
Higgs decay into a diphoton in the composite Higgs model

Haiying Cai*

Department of Physics, Peking University, Beijing 100871, China
(Received 24 April 2013; published 21 August 2013)

We explore the Higgs couplings to gauge bosons in the minimal SOð5Þ=SOð4Þ 4D composite Higgs

model. The pion scatterings put unitary constraints on the couplings and therefore determine the

branching ratios of various Higgs decays. Through fine-tuning the parameters, enhancement of Higgs

to diphoton rate is possible to be achieved with the existence of vector meson fields.
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I. INTRODUCTION

The composite Higgs model provides an alternative
solution to the little hierarchy problem compared
with the well-known supersymmetric models, since the
economic formulation of the standard model (SM) is
impossible to explain the lightness of Higgs mass. The
composite Higgs boson emerges as a pseudo–Nambu-
Goldstone boson (pNGB) from a spontaneously broken
global symmetry, therefore its mass is much lighter than
the other resonances from the strong dynamic sector.
The original minimal composite model is realized in
the five-dimensional Randall Sundrum model, and the
Higgs is the fifth component of the broken gauge bosons
[1]. Using the holographic approaching, the effective
Lagrangian is gained after integrating out the bulk field
with the UV brane value fixed. The potential for the
holographic composite Higgs could be calculated in the
form of brane to brane 5D propagators [2]. In the past
few years increased attention has been focused on the
deconstruction version of the 5D theory, which leads to
varieties of 4D composite Higgs models, assuming the
existence of one elementary sector and one strong
interaction sector [3]. Without the presence of additional
composite fields, the composite Higgs has a reduced
coupling with the gauge bosons, which may lead to the
violation of unitary in the pion scatterings before
the cutoff scale is reached. The method to restore the
perturbative unitary is to introduce vector resonances.
The unitary requirement will correlate the global sym-
metry breaking scale f with the mass m� of the vector

resonance. It is interesting that the presence of the vector
resonance will also modify the Higgs coupling, with its
deviation parametrized by � ¼ v2=f2, which in turn
changes the branching ratio of various Higgs decay.
Another crucial ingredient in the composite Higgs model
is the partial compositeness of gauge bosons due to the
nonlinearity, with the degree of compositeness mainly
controlled by the gauge couplings. In this paper we first
review a simple model setup of 4D composite Higgs and
show that it is capable to accommodate the 125 GeV

resonance with the appropriate properties recently
discovered at the LHC [4].

II. LAGRANGIAN OF THE SIGMA MODEL

Let us start with the basic model setup. Our Higgs is
realized as one pNGB from a strong interacting sector
using the nonlinear sigma model. We formulate the
effective Lagrangian for those pNGBs via the Callan-
Coleman-Wess-Zumino (CCWZ) prescription [5]. In the
following, we are going to review the nonlinear realiza-
tion of composite Higgs and capture the necessary in-
gredients for our calculations. Considering the global
symmetry breaking pattern SOð5Þ ! SOð4Þ, there are
four pNGBs which fit a basic representation of the
SOð4Þ symmetry group. The first three, i.e., �1;2;3, are

eaten by the W, Z bosons, with the remaining one, �4,
being identified as the Higgs. Denoting the Goldstone

bosons as U ¼ exp ði ffiffiffi
2

p
�âTâ=fÞ, the sigma field would

transform nonlinearly under the full global symmetry as
U ! gUhyðg;�Þ, and one can calculate the structure of
iUy@�U ¼ dâ�T

â þ EaL
� TaL þ EaR

� TaR , where Tâ, â ¼ 1,

2, 3, 4 are the broken generators in the coset space of

SOð5Þ=SOð4Þ, and TaLðaRÞ, aLðaRÞ ¼ 1, 2, 3 are the
unbroken generators in the SOð4Þ ’ SUð2ÞL � SUð2ÞR
symmetry group. It should be noted that all the gener-
ators in the SOð5Þ symmetry group are normalized as
TrðTaTbÞ ¼ �ab. The building blocks of the CCWZ
formalism are the variables dâ� and EaL;aR

� decomposed

in the broken and unbroken generator directions respec-
tively. Following the usual formulation, we gauge a
subgroup SUð2Þ �Uð1Þ in the global SOð4Þ, resulting
in an explicit breaking of the full global symmetry. The
gauged CCWZ structures are calculated in a similar
approach by substituting @� with the covariant operator

D� ¼ @� � ig0W
a
�T

a
L � iB�T

3
R. At the leading order of

the chiral expansion, dâ� and EaL;aR
� are expressed as

dâ� ¼ �
ffiffiffi
2

p
f

D��
â þ

ffiffiffi
2

p
3f3

½�; ½�;D����â þ � � � ; (1)

Ea
� ¼ g0W

a
� þ g00B��

a3 þ i

f2
½�;D���a þ � � � (2)
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under the local symmetry group, the corresponding
transformation rules are

d� ! hðg; �Þd�hyðg; �Þ;
E� ! hðg; �ÞE�h

yðg;�Þ þ ihðg;�Þ@�hyðg; �Þ
(3)

since E� behaves as a gauge field, the coupling of

Goldstone bosons to the fundamental fermions is via
the covariant derivative @� � iE�. In this paper we are

only concerned with the vector meson effects and would
not explore too much into the fermion sector. We can
conveniently calculate the mass terms for the W and Z
gauge bosons after the electroweak symmetry breaking
through the kinetic terms:

f2

4
Trd�d� ¼ 1

2

2m2
W

v

�
vþ 2ahþ b

h2

v

�
Wþ

�W
�
�

þ 1

2

m2
Z

v

�
vþ 2ahþ b

h2

v

�
Z�Z� þOðh3Þ;

(4)

m2
W ¼ g20f

2 sin �2

4
; m2

Z ¼ ðg20 þ g020 Þf2 sin �2
4

;

a ¼ cos �; b ¼ cos 2�� sin 2�;

(5)

where the parameters a and b, both of which are always
less than one, indicate that the Higgs couplings are
reduced as compared with the standard model. In the
minimal SOð5Þ=SOð4Þ setup, � is the misalignment of
the true vacuum relative to the gauged SOð4Þ subgroup,
with the vacuum expectation value (VEV) of the Higgs
defined as v ¼ f sin � ¼ 246:0 GeV.

Under the partial UV completion hypothesis [6], one
pair of �L� and �R� in the representations ð3; 1Þ � ð1; 3Þ of
SUð2ÞL � SUð2ÞR, transforming under the local symmetry
group as � ! hðg; �Þ��h

yðg; �Þ þ ihðg; �Þ@�hyðg;�Þ,
needs to be added into the strong dynamic sector. The
gauge invariant Lagrangian for the vector resonances con-
sisting of kinetic terms and mass terms is formulated as

L�L ¼ � 1

4
Trð�L;���

��
L Þ þ a2�L

f2

2
Trðg�L

�L� � EL
�Þ2;

(6)

L�R ¼ � 1

4
Trð�R;���

��
R Þ þ a2�R

f2

2
Trðg�R

�R� � ER
�Þ2:

(7)

At the low energy scale, we are only interested in the
interactions which are relevant to the pion scatterings,
that is the Goldstone boson self-interactions and at most
their interactions with the vector resonances. After a little
bit of algebra, it is easy to reach the explicit Lagrangian:

L�L�
2þ�4 ¼ a2�Lg�L

2
½"ijk�i@��

j�k
L�

þ ð�k@��
4 � �4@��

kÞ�k
L��

� a2�L

8f2
½ð�a@��

aÞ2 � ð�a@��
bÞ2�; (8)

L�R�
2þ�4 ¼ a2�Rg�R

2
½"ijk�i@��

j�k
R�

� ð�k@��
4 � �4@��

kÞ�k
R��

� a2�R

8f2
½ð�a@��

aÞ2 � ð�a@��
bÞ2�: (9)

Since the h�2 and h2�2 interactions are determined by a
and b, whereas the pion self-interaction and pion interac-
tion with vector meson are related to a� and the global

symmetry breaking scale f, the correlation between those
parameters and the allowed parameter space information
could be extracted from both the pion elastic and the pion
inelastic scatterings.

III. CONSIDER ELASTIC AND INELASTIC
PION SCATTERING

A. �� ! �� scattering

For the scattering �a�b ! �c�d of the SUð2Þ-triplet
Goldstones, the amplitude has the general isospin structure:

Að�a�b ! �c�dÞ ¼ Aðs; t; uÞð��Þ�ab�cd

þ Aðt; s; uÞð��Þ�ac�bd

þ Aðu; t; sÞð��Þ�ad�bc; (10)

Aðs; t; uÞð��Þ

¼ s

v2
� a2�L

4f2

�
3sþm2

�L

�
s� u

t�m2
�L

þ s� t

u�m2
�L

��

� a2�R

4f2

�
3sþm2

�R

�
s� u

t�m2
�R

þ s� t

u�m2
�R

��

� a2

v2

s2

s�m2
h

; (11)

where the terms with dependence on the mass m�L;R
comes

from �L;R meson mediated t channel and u channel

diagrams, and the last term comes from the light Higgs
mediated s channel diagram, whereas the remaining terms
come from the contact interaction. The amplitude can be
decomposed into 1, 3, 5 in the isospin basis:

T0ðs; t; uÞ ¼ 3Aðs; t; uÞ þ Aðt; s; uÞ þ Aðu; t; sÞ; (12)

T1ðs; t; uÞ ¼ Aðt; s; uÞ � Aðu; t; sÞ; (13)
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T2ðs; t; uÞ ¼ Aðt; s; uÞ þ Aðu; t; sÞ: (14)

It is then possible to transform these isospin amplitudes in
terms of the partial wave (PW) decomposition

TIðs; tÞ ¼ X1
J¼0

32�ð2J þ 1ÞPJðcos�ÞaIJðsÞ; (15)

with the partial waves provided by

aIJðsÞ ¼
1

64�

Z þ1

�1
d cos�PJðcos�ÞTIðs; tðs; cos�ÞÞ; (16)

andwith cos� ¼ 1� 2t=s. In this normalization the partial

waves can be written in the form aIJðsÞ ¼ i
2 ð1� 	e2i�

I
J Þ,

with the inelasticity obeying the unitarity bound 0�	�1.
This implies the constraints

jReaIJðsÞj �
1

2
; ImaIJðsÞ � 1; jaIJðsÞj � 1: (17)

We will make use of the first one in order to constrain our
partial wave amplitudes. One must be aware of the slight
arbitrariness of this choice, as we could also consider the
last constraint in (17) to determine when the theoretical
determinations ‘‘violate’’ unitarity. The root of this ambi-
guity lies on the fact that the tree-level amplitude is never
truly unitary for s > 0, as the tree-level PW always lies
out of the Argand circle and has inelasticity 	> 1.
Nevertheless, as far as jReaIJðsÞj � 1=2 it is still possible
to argue that our perturbative tree-level estimate still pro-
vides a good approximation of the full amplitude. In the

light Higgs limit m2
h � jsj we get the partial wave power

expansion,

a00ðsÞð��Þ

¼ ð4�3a2�L�3a2�RÞs
64�f2

þ
2
4a2�Lm

2
�Lðð

m2
�L

s þ2Þ log ð s
m2

�L

þ1Þ�1Þ
32�f2

þðL$RÞ
3
5:

(18)

Notice that we have made use of the SOð5Þ=SOð4Þ relations
v ¼ f sin� and a ¼ cos �. The first term on the right-hand
side of the equation diverges like �OðsÞ at high energies
and spoils that unitarity bound very quickly. Hence, one
usually requires the exact cancellation of the OðsÞ term in
the high-energy �� scattering [7–9], this is,

a2�L þ a2�R ¼ 4

3
: (19)

For the left-right symmetric case a�L ¼ a�R ¼ a� this

turns into

a2� ¼ 2

3
: (20)

It should be noticed that after imposinga2� ¼ 2=3 the partial

wave amplitude behaves like a00ðsÞ ’ m2
�

24�f2
ð2 ln s

m2
�
� 1Þ at

high energies. However, this mild ln ðsÞ divergent behavior
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FIG. 1 (color online). Parameter-space region where the unitarity bound jRea00ðsÞð��Þj � 1
2 is violated at energies s � �2, for � ¼

3:0 TeV (red dotted line), � ¼ 4:0 TeV (blue dashed line), and � ¼ 5:0 TeV (cyan solid line), with g� ¼ 2:0, i.e., only the regions

above the lines are permitted by perturbative unitary. The left panel is for the pion elastic scattering and the right panel is for the pion
inelastic scattering.
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at high energies will eventually exceed the ‘‘unitarity’’
bound. Since the mass of vector resonance is m� ¼
a�g�f, as we fix the coupling g�, two independent parame-

ters are left. We are going to adopt another method to
constrain the parameter space of ða;m�Þ by demanding

the unitary bound is satisfied below a fixed cutoff scale �.
In Fig. 1(a), we have plotted the parameter-space region

where the unitarity bound jRea00ðsÞð��Þj � 1
2 is violated at

energies s � �2, for � ¼ 3:0 TeV (red dotted line),
4.0 TeV (blue dashed line), and 5.0 TeV (cyan solid line).
It is interesting to observe that as the resonancemass grows,

the allowed region where perturbation theory is applicable
(or, conversely, where the ‘‘unitarity bound’’ is satisfied)
gets more and more reduced.

B. �� ! hh scattering

For the inelastic scattering: Að�a�b ! hhÞ ¼
Aðs; t; uÞðhhÞ�ab. The isospin structure is quite simple in
this process and it gets a contribution from the contact
interaction, along with �, �L, and �R exchanged t and u
channels. The full prediction is

Aðs; t; uÞðhhÞ ¼ � b

v2
s� a2

v2

�ðt�m2
hÞ2

t
þ ðu�m2

hÞ2
u

�
þ a2�L þ a2�R

4f2
ð�3sþ 2m2

hÞ �
a2�L

4f2
m2

�L

�
s� u

t�m2
�L

þ s� t

u�m2
�L

�

� a2�L

4f2
m4

h

�
1

t�m2
�L

þ 1

u�m2
�L

�
� a2�R

4f2
m2

�R

�
s� u

t�m2
�R

þ s� t

u�m2
�R

�
� a2�R

4f2
m4

h

�
1

t�m2
�R

þ 1

u�m2
�R

�
:

(21)

One may then perform a PW projection similar to that
in Eq. (16) but with the effect of Higgs mass included

in cos� ¼ 2ðt�m2
h þ s=2Þ=ðs
hðsÞÞ and the phase-

space factor 
hðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

h=s
q

. In the light Higgs limit

m2
h � jsj, one gets

a00ðsÞðhhÞ ¼
1

2
a00ðsÞð��Þ: (22)

Here we made use of a ¼ cos� and b ¼ cos 2�. With the
existence of SOð5Þ global symmetry, we expect to get
the same expectation as in �� ! �� when we demand
the OðsÞ term to exactly cancel out at high energies.

Nonetheless, due to the extra factor 1
2 , the violation of

our unitarity bound by the linear s divergence and the
residual ln ðsÞ high energy divergence occurs later.

C. �� ! �� scattering

Now we come to consider the inelastic scattering
�a�b ! �c

L�
d
L, where the longitudinal component of the

vector meson is parametrized as �LðkÞ ¼ ð
ffiffi
s

p
2


�

m�
;

ffiffi
s

p
2m�

~nkÞ
with 
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�=s
q

. As the Higgs is realized as one

pNGB, the Higgs coupling
c�
f2
m2

�vh�
a
��

a
� comes from the

mass term of the vector meson and the parameter c� is

suppressed by g20=g
2
�. The isospin decomposition is similar

to the elastic one but with two form factors. For Aðs; t; uÞ
three diagrams contribute: the s channel h0 exchanged
diagram, t channel and u channel � exchanged diagrams;
whereas for Bðs; t; uÞ, there is one �� mediated s channel

diagram, one � mediated u channel diagram, and one h0

mediated t channel diagram:

Að�a�b ! �c
L�

d
LÞ ¼ Aðs; t; uÞð��Þ�ab�cd

þ Bðs; t; uÞð��Þ�ac�bd

þ Bðs; u; tÞð��Þ�ad�bc; (23)

Aðs; t; uÞ ¼ ac�

f2
sðs� 2m2

�Þ
s�m2

h

þ a2�

4f2
2
�

1

u

�
s

2
ð
2

� þ 1Þ þ t�m2
�

�
2

þ a2�

4f2
2
�

1

t

�
s

2
ð
2

� � 1Þ � tþm2
�

�
2
; (24)

Bðs; t; uÞ ¼ 1

4f2
ðsþ 2m2

�Þðt� uÞ
ðs�m2

�Þ

þ a2�

4f2
2
�

1

u

�
s

2
ð
2

� þ 1Þ þ t�m2
�

�
2

þ a2�

4f2
2
�

1

ðt�m2
hÞ
�
s

2
ð
2

� � 1Þ � tþm2
�

�
2
:

(25)

Since the vector resonance is introduced to restore
the perturbative unitary, it is usually demanded that the
cutoff scale satisfying 2m� <�< 4�f. When the thresh-

old effect of the final states could be ignored, i.e.,m� � �,

there are only linear growing s term and constant term in
the partial wave transformation. But as the mass m� is

comparable with �, logarithmic terms also appear:
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a00ðsÞð��Þ ¼
ð24ac�
3

� þ 10a2�ð1� 2
2
�Þ
� þ 5a2�ð1� 
2

�Þ2 log ðð1�
�Þs�2m2
�

ð1þ
�Þs�2m2
�
ÞÞs

256�f2
3
�

�
ðð12ac�
2

� þ 5a2�Þ
� þ 5a2�ðð1� 
2
�Þ � m2

�

s Þ log ð
ð1�
�Þs�2m2

�

ð1þ
�Þs�2m2
�
ÞÞm2

�

64�f2
3
�

: (26)

In the limit mh, m� � �, the partial wave displays a
linear growing pattern: a00ðsÞð��Þ ’ s

128�f2
ð12ac� � 5a2�Þ,

which pushes the partial wave to grow quickly after
the two mesons threshold is reached, and this process
provides a complementary constraint for the parameter
space. In Fig. 1(b), with the c� term ignored, we show
that the unitary bound actually imposes a more stringent
constraint on the parameter space, that is it requires
one larger value of global symmetry breaking scale f
(i.e., cos� needs to be more close to 1) for the same
value of m� and � as compared with the elastic
scattering.

IV. HIGGS TO DIPHOTONS FROM � MESONS

In this section, we discuss the resonance effects on
the Higgs sector. The gauge bosons couple to the
vector resonances via the mass terms described in
Eqs. (6) and (7), since it is the combination of
ðg� ~�L;R

� � EL;R
� Þ that transforms homogeneously under

the symmetry group of SOð4Þ. Due to the mixing
between the gauge eigenstates of ~�a

L�,
~Wa
�, ~�3

R� and
~B�, the exact gauge bosons in the effective theory gain

the property of partial compositeness. At the leading
order of � ¼ v2=f2 ¼ ð1� cos 2�Þ, the mass terms are
simplified as

Lm
� ¼ m2

�

2g2�
ðg� ~�a

L� � g0 ~W
a
�Þ2 þ

m2
�

2g2�
ðg� ~�3

R� � g00 ~B�Þ2

(27)

such that the gauge couplings for SUð2ÞL �Uð1ÞY in the
standard model are determined by the relations of

g22 ¼
g20g

2
�

g20 þ g2�
; g21 ¼

g020 g
2
�

g020 þ g2�
: (28)

In the following analysis, we will take the same bench-
mark point g� ¼ 2:0 as in the last section, therefore g0
and g00 are fixed in order to reproduce the SM model

couplings g1 and g2 at the electroweak scale. Including
higher order expansion of the Higgs fields, the mixing
would be further modified, as indicated by the following
derivation. In the unitary gauge, all the pion fields are
eaten and the Goldstone boson in the fourth direction is
the Higgs field, i.e., �4 ’ h0. There is one interaction
term in the form of ðh0Þ2ðg0 ~Wa

� � g00 ~B��
a3Þ embedded

in the connection E�’s explicit expression:

E� ¼ ðg0 ~Wa
�T

a
L þ g00 ~B�T

3
RÞ

þ 1

f2
½h0T4̂; ½g0 ~Wa

�T
a
L þ g00 ~B�T

3
R;h

0T4̂�� þ � � �

¼ ðg0 ~Wa
�T

a
L þ g00 ~B�T

3
RÞ

� ðh0Þ2
4f2

ðg0 ~Wa
� � g00 ~B��

a3ÞðTa
L � Ta

RÞ þ � � � : (29)

With the electroweak symmetry breaking, the second
term in the above equation gives rise to one new inter-
action term between the Higgs fields and gauge bosons.
Substituting both ðh0Þ2 by their VEVs would modify the

mixing among the gauge bosons and vector mesons.
Assuming the charged W	

� gauge bosons are zero modes,

we will retain the correction occurring at the linear order of
� but are justified to ignore corrections at the order of
m2

W=m
2
�. The full rotation for the charged gauge bosons is

~W	
� ¼ g�W

	
� þ g0�

	
L�

ðg2� þ g20Þ1=2
þ �g�g0ðg0W	

� � g��
	
L�Þ

4ðg2� þ g20Þ3=2
; (30)

~�	
L�¼g0W

	
� �g��

	
L�

ðg2�þg20Þ1=2
��g�g0ðg�W	

� þg0�
	
L�Þ

4ðg2�þg20Þ3=2
��

4
�	
R�;

(31)

~�	
R� ¼ �	

R� þ �ðg0W	
� � g��

	
L�Þ

4ðg2� þ g20Þ1=2
; (32)

where �	
L and �	

R are mass eigenstates with correspond-
ing masses of m2

�L
¼ g2�a

2
�f

2 and m2
�R

¼ ðg2� þ g20ð1þ
�=4ÞÞa2�f2. The neutral gauge bosons mixing pattern is

distinct from the charged ones as indicated by the E�

expression [see Eq. (29)]. The eigenstates for the three
massive neutral states are rather complicated. However,
it is easy to project out the exact zero mode, i.e., the
photon, which is the combination of the four neutral gauge
eigenstates ~W3

�, ~B�, and ~�3
L�, ~�

3
R�:

A� ¼ g00g0 ~�L� þ g00g0 ~�R� þ g�ðg00 ~W3
� þ g0 ~B�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2�ðg020 þ g20Þ þ 2g020 g20
q (33)

and for completeness the Weinberg mixing angle and the
electromagnetic coupling are given as
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c2w ¼ g20ðg020 þ g2�Þ
2g20g

02
0 þ ðg020 þ g20Þg2�


 g20
g020 þ g20

; (34)

s2w ¼ g020 ðg20 þ g2�Þ
2g20g

02
0 þ ðg020 þ g20Þg2�


 g020
g020 þ g20

; (35)

e ¼ g0g
0
0g�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g20g
02
0 þ ðg020 þ g20Þg2�

q 
 g0g
0
0

g20 þ g020
; (36)

which are consistent with the SM formulas as we
abandon the corrections at the order of g00=g� and g0=g�.

We prefer to conduct the calculation with the mass eigen-
state since the trilinear gauge interaction with one photon
and the quartic gauge interaction with two photons are both
diagonal in that basis.

On the other hand, with only one h0 gain VEV in
Eq. (29) and the mixing mass term gives us the following
Lagrangian for H� ~�� ~W and H � ~�� ~B interactions:

Lmix ¼
m2

��

2g�v
h0 ~�a

L�ðg0 ~Wa
� � g00 ~B��

a3Þ

� m2
��

2g�v
h0 ~�a

R�ðg0 ~Wa
� � g00 ~B��

a3Þ: (37)

Adapting it in terms of the mass eigenstates, we find
positive shifts for the h0Wþ

�W
�
� and h0Z0

�Z
0
� vertices

and a negative shift for the h0�þ
L��

�
L� at the leading order

of � ¼ v2=f2. It is convenient to parametrize the Higgs
interactions with the gauge bosons adopting the effective
theory approach:

Leff ¼ aW
2m2

W

v
h0Wþ

�W
�
�

þaZ
m2

Z

v
h0Z�Z�þ c�

2m2
�

v
h0�þ

L��
�
L�

þ c�RW

m2
�

v
h0ðWþ

��
�
R�þW�

��
þ
R�Þ

þ c�L�R

m2
�

v
h0ð�þ

L��
�
R�þ��

L��
þ
R�Þþ cf

�
mf

v
�ff

�
h0

þ c�
�

8�v
h0A��A��þ cZ�

�

4�v
h0Z��A��; (38)

aW ¼
�

g2�

g20 þ g2�
þ g20g

2
��

2ðg20 þ g2�Þ2
�
cos �þ g20�

2ðg20 þ g2�Þ
m2

�

m2
W

;

(39)

c� ¼
�

g20
g20 þ g2�

� g20g
2
��

2ðg20 þ g2�Þ2
�
m2

W

m2
�

cos �� g20�

2ðg20 þ g2�Þ
;

(40)

aZ ¼ cos�þ ðg20 þ g020 Þm2
��

2g2�m
2
Z

; (41)

where the third terms in aW and c� and the second

term in aZ come from the mass mixing terms
h0 ~�a

Lðg0 ~Wa � g00 ~B�
a3Þ and h0 ~�a

Rðg0 ~Wa � g00 ~B�
a3Þ, and

the c� term is originated through the loop contribution of

heavy charged particles. Notice that only diagonal vertices
are relevant to the branching ratio of Higgs decay into
diphoton, whereas there are additional nondiagonal Higgs
vertices along with nondiagonal trilinear and quartic gauge
interactions which would contribute to h0 ! Z�. The latter
process is correlated to h0 ! �� due to the electroweak
symmetry. The corrections to c� come from the vector

meson and its mixing with W, Z gauge bosons:

c� ¼ ctNcð2=3Þ2F1=2ð4m2
t =m

2
hÞ þ aWF1ð4m2

W=m
2
hÞ

þ c�F1ð4m2
�=m

2
hÞ; (42)

F1=2ðxÞ ¼ �2xð1þ ð1� xÞarcsin 2ðx�1=2ÞÞ; (43)

F1ðxÞ ¼ 2þ 3xþ 3xð2� xÞarcsin 2ðx�1=2Þ; (44)

with xi ¼ 4m2
i =m

2
W . For the large mass limit of � mesons

and top quark mass, the asymptotic values for those form
functions are F1ðxÞ 
 7 and F1=2ðxÞ 
 �4=3.
With the knowledge of those couplings, the partial width

for Higgs to diphoton in the composite Higgs model with
respect to its prediction in the SM and the respective ratios
for the other two boson channels are fixed to be

�=�ðH ! ��Þsm ¼ c2�

c2�;sm
;

�=�ðH ! WW�Þsm ¼ a2W
a2W;sm

;

�=�ðH ! ZZ�Þsm ¼ a2Z
a2Z;sm

:

(45)

However, at the LHC, only the product of�Brðh!VV 0Þ
is measurable. The variable, which indicates the deviation
of composite Higgs models from the standard model, is the
so-called R parameter [10], i.e., the observing signal events
divided by its corresponding SM expectation. For the
diphoton process, the R�� is defined as

R�� ¼ ðpp ! h0XÞ
smðpp ! h0XÞ �

Brðh0 ! ��Þ
Brsmðh0 ! ��Þ ; (46)

where  is the production cross section for the Higgs
boson and X denotes any particle associatively produced
with the Higgs boson. At the available energy scale, the
main production channels for the Higgs bosons are gluon
fusions gg ! h0 and vector boson fusions q �q ! h0jj. The
modified cross sections for those two processes are [11]
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sm

ðgg ! h0Þ ¼ c2t ;



sm

ðgg ! h0jjÞ ¼ a2W
W
sm þ a2Z

Z
sm

W
sm þ Z

sm

:

(47)

For simplicity, in this paper we are going to assume that all
the fermion couplings are the same as they are in the SM ,
i.e., cf ¼ 1, with the consequence that the top quark in-

duced gluon fusion cross section is the same as in the SM.
The observing ratios for the diphoton process could be
expressed in a more convenient form:

R�� ¼ =sm � jc�=csm� j2
a2WBr

ðWW�Þ
sm þ a2ZBr

ðZZ�Þ
sm þ jc�=csm� j2Brð��Þsm þ � � �

:

(48)

The R�� dependence on the ðcos�;m�Þ for the gluon fusion
channel is plotted in Fig. 2.We put the unitary bound on that
plot by requiring that the perturbative unitary is violated at
� ¼ 5 TeV. As we can see, if we demand that the com-
posite Higgs model prediction does not give a significant
deviation from the LHC measurement, the perturbative
unitary is a very loose requirement for the allowed parame-
ter space. To achieve a diphoton enhancement rate not

larger than a factor of 1.5, we roughly need cos� > 0:97
and m� > 1:0 TeV. The R�� in the vector boson fusion

process is similar but with aW , aZ > 1, a larger diphoton
enhancement rate is encountered in this channel.
Adding new fermion resonances to the composite

model would be quite interesting since, under certain
circumstances, it possibly enhances the production cross
section of Higgs bosons but at the same time it reduces
the decay branching ratio into diphotons. The balanced
effect might depend on the specific model details.
Furthermore, those composite fermions are introduced
into the model as vectorlike quarks, thus their mixing
with the SM quarks would inevitably modify the W �
t� b and Z� b� b vertices and possibly give a notable
contribution to the oblique parameters [12]. Detailed
studies need to be devoted to explore the influence of
the third generation composite quarks on the Higgs
sector [13–15].

V. CONCLUSION

In summary, for a light composite Higgs boson which is
realized as one pNGB from a strong interacting sector, ��
scatterings put some mild constraint on the ðcos �;m�Þ
parameter space. We conduct a careful analysis for both
the elastic and inelastic pion scatterings and the deviation
of the Higgs to gauge couplings from the standard model
occurring at the order of v2=f2 is allowed as we reducem�,

the mass of composite meson field. The nonlinear realiza-
tion enriches the Higgs interaction with SM gauge bosons.
It is noticed that in the minimal SOð5Þ=SOð4Þ coset model,
with the presence of vector mesons in the fundamental
representation of SOð4Þ, a new interaction originating
from the strong interacting sector may shift the Higgs
couplings aW and aZ in the positive direction due to the
partial compositeness of the W and Z gauge bosons after
the electroweak symmetry breaking. Therefore it is easy
for us to accommodate an enhancement of diphoton rate
which is observed at the LHC. It is believed that through
extending the model structure (with effects on Higgs pro-
ductions and decays) and fine-tuning the parameter space,
the light composite Higgs probably could fit the experi-
mental measurements much better than the standard
model.
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FIG. 2 (color online). Contour plot for the R�� in the gluon
fusion channel assuming ct ¼ 1. The black dashed line is the
unitary bound for the elastic pion scattering �� ! �� and the
orange dashed line is the unitary bound for the inelastic scatter-
ing �� ! �� with � ¼ 5 TeV. The region approaching the
cos � ¼ 1 direction is permitted.
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