end point in the QCD phase diagram in the RHIC low-
energy run and the future programs at NICA/Dubna and
CBM/FAIR it would be interesting to extend the present
calculations to finite quark chemical potential.
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APPENDIX A: QUARK SELF-ENERGY
AND SCATTERING KERNEL IN THE
1/N, EXPANSION IN NLO

In this appendix we derive the expressions of quark self-
energy and scattering kernel to NLO in the 1/N, expan-
sion. From Egs. (23) and (27), the LO self-energy is easily
obtained as

PHYSICAL REVIEW D 88, 036012 (2013)

where we have used the definition of the meson propagator
in Eq. (31) in the second line of the equation above. We
should note that summations or integrals are assumed for
all the dummy indices and arguments in the equations
above.

From the definition of the four-quark scattering kernel in
Eq. (26), we have

aEij(x’ y)
Sy (', x')
93 P(x )

Sy, x')

Aij;kl(x’ yix,y) =

XN, y)
Sy, x')

EE‘O(X y) = 2G8*(x — y)re Lr(iS(x, x)I'). (A1) (A6)
As for the NLO contribution, from Eq. (28) we have
JTNLO[S] i B ) OB g, (X3, X1) w2 Tll;te .ﬁrs(i term on the right-hand side of equation above is
S 2 aya, (X1, X2 25 (3. ) obtained as
Substituting Eqgs. (29) and (30), we obtain sLO
d ij (x, y) 4 4 NS4
oy = 2iGIET 6% (x — y)8*(x — ¥) 6% (x — x');
aBazal(xzrx ) a; 4 aSlk(y/:x )
— et = —2G[I iS5, (x, x84 (0 — y)
a8 (v, x) : (A7)
X 64()(71 - X) + Fa lSl]lz()Cz,xl)r
X 8*(x; — y)8*(x, — x)]. (A3)  the second term is given by
Substituting Eq. (A3) into Eq. (A2), we arrive at
93NLO (.
GFNLO[S] | @ 21/ (X y) _ aDalaz(x’ y) I‘allsl i (.X Y)Faz
m —2iGB g, (x, YIS, 4, (x, y)Flz], (A4) 08,/ x') aSlk(yl: ©) it irj
o = 1D, (5 YTT 8% = )84y = ).
Then the NLO self-energy is given by A8)
E?}Lo(x, y) = —2GBalm(x y)Fg:lS,],z(x y)F
= ~Dyya, (% y)rzl i85, (x, VI 2J (AS) Furthermore, we have
|
Dy o, (%, ) 0By o (x1, 1)
@ X — _2GB711 : 172 7/1 ,
a8, (', x') a‘a‘(x x) Sy (y', x') a2a2(y1 Y)
= (2G)ZB;110/] (x,xl)[FZ,ﬁ iS;5, (1 xl)FZ‘,fS“(xl =8y — x)
+ F/Z" i85, (x1, yl)l“iir?“(yl =8 (x; — X')]B;/la O y)
Dy (X, y )Fk, 18, (', y’)Flzl aha, (X, ¥) + Dy ot (X, x )Fkl i8;,i, (', y’)F,zl o, V', ¥). (A9)
Substituting Eq. (A9) into Eq. (A8), we obtain
aE%\I‘LO('x’ y) a a a a
m = _lDalaz(x; )’)F T 264()( - /)64()) - X/) - F”; 181314()( y)l—‘u;[Dala’z(x’ y/)Da’]az(x/r y)
+ Doz aj (X X )Da’az(y y)]rklllszltz(x y/)F, I (AlO)

which are the NLO contributions to the four-quark scattering kernel shown in Fig. 5.
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APPENDIX B: NLO QUARK SELF-ENERGY
The expression of the NLO quark self- energy is given by

SR [ Gy B S Duliw0s, = 0, G = DTS, DT B1)
Employing the Holstein summation formula in Eq. (59), we have

IZD (lw T Wy, q F))Fas(iwnqr g)ra = [00 de

00277

Do~ iw, .G — PIT[S(E +i07, g)

-5 = 104,90 & — [ e+ i0nd-p)

- Da(é‘: - 10+ q— _))]Fas(é‘: + iwnl)’ é)ranf('f + ia)n,,)

— [ SE 1D~ i, T = PTaps(& DT any (&)
+ lpD(é‘:’ q— ﬁ)FaS(é‘: + iwn],’ q)ranb(‘f)]r (B2)
where in the last step we have used the following relations:
ps(£, §) = i[S(¢§ +i07, g) — S(& —i07, §)] (B3)
pp(€. G — P) = —ilDa(§ +i07, G — p) = Do(€ —i07, G — p)], (B4)
ny(§ +iw, ) = —ny(é). (BS)

ps and p§ are the spectral densities for the quark and meson, respectively. n,, is the Bose distribution function. Substituting
Eq. (B2) into Eq. (B1), we obtain

M0, ) =3 [t [ S D = 0,7~ P aps(E DT an (&

+ lpD(é:r q— ﬁ)ras(g + iwnl,’ é)ranb(f)] (B6)

Then we perform the following analytic continuation:

1 L B
Im3RO(py, p) = f[ENLO(po +i0%, p) — INO(py —i07, p)]

= __Zf(z p [ iD,(é = py—i0", G — p) —iD,(é — po +i07, G — P)ITyps(& QT onp(€)
+pp(&,G— P, [iS(f + po + 107, g) — iS(€ + py — 0%, @I 41, (6)}

= __Zf(z p {pD(f P0G — P aps(& QUanp (&) + p3(&,G — PITaps(é + po, PUan,(6)}

- __Z[(Zw)3 [E{Pf)(f = P0G = PITaps(é @l ans(€)
+pp(€&— po, G = Plaps(& PUany(é = po)}

*Z [ i P50 = Po = DIaps(an Talny(g0) + mp(qo = po)lh (B7)

where in the last step we have changed the integral variable £ to ¢y. Employing the spectral density of the Hartree quark
propagator in Eq. (61) and defining

pc(q®, q) = 2msgn(¢°)8(q} — E2), (B8)

as shown in Eq. (63), we have
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> 80 = o, G = P)Taps(qo DT = pPH(q0 = P0G — P)P6(q% ) (v,.q” + M)
+3pp(q0 = Po.- G — P)rc(q’ (v uq* — M)
=[pd(q0 — P0G = P)(yug* + M)+ 3pp(q0 — Po, G — P)(¥ug* — M)]pc(q®, §)
={p%(90 — P0G — P) + 3pp(q0 — Po G — P)I(v,.q")
+p(q0 — P0G = B) —3pp(90 — Po, 4 — P)IM}pc(q’, §). (B9)
Substituting Eq. (B9) into Eq. (B7), we arrive at
Im3{°(py, p) —5 /(2 pm (5 — p° G — P)vug*) + pp(@® — p° G — PIM]ps(q°, Plns(q°)
+n,(¢° — p°)) (B10)
with p}, and p}, defined in Egs. (64) and (65).
We parametrize ImZ, like this:
Im3FO(po, p) = —¥°p°ImCr(po, p) + ¥ - PImAg(po, p) + ImBg(po, p). (B11)
It then follows that
N 1 d* q 0
ImAg(po, p) = 27 p5(@® = p°% G — PP Dpca’ Plns(g°) + ny(g® — p)], (B12)
mBupo 1) == [ pnla® = 1. = Pcla’. Dnsa) + n(a" = p) B13)
ImCg(po, p) = [(2 e p1(q° = 1% G — P’ pe(a® Dlns(q®) + ny(g® — p)] (B14)
After an easy calculation, one obtains Eqs. (67)—(69).
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