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Since three-loop and higher-loop terms in the � function of a gauge theory are scheme-dependent, one

can, at least for sufficiently small coupling, carry out a scheme transformation that removes these terms.

A basic question concerns the extent to which this can be done at an infrared fixed point of an

asymptotically free gauge theory. This is important for quantitative analyses of the scheme dependence

of such a fixed point. Here we study a scheme transformation SR;m with m � 2 that is constructed so as to

remove the terms in the beta function at loop order ‘ ¼ 3 to ‘ ¼ mþ 1, inclusive. Starting from an

arbitrary initial scheme, we present general expressions for the coefficients of terms of loop order ‘ in the

beta function in the transformed scheme from ‘ ¼ mþ 2 up to ‘ ¼ 8. Extending a previous study of SR;2,

we investigate the range of applicability of the SR;3 scheme transformation in an asymptotically free

SUðNcÞ gauge theory with an infrared zero in � depending on the number, Nf, of fermions in the theory.

We show that this SR;3 scheme transformation can only be applied self-consistently in a restricted range of

Nf with a correspondingly small value of infrared fixed-point coupling. We also study the effect of higher-

loop terms on the beta function of a U(1) gauge theory.
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I. INTRODUCTION

The evolution of the coupling gð�Þ as a function of the
reference Euclidean momentum scale, �, from the ultra-
violet (UV) to the infrared (IR) in an asymptotically free
(AF) gauge theory is of fundamental field-theoretic impor-
tance. This evolution of gð�Þ, or equivalently, �ð�Þ ¼
gð�Þ2=ð4�Þ, is described by the � function of the theory.
Terms at loop order ‘ � 3 in the � function are dependent
on the scheme used for regularization and renormalization.
Hence, one expects that, at least for sufficiently small
coupling, it is possible to carry out a scheme transforma-
tion that removes these terms and yields a � function with
only one- and two-loop terms [1]. In [2] we constructed
what is, to our knowledge, the first explicit scheme trans-
formation that removes terms at loop order ‘ � 3 from the
beta function, at least in the vicinity of the UV fixed point
at � ¼ 0.

An important application of such a scheme transforma-
tion is to asymptotically free gauge theories that have an
infrared zero in the � function. Depending on how large
the value of the coupling is at this IR zero, it is either an
exact or approximate fixed point of the renormalization
group of the theory. In order to understand the physical
implications of this IR zero, it is necessary to assess the
effect of scheme dependence on its value. Hence, a crucial
question concerning a scheme transformation designed to
remove terms at three- and higher-loop order in the beta
function, is whether one can use it in the vicinity of an IR
zero of this function. Indeed, a scheme transformation that
is acceptable for small coupling can produce unphysical
effects that render it inapplicable for somewhat larger
couplings [2].

Here we study a scheme transformation SR;m withm � 2
that is constructed so as to remove the ‘-loop terms in the
beta function at loop order ‘ ¼ 3 to ‘ ¼ mþ 1, inclusive.
We investigate this to the highest-loop order possible using
known coefficients of � for a non-Abelian gauge theory,
namely ‘ ¼ 4 loop order, corresponding to m ¼ 3. We
focus on an asymptotically free gauge theory with gauge
group SUðNcÞ containing Nf massless fermions in the

fundamental representation, although many of our results
apply to the case of an arbitrary gauge group G with Nf

massless fermions in a general representation R of G [3].
Starting from an arbitrary initial scheme, we present gen-
eral expressions for the coefficients of terms of loop order ‘
in the beta function in the transformed scheme from ‘ ¼
mþ 2 up to ‘ ¼ 8. It was shown in [2] that the SR;2 scheme

transformation has a limited range of applicability and
cannot be used for a substantial subset of Nf values where

the theory has an IR zero in � because it produces
unphysical effects, namely a reversal of the sign of �.
This finding naturally leads to a question: how general is
this problem and can one alleviate or circumvent it by
using the higher-order scheme transformation SR;3?
We address and answer this question here. We will show

here that the problem is generically still present with the
SR;3 scheme transformation. For example, we will show

that for a theory with gauge group SU(3) and Nf ¼ 12

fermions, one cannot use the SR;3 scheme transformation in

the vicinity of the (scheme-independent) IR zero of the
two-loop � function because it produces the same type of
unphysical results that the SR;2 transformation does. Thus,

while it is true that one can remove terms at loop order
‘ � 3 in a � function for sufficiently small �, one must
take considerable care in attempting such a scheme
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transformation at moderate values of � relevant for a
generic infrared fixed point. As part of our work, we also
discuss some higher-loop properties of the � function and
associated issues of scheme dependence for a U(1) gauge
theory.

This paper is organized as follows. In Sec. II we give
some additional background and motivations for the cur-
rent work. The definition and some properties of a general
scheme transformation are presented in Sec. III. In Sec. IV
we define the scheme transformation SR;m that, at least for

sufficiently small �, removes terms in the beta function
from loop order ‘ ¼ 3 to ‘ ¼ mþ 1, inclusive. Explicit
expressions for the resultant coefficients in the new scheme
are presented in Sec. V. In Sec. VI we discuss the range of
applicability of the transformation SR;2 at an IR zero of the

beta function. In Sec. VII we present our results on the
range of applicability of the SR;3 scheme transformation.

As discussed in Sec. VIII, further insights concerning the
range of applicability of these scheme transformations are
gained by studying the limit of an SUðNcÞ gauge theory
with Nf fermions in the fundamental representation in the

limit Nc ! 1, Nf ! 1 with the ratio Nf=Nc fixed. In

Sec. IX we discuss some higher-loop properties of the �
function for a U(1) gauge theory. Our conclusions are given
in Sec. X, and some additional relevant formulas are listed
in several appendices.

II. BACKGROUND

The dependence of �ð�Þ on � is described by the �
function [4,5]

� � �� ¼ d�

dt
; (2.1)

where t ¼ ln�. It will be convenient to introduce the
quantity að�Þ � �ð�Þ=ð4�Þ ¼ gð�Þ2=ð16�2Þ (the argu-
ment � will often be suppressed in the notation). The �
function has the expansion

�� ¼ �2�
X1
‘¼1

b‘a
‘ ¼ �2�

X1
‘¼1

�b‘�
‘; (2.2)

where

�b‘ ¼ b‘
ð4�Þ‘ : (2.3)

The n-loop � function is given by Eq. (2.2) with the upper
limit on the ‘ loop summation equal to n instead of1. The
one-loop and two-loop coefficients, b1 and b2, are inde-
pendent of the scheme used for regularization and renor-
malization, while b‘ with ‘ � 3 are scheme-dependent [6].
The coefficients b1 and b2 were calculated for a non-
Abelian Yang-Mills gauge theory in [7] and [8,9].
Dimensional regularization [10] and minimal subtraction
[11] are particularly convenient for these loop calculations.
Calculations of b3 and b4 in the modified minimal

subtraction scheme, denoted MS [12], were given in
[13–15]. We recall that perturbative expansions in quantum
field theory, such as Eq. (2.2), are, in general, asymptotic
expansions rather than Taylor series expansions with finite
radii of convergence. However, a wealth of experience with
the use of perturbation theory for calculations of electro-
weak cross sections and decay rates and for perturbative
calculations in quantum chromodynamics (QCD), has
shown that these expansions can give reasonably accurate
results and that this accuracy increases when one carries
these computations to higher-loop order. Extensive
studies have been performed on the scheme dependence
and related scale dependence of perturbative QCD
calculations [16].
If an asymptotically free gauge theory has sufficiently

many massless fermions, the � function can exhibit an IR
zero at a certain value, denoted �IR [8,17,18]. If �IR is
sufficiently small, then this is an exact IR fixed point
(IRFP) of the renormalization group, and the UV to IR
evolution can be computed with reasonable accuracy, since
the theory starts with weak coupling in the deep UV and
never becomes strongly coupled. As the number of fermi-
ons, Nf, is decreased, �IR increases. For a theory with

sufficiently few fermions, as � decreases past a scale
denoted as �, �ð�Þ becomes large enough to trigger the
formation of bilinear fermion condensates that break the
global chiral symmetry. In a vectorial gauge theory, these
condensates are gauge invariant, while in a chiral gauge
theory, if the condensates form, then they generically break
the gauge symmetry [19]. Henceforth, for simplicity, we
focus on the case of a vectorial gauge theory. Associated
with this condensate formation, the fermions involved in
the condensates gain dynamical masses of order �. In the
low-energy effective field theory applicable at scales
�<�, one integrates out these now-massive fermions,
and the � function reverts to that of a pure gauge theory,
which has no (perturbative) IR zero. Thus, in this case the
formal IR zero in � is only approximate. As Nf decreases

through a critical number, Nf;cr, the theory can be regarded

as undergoing a (zero-temperature) phase transition from
chirally symmetric to chirally broken infrared behavior. If
�IR is only slightly greater than the critical value for
fermion condensation, then the theory exhibits a slowly
running coupling and associated quasiscale invariant
behavior [20].
To investigate the properties of a theory with an IR fixed

point at moderate coupling, it is necessary to calculate the
value of �IR to higher-loop order [21]. This was done up to
four-loop order for �IR and the anomalous dimension, �m,
of the fermion bilinear for a general gauge group and
fermion representation in [22,23]. Further higher-loop
results on structural properties of � were calculated in
[24–26]. Because the coefficients b‘ for ‘ � 3 are
scheme-dependent, it is necessary to assess quantitatively
how important the effect of this scheme dependence is on
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the location of �IR. This task was carried out in [2]. To do
this, one constructs a scheme transformation, applies it,
calculates the value of �0

IR in the new scheme, and deter-
mines howmuch�0

IR differs from�IR to a given loop order.
However, one encounters a significant complication in

this program of constructing and performing various
scheme transformations at an IR zero of� and determining
how much they shift the location of the zero. As was
pointed out in [2], in general, a scheme transformation
that is acceptable in the vicinity of the ultraviolet (UV)
fixed point at � ¼ 0 can produce unphysical effects in the
vicinity of an infrared fixed point. These include, for
example, having an inverse that maps a (real, positive)
coupling to a negative or complex value. A set of condi-
tions that a scheme transformation must satisfy in order to
be physically acceptable was given [2] and was shown to
be rather restrictive at a generic IR zero of �. A simple
example is provided by the one-parameter family of
scheme transformations

a ¼ tanh ðra0Þ
r

(2.4)

(dependent on a parameter r), with inverse

a0 ¼ 1

2r
ln

�
1þ ra

1� ra

�
: (2.5)

For example, if r ¼ 4�, then Eq. (2.4) is the scheme
transformation � ¼ tanh�0, and Eq. (2.5) is its inverse,
�0 ¼ ð1=2Þ ln ½ð1þ �Þ=ð1� �Þ�. The scheme transforma-
tion (2.4) is acceptable for small � and hence a, but if
a > 1=r (i.e., �> 4�=r), then the transformation (2.5)
maps a physical � to a complex, unphysical �0, and hence
is unacceptable.

In addition to the general field-theoretic interest in
understanding the evolution of a gauge coupling as a
function of Euclidean momentum scale, one of the moti-
vations for understanding the effect of scheme transforma-
tions on the beta function that describes this is to provide
further information from continuum calculations to com-
bine with information obtained from lattice computations.
Indeed, an intensive program of research is underway using
simulations of lattice gauge theories to study the infrared
properties of gauge theories with multiple fermions in
various representations of the gauge group [27]. In this
context, it has been useful to compare results from higher-
loop continuum calculations with lattice measurements,
e.g. on the anomalous dimension of the fermion bilinear
operator, �mð�Þ evaluated at�IR, making use of the higher-
loop calculations of this IR zero of � in [22,23]. In the
chirally symmetric IR phase, a hypothetical all-orders
calculation of �m evaluated at an all-orders calculation of
�IR would be an exact property of the theory, while in the
phase with spontaneous chiral symmetry breaking, just as
the IR zero of � is only an approximate IR fixed point, so
also, �m is only approximate, describing the running of

�c c and the dynamically generated fermion mass near the
zero of �. In both the chirally symmetric and chirally
broken phases, one necessarily encounters the issue of
scheme dependence in the calculation of both �IR and
�m evaluated at � ¼ �IR at a finite loop order ‘ � 3.
It is therefore necessary to understand as well as possible
the effects of scheme transformations, in particular, the
scheme transformation SR;m that can remove terms in the �
function from loop order ‘ ¼ 3 to ‘ ¼ mþ 1. We proceed
to discuss these scheme transformations next.

III. GENERAL FRAMEWORK FOR SCHEME
TRANSFORMATIONS

A scheme transformation can be expressed as a mapping
between � and �0, or equivalently, a and a0, which we
write as a ¼ a0fða0Þ. We will refer to fða0Þ as the scheme
transformation function. To keep the UV properties the
same, one requires that fð0Þ ¼ 1. We will consider fða0Þ
that are analytic about a ¼ a0 ¼ 0 and hence can be
expanded in the form

fða0Þ ¼ 1þ Xsmax

s¼1

ksða0Þs ¼ 1þ Xsmax

s¼1

�ksð�0Þs; (3.1)

where the ks are constants, �ks ¼ ks=ð4�Þs, and, a priori,
smax may be finite or infinite. From Eq. (3.1), it follows that
the Jacobian J ¼ da=da0 ¼ d�=d�0 satisfies J ¼ 1 at
a ¼ a0 ¼ 0. After the scheme transformation is applied,
the beta function in the new scheme has the form (2.2) with
a new set of coefficients, b0‘,

��0 � d�0

dt
¼ d�0

d�

d�

dt
¼ J�1��; (3.2)

with the expansion

��0 ¼ �2�0 X1
‘¼1

b0‘ða0Þ‘ ¼ �2�0 X1
‘¼1

�b0‘ð�0Þ‘; (3.3)

where �b0‘ ¼ b0‘=ð4�Þ‘. One can then solve for the b0‘ in

terms of the b‘ and ks. This yields the known results that
b01 ¼ b1 and b02 ¼ b2 [6], and the new results for b0‘ at

higher-loop order ‘ that were presented in [2]. Since we
will use these higher-loop results for our present work, we
give a relevant list of them in Appendix A. It should be
noted that the scheme independence of b2 assumes that
fða0Þ is gauge invariant. This is evident from the fact that in
the momentum subtraction scheme, b2 is actually gauge-

dependent [28] and is not equal to b2 in the MS scheme.
We restrict our analysis here to gauge-invariant scheme

transformations and to schemes, such as MS, where b2 is
independent of the gauge parameter. Here, as usual, by
gauge invariance, we mean independence of the gauge
parameter of the gauge-fixing term introduced in the quan-
tization of the theory.
The n-loop beta function in the transformed scheme,

��0;n‘, is given by Eq. (3.3) with the upper limit on the ‘
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summation equal to n rather than1. It is also convenient to
define two reduced beta functions with respective qua-
dratic prefactors extracted, as in our earlier work, namely

��;n‘;r ����;n‘;r

2�2
¼ Xn

‘¼1

�b‘�
‘�1 ¼ 1

4�

Xn
‘¼1

b‘a
‘�1 (3.4)

and similarly

��0;n‘;r � ���0;n‘;r

2�02 ¼ Xn
‘¼1

�b0‘ð�0Þ‘�1 ¼ 1

4�

Xn
‘¼1

b0‘ða0Þ‘�1:

(3.5)

In order to be physically acceptable, a scheme trans-
formation must satisfy several necessary conditions [2].
The first (denoted C1) is that the scheme transformation
must map a real positive� to a real positive�0, since a map
taking �> 0 to �0 ¼ 0 would be singular, and a map
taking �> 0 to a negative or complex �0 would generi-
cally violate the unitarity of the theory. Second, as condi-
tion C2, the scheme transformation should not map a
moderate value of �, for which perturbation theory may
be reliable, to a value of �0 that is so large that perturbation
theory is unreliable. Third, as condition C3, the Jacobian J
should not vanish in the region of � and �0 of interest, or
else there would be a pole in Eq. (3.2). The existence of an
IR zero of � is a scheme-independent property of an AF
theory, depending (insofar as perturbation theory is reli-
able) only on the condition that b2 < 0. Therefore, as the
fourth condition, C4, a scheme transformation should sat-
isfy the property that �� has an IR zero if and only if ��0

has an IR zero. Clearly, these conditions apply for both a
scheme transformation and its inverse. The conditions can
easily be satisfied by scheme transformations applied in the
vicinity of a UV fixed point at small �, but they are not
automatically satisfied, and are a significant restriction, on
a scheme transformation applied in the vicinity of a generic
IR fixed point.

IV. SCHEME TRANSFORMATIONS SR;m AND SR;1
In approaching the task of constructing a scheme trans-

formation that maps an arbitrary initial scheme to the
’t Hooft scheme, it is natural to begin by constructing a
family of transformations such that the first removes the
three-loop term in ��0 , i.e., renders b03 ¼ 0, the next ren-

ders b0‘ ¼ 0 for ‘ ¼ 3 and ‘ ¼ 4, and so forth. We thus

define a scheme transformation SR;m with smax ¼ m and

m � 2 with the property that it removes terms in ��0 from
loop order 3 to loop ordermþ 1, inclusive. That is, starting
from an arbitrary initial scheme and applying the scheme
transformation SR;m, one has, for the coefficients in the

transformed scheme,

SR;m ) b0‘ ¼ 0 for ‘ ¼ 3; . . . ; mþ 1: (4.1)

Equivalently, SR;m produces the n-loop beta function ��0;n‘
in the transformed scheme

��0;n‘ ¼ �8�ða0Þ2
�
b1 þ b2a

0 þ Xn
‘¼mþ2

b0‘ða0Þ‘�1

�

¼ �2ð�0Þ2
�
�b1 þ �b2�

0 þ Xn
‘¼mþ2

�b0‘ð�0Þ‘�1

�
(4.2)

and the full beta function��0 � lim n!1��0;n‘. In Eq. (4.2)

and in analogous equations below, it is understood implic-
itly that if n < mþ 2, the terms involving sums over loop
order from ‘ ¼ mþ 2 to ‘ ¼ n are to be replaced by zero.
There is a unique type of scheme transformation

SR;m that satisfies the properties that (i) b0‘ ¼ 0 for ‘ ¼
3; . . . ; mþ 1; (ii) it has unique solutions for all of the m
coefficients ks, s ¼ 1; . . . ; m, which, in turn, means that
these coefficients are solutions of linear equations. The
construction of this scheme uses the fact that the coefficient
b0‘ for ‘ � 3 contains only a linear term in k‘�1, so that the

equation b0‘ ¼ 0 is a linear equation for k‘�1, which can

always be solved uniquely. To construct SR;m, we take the
simplest case, k1 ¼ 0. Using Eq. (A1) and solving the
equation b03 ¼ 0 for k2, we obtain k2 ¼ b3=b1, so

k2 ¼ b3
b1

for SR;m with m � 2: (4.3)

If we only want to construct SR;2, removing the three-loop

term in ��0 , this suffices. If we want to construct SR;m with

m � 3, removing at least the three-loop and four-loop
terms in ��0 , then we need to calculate k3. To do this, we
substitute these values of k1 and k2 into the expression in
Eq. (A2) for b04 and solve the equation b04 ¼ 0 for k3,
obtaining

k3 ¼ b4
2b1

for SR;m with m � 3: (4.4)

To calculate the coefficient k4 needed for SR;m withm � 4,
we substitute the above values of ks with s ¼ 1, 2, 3 into
the expression in Eq. (A3) for b05 and solve the equation

b05 ¼ 0 for k4. From this we find that

k4 ¼ b5
3b1

� b2b4
6b21

þ 5b23
3b21

for SR;m with m� 4: (4.5)

To construct SR;m for higher m, we continue iteratively

in this manner. With the set of ks coefficients calculated up
to order s ¼ m� 1, we calculate km by substituting the
solutions for ks, s ¼ 1; . . . ; m� 1, into our expression for
b0mþ1, then set b0mþ1 ¼ 0, and solve for km. We list the
resultant ks for s ¼ 5, 6, 7 in Appendix B. As is clear from
this procedure and from the property that SR;m involves

coefficients ks with s ¼ 2; . . . ; m, the explicit construction
of the scheme transformation SR;m in terms of the b‘
coefficients of the�� function in an initial scheme requires
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a knowledge of the b‘ in this initial scheme up to the loop
order ‘ ¼ mþ 1. Since smax ¼ m for SR;m,

ks ¼ 0 for SR;m if s > m: (4.6)

Using the set of coefficients ks with k1 ¼ 0 and ks, s ¼
2; . . . ; m as calculated in Eqs. (4.3), (4.4), and (4.5) and
iteratively for higher m, we define the transformation
function fða0Þ for the scheme transformation SR;m:

fða0ÞSR;m ¼ 1þ Xm
s¼2

ksða0Þs: (4.7)

Applying this to an initial scheme, we obtain b0‘ ¼ 0 for

‘ ¼ 3; . . . ; mþ 1, as in (4.1) and (4.2).
Some remarks on structural properties of these ks coef-

ficients are in order. The coefficient ks depends on the b‘
with ‘ ¼ 1; . . . ; sþ 1 via the ratios

b‘
b1

; for ‘ ¼ 2; . . . ; sþ 1: (4.8)

It follows that these ks have the property

ks is invariant under the rescaling b‘ ! �b‘; (4.9)

where � 2 R. A corollary is that

SR;m is invariant under the rescaling b‘ ! �b‘: (4.10)

Since SR;m requires knowledge of the b‘ up to loop order
‘ ¼ mþ 1 and since the b‘ have been calculated up to
‘ ¼ 4 loops for a general non-Abelian gauge theory
[13,14], it follows that the highest order for which we
can calculate and apply the SR;m scheme transformation

is m ¼ 3.
A scheme transformation that can map an arbitrary

initial scheme to a scheme in which the beta function
consists only of the one-loop and two-loop terms neces-
sarily has smax ¼ 1, since it must remove m-loop
coefficients up to arbitrarily high order. We define SR;1 ¼
lim m!1SR;m � SH. The transformation SR;1 fulfills the

purpose of mapping an arbitrary initial scheme to a scheme
in which b0‘ ¼ 0 for all ‘ � 3, so that the resultant beta

function is reduced to just the (scheme-independent)
one-loop and two-loop terms, i.e.,

SR;1 ) ��0 ¼ �8�a2ðb1 þ b2aÞ ¼ �2�2ð �b1 þ �b2�Þ:
(4.11)

Since the application of the scheme transformation SR;m
to an arbitrary initial scheme produces a ��0 function with
b0‘ ¼ 0 for ‘ ¼ 3; . . . ; mþ 1, as expressed in Eqs. (4.1)

and (4.2), it follows that in the new scheme, the IR zero of
the n-loop beta function ��0;n‘ is at the same value as

the (scheme-independent) value �IR;2‘ for n up to and

including n ¼ mþ 1, i.e.,

SR;m ) �0
IR;n‘ ¼ �IR;2‘ for n ¼ 3; . . . ; mþ 1: (4.12)

V. COEFFICIENTS b0‘ RESULTING FROM SR;m

SCHEME TRANSFORMATION

A. SR;2

For our applications, it will be useful to exhibit the
explicit results for the coefficients b0‘ resulting from the

applications of the scheme transformations SR;m with

m ¼ 2, 3, 4. In this subsection we show these for the
case m ¼ 2. Substituting the relevant ks for the SR;2
scheme in the general expressions for the b0‘, we find

b03 ¼ 0; (5.1)

b04 ¼ b4; (5.2)

b05 ¼ b5 þ 5b23
b1

; (5.3)

b06 ¼ b6 þ 2b3b4
b1

þ 3b2b
2
3

b21
; (5.4)

b07 ¼ b7 þ 3b3b5
b1

� 9b33
b21

; (5.5)

b08 ¼ b8 þ 4b3b6
b1

þ 4b23b4
b21

� 8b2b
3
3

b31
: (5.6)

In general, after the SR;2 scheme transformation is applied,

the resultant n-loop beta function, ��0;n‘, has the form of

Eq. (4.2) with m ¼ 2.

B. SR;3

From the expressions for ks in the SR;3 scheme trans-

formation, we calculate the resultant b0‘ coefficients.

We obtain

b03 ¼ b04 ¼ 0; (5.7)

b05 ¼ b5 þ 5b23
b1

� b2b4
2b1

; (5.8)

b06 ¼ b6 þ 8b3b4
b1

þ 3b2b
2
3

b21
; (5.9)

b07 ¼ b7 þ 3b3b5
b1

þ 11b24
4b1

� 9b33
b21

þ 9b2b3b4
2b21

; (5.10)

b08 ¼ b8 þ 4b3b6
b1

þ b4b5
b1

� 18b23b4
b21

þ 7b2b
2
4

4b21
� 8b2b

3
3

b31
:

(5.11)

After the SR;3 scheme transformation is applied, ��0;n‘ has

the form of Eq. (4.2) with m ¼ 3.
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We give the corresponding results for the coefficients
b0‘ resulting from the scheme transformation SR;4 in

Appendix C.

VI. APPLICATION OF THE SR;2 SCHEME
TRANSFORMATION

As a foundation for our analysis of the scheme trans-
formation SR;3, we recall our results from [2] concerning

SR;2 (denoted as S2 in [2]). Let us consider an asymptoti-

cally free gauge theory with gauge group G and Nf mass-

less fermions in a representation R of G. Since [7,29]

b1 ¼ 1

3
ð11CA � 4TfNfÞ; (6.1)

the property of asymptotic freedom implies that Nf <

Nf;b1z, where [30]

Nf;b1z ¼ 11CA

4Tf

: (6.2)

The two-loop coefficient is [8,9]

b2 ¼ 1

3
½34C2

A � 4ð5CA þ 3CfÞTfNf�; (6.3)

which decreases monotonically with increasing Nf and

reverses sign as Nf increases through Nf;b2z, where

Nf;b2z ¼ 34C2
A

4ð5CA þ 3CfÞTf

: (6.4)

Now for arbitrary G and R,

Nf;b2z < Nf;b1z; (6.5)

as is evident from the fact that the difference,

Nf;b1z � Nf;b2z ¼
3CAð11Cf þ 7CAÞ
4Tfð3Cf þ 5CAÞ > 0: (6.6)

Hence, there is always an interval in Nf such that b1 > 0

while b2 < 0, so that the two-loop (2‘) beta function has an
IR zero. We denote this interval as I:

I: Nf;b2z < Nf < Nf;b1z: (6.7)

The zero of the two-loop beta function (which is scheme
independent) occurs at � ¼ �IR;2‘, where

�IR;2‘ ¼ � 4�b1
b2

(6.8)

(i.e., aIR;2‘ ¼ �b1=b2), which is physical for Nf 2 I.

From the m ¼ 2 special case of Eq. (4.12), it follows that
after the application of the SR;2 scheme transformation, in

terms of the new variable �0,

�0
IR;3‘ ¼ �0

IR;2‘ ¼ �IR;2‘: (6.9)

For the SR;2 scheme transformation, the function fða0Þ
has the form

SR;2: fða0Þ ¼ 1þ b3
b1

ða0Þ2 ¼ 1þ
�b3
�b1
ð�0Þ2: (6.10)

Now we assume that Nf 2 I, so that there is an IR zero

in�2‘, as given in Eq. (6.8). We start in the SM scheme and
operate with the SR;2 scheme transformation. We evaluate

fða0Þ at this IR zero, a0IR;2‘ ¼ aIR;2‘ ¼ �b1=b2 and obtain

the following result:

SR;2: fða0IR;2‘Þ ¼ 1þ b1b3
b22

¼ 1þ
�b1 �b3
�b22

: (6.11)

In order that this transformation obey conditionC1, namely
that it maps a0 > 0 to a > 0, we require that fða0Þ> 0. This
inequality must be satisfied, in particular, at a0IR;2‘ ¼ aIR;2‘,

so we obtain the inequality

1þ
�b1 �b3
�b22

> 0: (6.12)

Since �b3 < 0 for Nf 2 I in the MS scheme, and, more

generally, in schemes that maintain at the three-loop level
the IR zero in the two-loop beta function [25], we can also
write this in terms of positive quantities as the condition that

1�
�b1j �b3j
�b22

> 0: (6.13)

This analysis holds for an arbitrary gauge group G and
fermion content such that the two-loop � function has an
IR zero.
As was shown in [2], the inequality (6.12) is not, in

general, satisfied, so this SR;2 scheme transformation vio-

lates condition C1 in the vicinity of the IR fixed point for a
certain range of smaller values of Nf 2 I. To show the

violation of the inequality (6.12), it suffices to consider the
class of theories with G ¼ SUðNcÞ and Nf fermions in

the fundamental representation. The interval I where the
two-loop � function has an IR zero is then

I:
34N3

c

13N2
c � 3

<Nf <
11Nc

2
: (6.14)

For Nc ¼ 2, the interval I is 5:55<Nf < 11, while for

Nc ¼ 3, I is 8:05<Nf < 16:5. For Nc ¼ 2, the inequality

(6.12) is violated for 5:55<Nf < 8:44 and is satisfied for

8:44<Nf < 11, while for Nc ¼ 3, inequality is violated

for 8:05<Nf < 12:41 and is satisfied for 12:41<Nf <

16:5. Note that the same is true if fða0Þ is evaluated for
a0 ¼ a0IR;3‘, since by Eq. (4.12), a

0
IR;3‘ ¼ a0IR;2‘ ¼ aIR;2‘. In

Table I of [2] we gave the values of �0
IR;4‘ resulting from

the application of the SR;2 scheme transformation. In

Table I of the present paper we list the values of fða0IR;2‘Þ
for this SR;2 scheme transformation, for the illustrative

values 2 � Nc � 4 and Nf in the respective intervals I

for each Nc. Given a value of Nc, for values of Nf near the

lower end of the respective interval I, jfða0Þj gets large
compared to unity. This is a consequence of the fact that

ROBERT SHROCK PHYSICAL REVIEW D 88, 036003 (2013)

036003-6



b2 ! 0 at this lower boundary of the interval I and hence
formally, �IR;2‘ diverges. Thus, for these values of Nf, in

addition to the fact that this SR;2 scheme transformation

violates condition C1 because fða0Þ is negative, it also
violates condition C4, because it maps moderate values
of the gauge coupling to values that are too large for
perturbation theory to be reliable.

VII. APPLICATION OF THE SR;3 SCHEME
TRANSFORMATION

We next address and answer the question of whether one
can alleviate or circumvent the pathology encountered with
SR;2 at an IR fixed point [negative fða0Þ for variousNf 2 I]

by instead using SR;3. The transformation function fða0Þ for
SR;3 is

SR;3: fða0Þ ¼ 1þ k2ða0Þ2 þ k3ða0Þ3

¼ 1þ b3
b1

ða0Þ2 þ b4
2b1

ða0Þ3

¼ 1þ
�b3
�b1
ð�0Þ2 þ

�b4
2 �b1

ð�0Þ3: (7.1)

From the m ¼ 3 special case of Eq. (4.12), it follows that
after the application of the SR;3 scheme transformation, in

terms of the new variable �0,

�0
IR;4‘ ¼ �0

IR;3‘ ¼ �0
IR;2‘ ¼ �IR;2‘: (7.2)

We use the same technique as for the analysis of SR;2,
namely we consider Nf 2 I, so that �2‘ has an IR zero.

Evaluating fða0Þ at this (scheme-independent) two-loop
zero, a0IR;2‘ ¼ aIR;2‘ ¼ �b1=b2, we have

fða0IR;2‘Þ ¼ 1þ b1b3
b22

� b21b4
2b32

¼ 1þ
�b1 �b3
�b22

�
�b21
�b4

2 �b32
: (7.3)

In order for the SR;3 scheme transformation to be accept-

able, a necessary condition is C1, that fða0Þ> 0, in
particular, at a0 ¼ aIR;2‘ ¼ aIR;2‘, i.e., that

1þ
�b1 �b3
�b22

�
�b21
�b4

2 �b32
> 0: (7.4)

Now b2 < 0 for Nf 2 I and, as shown in [25] b3 < 0 for

Nf 2 I not only in the MS scheme, but more generally in

any scheme that has the necessary property of maintaining
the scheme-independent property that the two-loop �
function has an IR zero. Given these properties, we can
reexpress (7.4) in terms of positive quantities as

1�
�b1j �b3j
�b22

þ
�b21
�b4

2j �b2j3
> 0: (7.5)

As is evident in Table I of [22], for Nc ¼ 2 and Nc ¼ 3, b4
is positive for all Nf in the respective intervals I, but for

Nc � 4, b4 can be negative for some value(s) of Nf 2 I.

This analysis for SR;3 holds for an arbitrary gauge group

G and fermion representation such that Nf 2 I. For our

present purposes, it will suffice to consider the case G ¼
SUðNcÞ and fermions in the fundamental representation.

As before, we start in the MS scheme. In Table I we list
values of fða0IR;2‘Þ for the SR;3 scheme transformation, for

Nc ¼ 2, 3, 4 and Nf in the respective intervals I for each

Nc where the two-loop beta function has an IR zero. As we
noted above in the case of SR;2, for smaller values of Nf in

the respective interval I for each Nc, jfða0Þj is substantially
larger than unity, so that, in addition to the violation of
condition C1, fða0Þ also violates condition C4. We omit
entries for the lowest values of Nf in the respective

intervals I, for which jfða0Þj � 1, where this violation is
most extreme, for example, for SU(3) with Nf ¼ 9,

fða0ÞIR;SR;2 ¼ �19:851, and fða0ÞIR;SR;3 ¼ �15:282.

From our Table I, one sees that for Nc ¼ 2, 3, 4, the
values of Nf that yield an unphysical negative fða0Þ for the
SR;2 scheme transformation also yield an unphysical nega-

tive fða0Þ for the SR;3 scheme transformation. This is also

true for almost all of the values of Nf in the case Nc ¼ 5,

with one exception; for Nf ¼ 20, fðaIR;2‘Þ< 0 for SR;2,

TABLE I. Values of SR;n scheme transformation function
fða0Þ, evaluated at the scheme-independent value of the two-
loop IR zero, a0IR;2‘ ¼ aIR;2‘ ¼ �IR;2‘=ð4�Þ, denoted fða0ÞIR;SR;n .
We list results for SR;n with n ¼ 2 and n ¼ 3 in the SUðNcÞ
gauge theory with 2 � Nc � 4 and with Nf fermions trans-

forming according to the fundamental representation, as func-
tions of Nc and Nf, for values of Nf in the respective intervals I

where the theory is asymptotically free and the two-loop beta
function �2‘ has an infrared zero.

Nc Nf �IR;2‘ fða0ÞIR;SR;2 fða0ÞIR;SR;3
2 7 2.83 �3:529 �1:898

2 8 1.26 �0:5075 �0:154

2 9 0.595 0.399 0.497

2 10 0.231 0.795 0.813

3 10 2.21 �4:454 �3:335

3 11 1.23 �1:418 �0:921

3 12 0.754 �0:272 �0:027

3 13 0.468 0.293 0.412

3 14 0.278 0.616 0.667

3 15 0.143 0.818 0.833

3 16 0.0416 0.9505 0.952

4 13 1.85 �5:333 �4:463

4 14 1.16 �2:243 �1:668

4 15 0.783 �0:912 �0:548

4 16 0.546 �0:204 �0:0207

4 17 0.384 0.221 0.355

4 18 0.266 0.498 0.573

4 19 0.175 0.688 0.726

4 20 0.105 0.825 0.840

4 21 0.0472 0.925 0.928
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while fðaIR;2‘Þ> 0 for SR;3. We have also investigated this

for higher Nc, with similar findings. We note that the same
results are obtained by substituting the three-loop IR zero,
since by Eq. (4.12) this is equal to the scheme-independent
two-loop IR zero. Therefore, using the SR;3 scheme

transformation does not alleviate the problem encountered
with the SR;2 transformation and does not significantly

increase the range ofNf where fða0Þ satisfies the necessary
condition of being positive when evaluated at the scheme-
independent value aIR;2‘. These SR;m scheme transforma-

tions can be used for larger values of Nf toward the upper

end of the interval I, where �IR;2‘ is correspondingly

smaller, approaching zero as Nf % Nf;b1z. However, to

show this for SR;1 is delicate, since it requires that one

analyze the convergence of an infinite series [2].
In passing, we remark on a related topic. For this pur-

pose, let us consider a general (vectorial) gauge theory
with an arbitrary non-Abelian gauge group G and Nf

fermions in an arbitrary representation. For a given G
and R, let us consider increasing Nf past the value where

b1 reverses sign, so that the theory becomes nonasymptoti-
cally free. One may ask whether this theory has an ultra-
violet fixed point and if so, what is the range of
applicability of the SR;m scheme transformation for various

m. Because of the inequality (6.5), it follows that if Nf >

Nf;b1z (so b1 < 0), then also Nf > Nf;b2z, so that b2 < 0.

Hence, this theory has no two-loop zero in its � function.
Since this is the maximal scheme-independent information
that one has, even if one were to obtain a zero of the �
function at higher loops (which would now be a UV fixed
point), one could not convincingly argue that this is physi-
cal. Below we shall discuss this sort of question further for
a UV zero in the � function of a U(1) gauge theory.

VIII. SR;m SCHEME TRANSFORMATION IN THE
LIMIT Nc ! 1, Nf ! 1 WITH Nf=Nc FIXED

For the case of G ¼ SUðNcÞ and Nf fermions in the

fundamental representation, a limit of particular interest is
the ’t Hooft-Veneziano limit [31],

Nc ! 1; Nf ! 1; with r � Nf

Nc

fixed: (8.1)

In this limit, one also requires that the product

�ð�Þ � �ð�ÞNc (8.2)

be a fixed, finite function of �. We denote this as the LNN
(large Nc and Nf) limit.

Here we investigate the applicability of the SR;2 and SR;3
scheme transformations for Nf 2 I in the LNN limit. One

of the reasons for the interest in the LNN limit is that
properties of the � function exhibit an approximate uni-
versality, in the sense that they are similar for different
values of Nc and Nf if the ratio r ¼ Nf=Nc is similar or the

same [22,25]. The study in [26] gave some insight into the
origin of this universality.
To construct an appropriate beta function that has a

finite, nontrivial LNN limit, one multiplies both sides of
Eq. (2.2) by Nc and then takes this limit, obtaining a result
that is a function of �,

�� � d�

dt
¼ lim

LNN
��Nc: (8.3)

This beta function has the expansion

�� � d�

dt
¼ �8�x

X1
‘¼1

b̂‘x
‘ ¼ �2�

X1
‘¼1

~b‘�
‘; (8.4)

where x ¼ �=ð4�Þ and

b̂‘ ¼ lim
LNN

b‘
N‘

c

; ~b‘ ¼ lim
LNN

�b‘
N‘

c

: (8.5)

Thus, ~b‘ ¼ b̂‘=ð4�Þ‘. One defines the n-loop �� function

by Eq. (8.4) with the upper limit on the summation over
loop order ‘ ¼ 1 replaced by ‘ ¼ n.
The (scheme-independent) one-loop and two-loop

coefficients in �� are

b̂1 ¼ 1

3
ð11� 2rÞ (8.6)

and

b̂2 ¼ 1

3
ð34� 13rÞ: (8.7)

Asymptotic freedom requires that b1 > 0 and hence that

r < 11=2. The coefficient b̂2 reverses sign to negative
values as r increases through the value r ¼ 34=13.
Consequently, for r in the real interval

Ir:
34

13
< r <

11

2
; (8.8)

i.e., 2:6154< r < 5:5, ��;2‘ has an IR zero. This zero

occurs at

�IR;2‘ ¼ 4�xIR;2‘ ¼ 4�ð11� 2rÞ
13r� 34

: (8.9)

The three-loop and four-loop coefficients b̂3 and b̂4 were
given in [26].
A scheme transformation applicable to the theory in the

LNN limit is thus

x ¼ x0fðx0Þ: (8.10)

One requires that fð0Þ ¼ 1 to keep the UV properties the
same. Considering fðx0Þ that are analytic at x0 ¼ x ¼ 0,
one has the expansion

fðx0Þ ¼ 1þ Xsmax

s¼1

ksðx0Þs ¼ 1þ Xsmax

s¼1

�ksð�0Þs: (8.11)
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Evaluating the SR;2 expression for fðx0Þ in the LNN limit

at x ¼ xIR;2‘, we calculate

SR;2;LNN ) fðx0ÞIR;2‘ ¼ 52235�40425rþ7692r2�224r3

18ð13r�34Þ2 :

(8.12)

For r 2 Ir, this fðx0Þ is a monotonically increasing
function of r, which passes through zero from negative
to positive values as r increases through the value
r ¼ 4:06814 (quoted to the indicated accuracy). Thus,

SR;2;LNN ) fðx0ÞIR;2‘ < 0 for 2:6154< r < 4:0681

fðx0ÞIR;2‘ > 0 for 4:0681< r < 5:5000:

(8.13)

Evaluating the SR;3 expression for fðx0Þ in the LNN limit

at x ¼ xIR;2‘, we obtain

SR;3;LNN )
fðx0ÞIR;2‘ ¼ 1

64ð13r� 34Þ3 ½�55042348þ 62622039r

� 24520604r2 þ 2885644r3 þ 21504r4

þ 4160r5 þ �ð3Þð1149984� 940896r

þ 2423520r2 � 815616r3 þ 72576r4Þ�:
(8.14)

Here, �ðsÞ � P1
n¼1 n

�s is the Riemann zeta function, with
�ð3Þ ¼ 1:202057, etc. For r 2 Ir, this fðx0Þ is again a
monotonically increasing function of r, which passes
through zero from negative to positive values as r increases
through the value r ¼ 3:95069 (to the indicated accuracy).
Thus,

SR;3;LNN ) fðx0ÞIR;2‘ < 0 for 2:6154< r < 3:9507

fðx0ÞIR;2‘ > 0 for 3:9507< r < 5:5000:

(8.15)

Evidently, the positivity properties of fðx0Þ for the SR;2 and
SR;3 scheme transformations are quite similar in this LNN

limit. This is in agreement with our calculations in Table I
for specific values of Nc and Nf. Clearly, in the respective

intervals of r where fðx0Þ is negative, the SR;2 and SR;3
scheme transformations are unacceptable, since they fail to
satisfy the condition C1.

IX. U(1) GAUGE THEORY

A. General

It is also of interest to explore the effects of higher-order
terms and the associated scheme dependence in the �
function for an Abelian gauge theory. We consider the
simplest example of such a theory, namely a vectorial
theory with a U(1) gauge group and Nf fermions of charge

q. We use the same notation for the gauge coupling gð�Þ
and for �ð�Þ and að�Þ ¼ �ð�Þ=ð4�Þ as before. With no
loss of generality, we absorb q into the definition of g. As is
well known, this theory is not asymptotically free and must
be regarded as a low-energy effective field theory. One may
investigate whether the two-loop � function for this theory
has a zero, which would thus be an exact or approximate
ultraviolet fixed point (UVFP). If, indeed, such a UV zero
were present in the � function, one could also study the
effect of the SR;m scheme transformation on its value. In

contrast to the case of an IRFP in an asymptotically free
theory, here the UV to IR evolution would be envisioned as
starting from the UVFP and flowing to weaker coupling.
For convenience, we define �� for this theory without

the minus sign prefactor in Eq. (2.2). The coefficients that
have been calculated can be obtained from those for the
non-Abelian theory by the formal replacements CA ¼ 0,
Cf ¼ 1, and Tf ¼ 1, together with replacements of other

group invariants that enter at the four-loop level [14]. If one
fixes �ð�Þ at a some high scale � ¼ � in the ultraviolet,
then for a U(1) gauge theory with fermions of negligibly
small mass, �ð�Þ ! 0 as � ! 0, so the theory becomes
free in the infrared (often called the triviality property).
Actually, because there is no confinement, a U(1) theory
with exactly zero-mass charged fermions has problems
with infrared divergences, so a more precise statement of
this property is that for the U(1) theory with fermions of
mass m0 � �, the running coupling �ðm0Þ becomes arbi-
trarily small as m0=� ! 0. If one were to take �<m0,
then in the construction of the low-energy effective field
theory applicable in this interval, one would integrate out
the fermions, and thereby obtain a free theory. Viewed the
other way, from the IR to the UV, if one fixes �ð�Þ at some
scale in the infrared such as � ¼ m0 and then increases �,
a solution of the one-loop � function equation yields a
Landau pole. Of course, the perturbative calculation that
produces this result is not reliable when �ð�Þ becomes so
large as to approach this pole. Moreover, this would not be
relevant to the actual physics if the ultraviolet completion
of the U(1) gauge theory involves embedding of the U(1)
factor group in an asymptotically free simple non-Abelian
gauge group, as is the case with the embedding of the weak
hypercharge Uð1ÞY factor group in a grand unified theory.
It may be recalled that among the motivations for grand
unification, one is that this embedding provides an elegant
explanation of the quantization of weak hypercharge and
hence electric charge in the Standard Model.
A number of studies have been performed to investigate

the properties of U(1) gauge theory with fermions using
methods going beyond perturbation theory, such as
approximate solutions of Schwinger-Dyson equations
[32,33] and simulations of the theory on a lattice [33,34].
In particular, fully nonperturbative lattice studies were
carried out with dynamical staggered fermions (effectively
corresponding to Nf ¼ 4 continuum fermion species) and
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led to the conclusion that this theory does not have a
(nontrivial) UV fixed point [33,34]. This question has
also been examined using analytic results for the
large-Nf limit of the theory [23,35]. For our present pur-

poses, we focus on the specific question of the scheme
dependence of a possible UV zero in �, as is manifested in
the effects of higher-loop terms. This is timely in part
because the five-loop term in � has recently been
calculated, as discussed below.

B. ��;2‘

Given that for this U(1) gauge theory we define �� as in
Eq. (2.2) but without the minus sign prefactor, the one-loop
and two-loop coefficients are [4,36]

b1 ¼
4Nf

3
(9.1)

and

b2 ¼ 4Nf: (9.2)

Because b1 and b2 have the same sign, the two-loop �
function, ��;2‘, for this U(1) theory does not have a UV

zero. As noted above, the two-loop beta function embodies
the maximal scheme-independent information on the cou-
pling constant evolution of the theory. Of course, this
analysis is within the context of the perturbatively calcu-
lated � function and does not address the possibility of a
nonperturbative UV zero. Owing to the absence of a UV
zero in the two-loop � function, we cannot use the same
method that we employed above to test the applicability of
a scheme transformation, namely to evaluate fða0Þ at the
two-loop zero and check to see where it is positive and of
moderate size. Consequently, in order to study scheme-
dependent effects in the context of a possible UV zero in
the � function, we will simply investigate whether, for a
given Nf, the higher-loop terms in � lead to a UV zero,

and, if so, how the location of this zero changes as a
function of loop order. Because of the absence of a UV
zero in � at the two-loop level, even where it is present at
the scheme-dependent higher-loop order, this perturbative
analysis does not yield convincing evidence that it is
physical.

C. ��;3‘

In the MS scheme, the three-loop coefficient in the �
function of the U(1) gauge theory has the negative-definite
value [37,38]

b3 ¼ �2Nf

�
1þ 22Nf

9

�
; (9.3)

so that the three-loop beta function is

��;3‘ ¼ 8�Nfa
2

�
4

3
þ 4a� 2

�
1þ 22Nf

9

�
a2
�
: (9.4)

Thus, in addition to the IR zero at � ¼ 0, in the MS
scheme, ��;3‘ vanishes at the UV zero

�UV;3‘ ¼ 4�aUV;3‘ ¼
4�

h
9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð45þ 44NfÞ

q i
9þ 22Nf

(9.5)

(and, formally, at an unphysical negative value of a given
by the above expression with a minus sign in front of the
square root). We list values of �UV;3‘ in Table II as a

function of Nf for Nf ¼ 1 to Nf ¼ 10.

From Eq. (9.5), it follows that, in the MS scheme, this
�UV;3‘ is a monotonically decreasing function of Nf.

As Nf ! 1, �UV;3‘ approaches zero like

�UV;3‘ ¼ 4�

ffiffiffiffiffiffiffiffiffiffiffi
3

11Nf

s "
1þ 3

22

ffiffiffiffiffiffi
33

Nf

s
þ 9

88Nf

þO

 
1

ðNfÞ3=2
!#

:

(9.6)

Note that, even apart from the scheme dependence, for
moderateNf, the value of�UV;3‘ in Eq. (9.5) is too large for

the perturbative three-loop calculation to be very accurate.
The fact that �UV;3‘ �Oð1Þ means that higher-loop cor-

rections are generically important. We turn next to these.

D. ��;4‘

In the MS scheme the four-loop coefficient in the �
function of the U(1) gauge theory is [15,39]

b4 ¼ Nf

�
�46þ

�
760

27
� 832

9
�ð3Þ

�
Nf � 1232

243
N2

f

�
: (9.7)

Numerically,

b4 ¼ �Nfð46þ 82:97533Nf þ 5:06996N2
fÞ: (9.8)

Evidently, b4 < 0 for all Nf > 0. The condition that

��;4‘ ¼ 0 for � � 0, is the cubic equation in �, or

TABLE II. Values of the UV zero in the � function of the U(1)
gauge theory with Nf fermions, at n-loop (n‘) order, for n ¼ 3,

4, 5, in theMS scheme, denoted �UV;n‘. The symbol� indicates

that there is no zero in � for the given order and value of Nf. See

text for further details.

Nf �UV;3‘ �UV;4‘ �UV;5‘

1 10.2720 3.0400 �
2 6.8700 2.4239 �
3 5.3689 2.0776 �
4 4.5017 1.8463 �
5 3.9279 1.67685 2.5570

6 3.5156 1.5455 1.8469

7 3.2027 1.4397 1.6243

8 2.9555 1.3519 1.4851

9 2.7545 1.2776 1.3863

10 2.58705 1.2135 1.3120
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equivalently, a, b1 þ b2aþ b3a
2 þ b4a

3 ¼ 0. This equa-
tion has a physical root, aUV;4‘ ¼ �UV;4‘=ð4�Þ, as well as
an unphysical pair of complex-conjugate values of a. We
list values of �UV;4‘ in Table II as a function of Nf. As was

the case with �UV;3‘, in this MS scheme, �UV;4‘ is a

monotonically decreasing function of Nf. We find that

when one goes from three loops to four loops, the UV
zero decreases, i.e.,

�UV;4‘ < �UV;3‘ for fixed Nf: (9.9)

This decrease is substantial, roughly by a factor of 2.

E. ��;5‘

Recently, the five-loop coefficient has been calculated to
be [40]

b5 ¼Nf

�
4157

6
þ128�ð3Þ

þ
�
�7462

9
�992�ð3Þþ2720�ð5Þ

�
Nf

þ
�
�21758

81
þ16000

27
�ð3Þ�416

3
�ð4Þ�1280

3
�ð5Þ

�
N2

f

þ
�
856

243
þ128

27
�ð3Þ

�
N3

f

�
: (9.10)

Numerically,

b5 ¼ Nfð846:6966þ 798:8919Nf � 148:7919N2
f

þ 9:22127N3
fÞ: (9.11)

This is positive for all non-negative Nf, both integral and

real. The condition that��;5‘ vanishes away from the origin

is the quartic equation
P

5
‘¼1 b‘a

‘�1 ¼ 0. We find that for

Nf ¼ 1, 2, 3, 4, this equation has no physical solutions. (It

has two pairs of complex-conjugate solutions.) For some
Nf � 5, we find that there are two positive real roots to this

equation; the smaller of these is aUV;5‘. We list the corre-

sponding values of�UV;5‘ in Table II as a function ofNf. As

is evident from this table, for values ofNf where the theory

exhibits a physical value of�UV;5‘ in thisMS scheme, it is a

monotonically decreasing function of Nf. We find that

�UV;5‘ > �UV;4‘ for fixed Nf: (9.12)

However, the slight increase in the value of the UV zero of�
going from four-loop to five-loop order is smaller than the
magnitude of the decrease going from three-loop to four-
loop order, so that, for Nf values where �5‘ has a UV zero,

�UV;5‘ < �UV;3‘ for fixed Nf: (9.13)

As is evident from Table II, �UV;5‘ is approximately half of

the value of �UV;3‘. These higher-loop results provide a

quantitative measure of the effect of scheme dependence
in the � function of the U(1) gauge theory. We have also

performed a corresponding analysis for an OðNÞ-symmetric
�	4 theory; the results will be reported elsewhere.

X. CONCLUSIONS

Because terms at loop order ‘ � 3 in the � function of a
gauge theory are scheme-dependent, it follows that one can
carry out a scheme transformation to remove these terms at
sufficiently small coupling. A basic question concerns the
range of applicability of such a scheme transformation. It is
particularly important to address this question when study-
ing the IR zero that is present in the � function of an
asymptotically free gauge theory for certain types of fer-
mion content. In this paper, extending the study in [2], we
have studied the properties of the scheme transformation
SR;m with m � 2, which renders the beta function coeffi-

cients b0‘ ¼ 0 for 3 � ‘ � mþ 1, at least for sufficiently
small �. We have calculated and presented expressions for
the nonzero coefficients b0‘ with ‘ � mþ 2 resulting from
the application of the SR;m scheme transformation, up

to the loop order ‘ ¼ 8. Since calculations with the scheme
transformation SR;m require a knowledge of the terms in the

� function up to loop order ‘þ 1, SR;3 is the highest-order
scheme transformation of this type that can be analyzed
explicitly for a general non-Abelian gauge theory, using
the beta function coefficients calculated up to four-loop
order. We have carried out this analysis and have shown
that the range of Nf values where the SR;3 scheme trans-

formation is applicable is limited to Nf values in the upper

part of the interval I where the two-loop � function has an
IR zero at a correspondingly small value, �IR;2‘. We have

shown that this range of applicability is similar to that
found for the SR;2 scheme transformation. For example,

for an SU(3) gauge theory with Nf ¼ 12 fermions, neither

SR;2 nor SR;3 can be used to study the IR fixed point because

they produce unphysical effects. Our results elucidate the
limitations on the use of scheme transformations to remove
terms at loop order ‘ � 3 in the beta function of a gauge
theory, a subject that does not seem to have received much
attention in the literature. These results add to one’s knowl-
edge of the UV to IR evolution of an asymptotically free
gauge theory, a fundamental topic in quantum field theory.
We have also investigated scheme-dependent effects of
higher-loop terms in the � function of a U(1) gauge theory.
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APPENDIX A: EQUATIONS FOR THE b0‘
RESULTING FROM A GENERAL
SCHEME TRANSFORMATION

The expressions for the b0‘ in Eq. (3.3) for 3 � ‘ � 6
are [2]
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b03 ¼ b3 þ k1b2 þ ðk21 � k2Þb1; (A1)

b04 ¼ b4 þ 2k1b3 þ k21b2 þ ð�2k31 þ 4k1k2 � 2k3Þb1;
(A2)

b05 ¼ b5 þ 3k1b4 þ ð2k21 þ k2Þb3 þ ð�k31 þ 3k1k2 � k3Þb2
þ ð4k41 � 11k21k2 þ 6k1k3 þ 4k22 � 3k4Þb1; (A3)

and

b06 ¼ b6 þ 4k1b5 þ ð4k21 þ 2k2Þb4 þ 4k1k2b3

þ ð2k41 � 6k21k2 þ 4k1k3 þ 3k22 � 2k4Þb2
þ ð�8k51 þ 28k31k2 � 16k21k3 � 20k1k

2
2 þ 8k1k4

þ 12k2k3 � 4k5Þb1: (A4)

APPENDIX B: HIGHER-ORDER
COEFFICIENTS FOR SR;m

In this appendix we list expressions for some higher-
order coefficients ks in the SR;m scheme transformation. We

calculate that

k5 ¼ b6
4b1

� b2b5
6b21

þ 2b3b4
b21

þ b22b4
12b31

� b2b
2
3

12b31
for SR;m

with m � 5; (B1)

k6 ¼ b7
5b1

� 3b2b6
20b21

þ 8b3b5
5b21

þ 11b24
20b21

� 4b2b3b4
5b31

þ b22b5
10b31

þ 16b33
5b31

þ b22b
2
3

20b41
� b32b4

20b41
for SR;m with m � 6;

(B2)

and

k7 ¼ b8
6b1

� 2b2b7
15b21

þ 17b3b6
12b21

þ 5b4b5
6b21

þ b22b6
10b31

� 9b2b3b5
10b31

� 49b2b
2
4

120b31
þ 19b23b4

3b31
� b32b5

15b41
� 23b2b

3
3

60b41
þ 9b22b3b4

20b41

þ b42b4
30b51

� b32b
2
3

30b51
for SR;m with m � 7: (B3)

APPENDIX C: PROPERTIES OF SR;4

SCHEME TRANSFORMATION

In this appendix we give some relevant information on
the next higher-order scheme transformation, SR;4. The
coefficients b0‘ resulting from the application of the SR;4
scheme transformation are as follows, up to ‘ ¼ 8 loop
order:

b03 ¼ b04 ¼ b05 ¼ 0; (C1)

b06 ¼ b6 � 2b2b5
3b1

þ 8b3b4
b1

þ b22b4
3b21

� b2b
2
3

3b21
; (C2)

b07 ¼ b7 þ 8b3b5
b1

þ 11b24
4b1

þ 16b33
b21

þ 2b2b3b4
b21

; (C3)

b08 ¼ b8 þ 4b3b6
b1

þ 5b4b5
b1

� b2b
2
4

4b21
þ 2b23b4

b21
þ 4b2b3b5

b21

þ 12b2b
3
3

b31
� 2b22b3b4

b31
: (C4)

In general, after the SR;4 scheme transformation is applied,

the resultant n-loop beta function, ��0;n‘, has the form of

Eq. (4.2) with m ¼ 4.
When applied to an asymptotically free gauge

theory with Nf 2 I, so that there is an IR zero in �2‘,

the transformation function fða0Þ evaluated at a0IR;2‘ ¼
aIR;2‘ ¼ �b1=b2 is

fða0IR;2‘Þ ¼ 1þ b1b3
b22

� 2b21b4
3b32

þ 5b21b
2
3

3b42
þ b31b5

3b42
: (C5)

In order for the SR;4 scheme transformation to be accept-

able, a necessary condition is C1, that fða0Þ> 0, in
particular, at a0 ¼ a0IR;2‘ ¼ aIR;2‘.
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