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In this paper we present the perturbative computation of the renormalization functions for the quark

field and for a complete set of ultralocal fermion bilinears. The computation of the relevant Green’s

functions are carried out at one-loop level for the staggered action using massive fermions. The gluon

links which appear both in the fermion action and in the definition of the bilinears are improved by

applying a stout smearing procedure up to two times, iteratively. In the gluon sector we employ the

Symanzik improved gauge action for different sets of values of the Symanzik coefficients. The

renormalization functions are presented in (two variants of) the RI0 and in the MS renormalization

scheme; the dependence on all stout parameters, as well as on the fermion mass, the gauge fixing

parameter, and the renormalization scale, is shown explicitly. This work is related to our recent paper

[Phys. Rev. D 86, 094512 (2012)]. To make our results easily accessible to the reader, we include them in

the distribution package of this paper as a Mathematica input file, ‘‘Staggered.m.’’
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I. INTRODUCTION

In recent years, significant improvements have been
made in the use of matrix elements of operators made
out of quark fields to extract mass spectra, decay constants,
and a plethora of hadronic properties [1–3]. Although naive
(unimproved) staggered fermions were introduced more
than three decades ago [4], their discretization errors and
their relatively large taste mixing posed a limit on the
accuracy of results from simulations, despite their
relatively low computational cost. This situation called
for improvement; the outcome of such efforts was some
of the most accurate discretizations used to date for
high-precision simulations. One specific direction regards
improving the fermion action (see, e.g. [5,6]); in particular,
the introduction of stout links in the action which has
recently been put to use [7,8] allows simulations to be
carried out at near physical parameters. Compared to
most other improved formulations of staggered fermions,
the above action, as well as the HISQ action, lead to
smaller taste violating effects [9–11].

Changes in the lattice action and in the discretization of
operators imply that renormalization functions must be
determined afresh, either perturbatively or nonperturba-
tively. In many cases nonperturbative estimates of renor-
malization functions are very difficult to obtain, due to
complications such as possible mixing with operators of
equal or lower dimension, whose signals are hard to
disentangle. For this reason, and in order to provide
cross-estimates which have a reduced systematic error,
the perturbative study of a variety of fermion operators is

widely employed in numerical simulations of QCD on the
lattice (see, e.g. [12] and references therein, also [13–17]).
Within the staggered formulation using massive fermi-

ons we compute the fermion propagator and Green’s func-
tions of a set of local taste-singlet bilinears O [scalar (S),
pseudoscalar (P), vector (V), axial (A), and tensor (T)].
Our computation is performed to one loop and to lowest
order in the lattice spacing, a. We also extract from the
above the renormalization functions (RFs) of the quark
field Zq, quark mass Zm, and fermion bilinears ZO. This

work is a continuation to our recent paper [8], in which we
presented our perturbative results for Zq, ZT , and ZS; it is

the first one-loop computation of these quantities using
staggered fermions with stout links. In the present paper,
we provide the details of the perturbative calculation and
our results for the propagator and for the Green’s functions,
as well as the renormalization functions of all operators,
including the vector, axial, and pseudoscalar cases. Older
results with staggered fermions [13] in the absence of stout
smearing and for the Wilson gluon action are in complete
agreement with our results; perturbartive results related to
alternative improvements of the staggered action can be
found, e.g., in Refs. [18,19].
Stout links [20] rather than ordinary links have been

used both in the fermion action and in bilinear operators.
Following Ref. [8], we use two steps of stout smearing with
generic smearing parameters ð!1; !2Þ. We emphasize that
the results for the bilinear Green’s functions depend on
four stout parameters, two due to the action smearing
ð!A1

; !A2
Þ and two more coming from the smearing of

the operator ð!O1
; !O2

Þ; no numerical value needs to be

specified for these parameters. The extension to further
steps of stout smearing can be achieved with relative ease.
For gluons we employ the Symanzik improved action. Our
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final expressions for the Green’s functions exhibit a rather
nontrivial dependence on the external momentum (q) and
the fermion mass (m), and they are polynomial functions of
the gauge parameter (�), stout parameters ð!Ai

; !Oi
Þ, and

coupling constant (g); furthermore, most numerical coef-
ficients in these expressions depend on the Symanzik
parameters of the gluon action.

The one-loop expressions for the renormalization
functions are presented in the mass-independent RI0
scheme; for the vector and axial renormalization functions
we also employ an alternative RI0 scheme which might be
more useful in renormalizing nonperturbative matrix
elements. Furthermore, for comparison with experimental
determinations and phenomenological estimates, it is

useful to present our results also in the MS scheme; we
do so, paying particular attention to the possible alternative
definitions of �5.

Results for Zq, Zm, ZO exist for simpler actions toOðg4Þ
and/or Oðg2anÞ, see e.g., Refs. [16,21] for two-loop renor-
malization of flavor singlet and nonsinglet local fermion
bilinears, Ref. [15] for Zm to two loops, Ref. [22] for
one-loop renormalization of the fermion propagator and
bilinears to Oða1Þ, and Refs. [17,23,24] for the fermion
propagator and bilinears with 0 and 1 derivatives to one
loop and to Oða2Þ. The extension of the present computa-
tion beyond one loop and/or beyond Oða0Þ becomes
exceedingly complicated: One reason for this is the appear-
ance of divergences in nontrivial corners of the Brillouin
zone; also, a two-loop calculation requires vertices with up
to four gluons, which are extremely lengthy in the presence
of stout links (estimated length: >106 terms).

To make our results easily accessible, we accompany
this paper with an electronic document in the form of a
Mathematica input file (‘‘Staggered.m’’), allowing the
reader to extract the expressions for many choices of the
action parameters. This document contains the one-loop
inverse fermion propagator, the one-loop amputated
Green’s functions relevant to all ultralocal operators, and
the renormalization functions in the RI0 scheme for the
fermion field and for all bilinears. In addition, in
‘‘Staggered.m’’ we provide the expressions for the one-
and two-gluon ‘‘doubly stout’’ links for different stout
parameters in the first and second smearing step.

The outline of this paper is as follows: Sec. II regards a
brief theoretical background in which we introduce the
formulation of the action and of the operators which we
employ. Section III contains a summary of the calcula-
tional procedure for the fermion propagator and for the
Green’s functions of the bilinear operators. We also present
the most general results for these quantities using the
tree-level Symanzik improved gluon action. The renormal-
ization functions are derived in Sec. IV for different renor-
malization schemes, and we provide their expressions for
tree-level Symanzik gluons. Finally, we conclude in
Sec. V with a discussion of our results and possible future

extensions of our work. For completeness, we have
included 3 Appendixes containing: A: the stout smeared
links, B: the numerical results of the propagator for the
Wilson and tree-level Symanzik actions, and C: a descrip-
tion of the Mathematica file ‘‘Staggered.m.’’

II. FORMULATION

A. Lattice actions

Our perturbative calculation makes use of the staggered
fermion action. Let us briefly go over the derivation of the
latter, starting from the naive fermion action

SF ¼ a4
X
x;f;�

�c fðxÞð��D�Þc fðxÞ þ a4
X
x;f

mf
�c fðxÞc fðxÞ;

(1)

where f is a flavor index. Given that, to one loop in
perturbation theory, the quantities of interest do not depend
on the number of flavors, wewill drop the index f from this
point on. The covariant derivative D� is defined as

D�c ðxÞ¼ 1

2a
½U�ðxÞc ðxþa�̂Þ�Uy

�ðx�a�̂Þc ðx�a�̂Þ�:
(2)

The absence of the Wilson term in the naive action of
Eq. (1) leads to the well-known doubling problem. The
standard passage to the staggered action entails the
following change of basis:

c ðxÞ ¼�x�ðxÞ; �c ðxÞ ¼ ��ðxÞ�y
x ; �x ¼�n1

1 �n2
2 �

n3
3 �n4

4 ;

x¼ ðan1;an2;an3;an4Þ; ni�Z: (3)

Using the equalities

���x ¼ ��ðxÞ�xþa�̂ and �y
x �x ¼ 1;

��ðxÞ ¼ ð�1Þ
P

�<�
n� ; (4)

the lattice fermion action takes the form

SF ¼ a4
X
x

X
�

1

2a
��ðxÞ��ðxÞ½U�ðxÞ�ðxþ a�̂Þ

�Uy
�ðx� a�̂Þ�ðx� a�̂Þ� þ a4

X
x

m ��ðxÞ�ðxÞ: (5)

Thus far, we have rewritten the usual lattice action. But the
crucial step now is that the Dirac matrices have disap-
peared, and they have been replaced by the phase factors
��ðxÞ; in the new basis, the naive action consists of four

identical parts, one for each value of the spinor index
carried by the spinor �. Dropping this index altogether
leads to the standard staggered fermion action Sstag con-

taining four rather than 16 fermion ‘‘tastes’’ (doublers).
These four tastes contain a total of 16 components, which
are split over a unit hypercube by assigning only a single
fermion field component to each lattice site.
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Following the nonperturbative work of Ref. [8] we apply
stout smearing according to Ref. [20] to all links appearing
in Sstag: Each link U�ðxÞ ¼ exp ðigaA�ðxþ a�̂=2ÞÞ is

replaced by a stout link ~U�ðxÞ defined as [25]

~U�ðxÞ ¼ eiQ�ðxÞU�ðxÞ; (6)

where the definition of Q�ðxÞ is

Q�ðxÞ ¼ !

2i

�
V�ðxÞUy

�ðxÞ �U�ðxÞVy
�ðxÞ

� 1

3
TrðV�ðxÞUy

�ðxÞ �U�ðxÞVy
�ðxÞÞ

�
: (7)

! is a tunable parameter called a stout smearing parameter,
and V�ðxÞ represents the sum over all staples associated

with the link, U�ðxÞ. In the present work we need the

contributions ofQ�ðxÞ up to two gluons, to which the trace
terms in Eq. (7) are irrelevant; the contributions can be read
from the terms

Q
upto2-gluons
� ðxÞ

¼ !

2i

X�4

�¼�1

ðU�ðxÞU�ðxþ a�̂ÞUy
�ðxþ a�̂ÞUy

�ðxÞ

�U�ðxÞU�ðxþ a�̂ÞUy
�ðxþ a�̂ÞUy

�ðxÞÞ; (8)

(U��ðyÞ � Uy
�ðy� a�̂Þ, � > 0). The above procedure can

be performed iteratively by dressing the links more than
once in order to improve the convergence to the continuum
limit. In the framework of our calculation we use doubly
stout links

~~U�ðxÞ ¼ ei
~Q�ðxÞ ~U�ðxÞ; (9)

where ~Q is defined as in Eq. (7) but using ~U as links
(also in the construction of V�). Such links have been

employed in numerical simulations in Refs. [7,10]. To
obtain results that are as general as possible, we use differ-
ent stout parameters, !, in the first (!1) and the second
(!2) smearing iteration. This allows for further optimiza-
tion of improvement by separate tuning of the two parame-
ters; it also provides a check of the perturbative calculation
by comparing the limit!1 ¼ 0 (or!2 ¼ 0) to the case of a
single step of stout smearing. We smear both the links
in Sstag and those in bilinear operators (see following

subsection), so that we have a total of four stout parameters
that we keep different from one another. In Appendix Awe

present the one-gluon link, Uð1Þ, for general !1 and !2, as

well as the two-gluon link, Uð2Þ; due to space limitations,

the lengthy expression for Uð2Þ (a total of �500 terms) has
been presented only for !2 ¼ 0. The general expression
for the two-gluon link with 0 � !1 � !2 � 0 is provided
in the Mathematica file.

For gluons we employ the Symanzik improved action,
involving Wilson loops with four and six links (1� 1

plaquette (a), 1� 2 rectangle (b), 1� 2 chair (c), and
1� 1� 1 parallelogram (d) wrapped around an elemen-
tary 3D cube), as shown in Fig. 1:

SG ¼ 2

g20

�
c0
X
plaq

ReTrf1�Uplaqg þ c1
X
rect

ReTrf1�Urectg

þ c2
X
chair

ReTrf1�Uchairg þ c3
X
paral

ReTrf1�Uparalg
�
:

(10)

The coefficients ci can in principle be chosen arbitrarily,
subject to the following normalization condition, which
ensures the correct classical continuum limit of the action

c0 þ 8c1 þ 16c2 þ 8c3 ¼ 1: (11)

Some popular choices of values for ci used in numerical
simulations will be considered in this work and are item-
ized in Table I of Ref. [24]. They include the Wilson case
(c0 ¼ 1, c1 ¼ c2 ¼ c3 ¼ 0), and the tree-level Symanzik,
TILW (tadpole improved Lüscher-Weisz), Iwasaki, and
doubly blocked Wilson action (DBW2) actions. In the
results presented in paper form we use the tree-level
Symanzik action (c0 ¼ 5=3, c1 ¼ �1=12, c2 ¼ c3 ¼ 0).
Our one-loop Feynman diagrams do not involve pure gluon
vertices, and the gluon propagator depends only on three
combinations of the Symanzik parameters:

c0 þ 8c1 þ 16c2 þ 8c3 ¼ 1; c2 þ c3; c1 � c2 � c3:

Therefore, with no loss of generality we choose c2 ¼ 0.

B. Definition of operators

In the staggered formalism one defines fields that live on
the corners of four-dimensional elementary hypercubes
of the lattice [13,26,27]. The position of a hypercube
inside the lattice is denoted by the index y, where y is a
four-vector with components y�, which are even integers

(a)

(c) (d)

(b)

FIG. 1. The four Wilson loops of the gluon action.
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(y�� 2Z). The position of a fermion field component

within a specific hypercube is defined by one additional
four-vector index, C (C� 2 f0; 1g).

To be able to obtain the correct continuum limit, both for
the action and for operators containing fermions, we relate
� with the physical field Q	;b (	: Dirac index, b: taste

index). In standard notation,

�ðyÞC � �ðayþ aCÞ=4 ¼ X
	;b

�
1

2

C

�
	;b

Q	;bðyÞ;

Q	;bðyÞ � 1

2

X
C

ð�CÞ	;b�ðyÞC;
(12)

where 
C is defined similarly to �C [Eq. (3)], that is


C ¼ 
C1

1 
C2

2 

C3

3 
C4

4 , 
� ¼ ð�?
�Þ. In terms of the field Q

one can now define fermion bilinear operators as follows:

O �;
 ¼ �Qð� � 
ÞQ; (13)

where� and
 are arbitrary 4� 4matrices acting on theDirac
and taste indices ofQ	;b, respectively. After rotating into the

staggered basis, the operator O�;
 can be written as [13]

O�;
 ¼ X
C;D

��ðyÞCð� � 
ÞCD�ðyÞD; (14)

ð� � 
ÞCD � 1

4
Tr½�y

C��D
�: (15)

In this work we focus on taste-singlet operators, thus 
 ¼ 1.

The operator of Eq. (14) is clearly not gauge invariant,
since �� and � are defined at different points of the hyper-
cube. To restore gauge invariance, we insert the average of
products of gauge link variables along all possible shortest
paths connecting the sites yþ C and yþD. This average
is denoted byUC;D and the gauge-invariant operator is now

O� � O�;1 ¼ X
C;D

��ðyÞCð� � 1ÞCDUC;D�ðyÞD: (16)

From the definition of Eq. (15), as well as the equalities of
Eq. (4), we can further simplify the expression for the
operator O�, using

1

4
Tr½�y

C1�D� ¼ �C;D;

1

4
Tr½�y

C���D� ¼ �C;Dþ�̂��ðDÞ;
1

4
Tr½�y

C����D� ¼ 1

i
�C;Dþ�̂þ�̂��ðDÞ��ðDþ �̂Þ;

1

4
Tr½�y

C�5���D� ¼ �C;Dþ�̂þð1;1;1;1Þ��ðDÞ�1ðDþ �̂Þ
� �2ðDþ �̂Þ�3ðDþ �̂Þ�4ðDþ �̂Þ;

1

4
Tr½�y

C�5�D� ¼ �C;Dþð1;1;1;1Þ�1ðDÞ�2ðDÞ�3ðDÞ�4ðDÞ;
(17)

where ��� ¼ ½��; ���=ð2iÞ. Here and below in expres-

sions such as Dþ �̂, the sum is to be taken modulo 2.
Using Eq. (17), the operators can be written as

OSðyÞ ¼
X
D

��ðyÞD�ðyÞD; (18)

OVðyÞ ¼
X
D

��ðyÞDþ�̂UDþ�̂;D�ðyÞD��ðDÞ; (19)

OTðyÞ¼1

i

X
D

��ðyÞDþ�̂þ�̂UDþ�̂þ�̂;D�ðyÞD��ðDÞ��ðDþ �̂Þ; (20)

OAðyÞ ¼
X
D

��ðyÞDþ�̂þð1;1;1;1ÞUDþ�̂þð1;1;1;1Þ;D�ðyÞD��ðDÞ�1ðDþ �̂Þ�2ðDþ �̂Þ�3ðDþ �̂Þ�4ðDþ �̂Þ; (21)

OPðyÞ ¼
X
D

��ðyÞDþð1;1;1;1ÞUDþð1;1;1;1Þ;D�ðyÞD�1ðDÞ�2ðDÞ�3ðDÞ�4ðDÞ: (22)

With the exception of the scalar operator, the remaining operators contain averages of products of up to four links
(in orthogonal directions) between the fermion and the antifermion fields. For example, the average entering the tensor
operator of Eq. (20) is

UDþ�̂þ�̂;D ¼ 1

2
½~~Uy

�ðayþ aDþ a�̂Þ ~~Uy
�ðayþ aDÞ þ f� $ �g�; (23)

valid when ðDþ �̂þ �̂Þi � Di, i ¼ 1, 2, 3, 4, and similarly for all other cases.
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III. CALCULATION OF GREEN’S FUNCTIONS

In this section we describe some of the technical aspects
of the calculation and present our results for one-loop
Green’s functions. As a starting point one must derive the
vertices for the staggered action and the operators, up to
two gluons, as required in our one-loop computation. For
this reason one may use an equivalent expression of ��ðxÞ
appearing in the action

��ðxÞ ¼ ei
 ��n; x ¼ an; �� ¼ X��1

�¼1

�̂ : (24)

Using this form of ��ðxÞ, instead of the definition

of Eq. (4), simplifies the expression for O� in

terms of Fourier transformed fields, ~�ðkÞ, ~A�ðkÞ �
~Ac
�ðkÞTc:

O� ¼
Z 


�


d4k1
ð2
Þ4

Z 


�


d4k2
ð2
Þ4 ~��ðk1ÞV�ðk1; k2Þ~�ðk2Þ þ

X
c;�

Z 


�


d4k1
ð2
Þ4

Z 


�


d4k2
ð2
Þ4

Z 


�


d4k3
ð2
Þ4 ~��ðk1Þ

� Vc;�
� ðk1; k2; k3;!1; !2Þ~�ðk2Þ ~Ac

�ðk3Þ þ 2-gluon termsþ 	 	 	 : (25)

Thus, after Fourier transformation, the quark-antiquark vertices of Eqs. (18)–(20) without stout smearing become

VSðk1; k2Þ ¼ �ðk2 � k1Þ; (26)

VVðk1; k2Þ ¼ �ðk2 � k1 þ 
 ��Þe�ik1�; (27)

VTðk1; k2Þ ¼ �ðk2� k1þ
 ��þ
 ��Þe�ik1�e�ik1� ð�>�Þ; (28)

VAðk1; k2Þ ¼ ��ð ��Þ�
�
k2 � k1 þ 


X4
�¼1

��þ
 ��

�
e�iðk11þk12þk13þk14�k1� Þ; (29)

VPðk1;k2Þ¼�

�
k2�k1þ


X4
�¼1

��

�
e�iðk11þk12þk13þk14 Þ: (30)

As for vertices containing gluons, we give here as an example the one-gluon vertex of the vector operator,
including double stout smearing:

V
c;�
V ðk1; k2; k3;!1;!2Þ ¼ igTc

�
cos

�
k3�
2

þ k1�

�
�ðk3 � k2 þ k1 þ
 ��þ
�Þ þ i�ðk3 � k2 þ k1 þ
 ��Þ sin

�
k3�
2

þ k1�

��

	
�
4 sin

�
k3�

2

�
sin

�
k3�

2

��
!1 þ!2 þ 2!1!2

�
�4þX

�

cos ðk1�Þ
��

þ ���

�
ð8!1 � 1Þð8!2 � 1Þ þ 2

X
�

cos ðk3�Þ
�
!1 þ!2 þ 2!1!2

�
�8þX

�

cos ðk3�Þ
����

; (31)

where � is the index of the inserted Dirac matrix (��) and
� is the index of the gluon.

Given that the argument y of the operatorsO� runs only
over even integers, summation over the position of O�

followed by Fourier transformation leads to expressions
of the form

X
y�� 2Z

eiy	k ¼ 1

16
ð2
Þ4X

C

�2
ðkþ 
CÞ; (32)

where �2
ðkÞ stands for the standard periodic � function
with nonvanishing support at kmod 2
 ¼ 0. Since

contributions to the continuum limit come from the neigh-
borhood of each of the 16 poles of the external momenta q,
at q� ¼ ð
=aÞC�, it is useful to define q

0
� and C� through

q� ¼ q0� þ 


a
C�

�
mod

�
2


a

��
; ðC��f0; 1gÞ; (33)

where the ‘‘small’’ (physical) part q0 has each of its com-
ponents restricted to one-half of the Brillouin zone:
�
=ð2aÞ 
 q0� 
 
=ð2aÞ. Thus, conservation of external

momenta takes the form
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�2
ðaq1 � aq2 þ 
DÞ ¼ 1

a
�ðq01 � q02Þ

Y
�

�C1��C2�þD�;0:

(34)

For the algebraic operations involved in evaluating the
Feynman diagrams relevant to this calculation, we make
use of our symbolic package in Mathematica; a description
of this can be found, e.g., in a previous publication [23].

A. Fermion propagator

We compute the one-loop correction to the fermion
propagator in order to obtain the renormalization function
of the fermion field, an essential ingredient for the renor-
malization of the operators O�. The tree-level fermion
propagator in the basis of the � fields can be written as

Streeðq1;q2Þ

¼ð2
Þ4�
i
a

P
�sinðaq1�Þ�ðq1�q2þ
 ��

a Þþm�ðq1�q2Þ
1
a2
P

�sin
2ðaq1�Þþm2

:

(35)

The one-loop Feynman diagrams that enter the calcula-
tion of the two-point, one-particle irreducible (1PI), ampu-
tated Green’s function S�1ðpÞ are illustrated in Fig. 2.

We have computed S�1ðpÞ for general values of the
gauge parameter � (� ¼ 0: Landau gauge, � ¼ 1:
Feynman gauge), the stout smearing parameters !A1

,

!A2
, the Lagrangian mass m, the number of colors Nc,

and the external momenta q1, q2. We have obtained results
using different sets of values for the Symanzik coefficients
(shown in Ref. [23]). In presenting our result, Eq. (36), for
S�1ðpÞ up to one loop, the quantities e1, e2 are numerical
coefficients that depend on the Symanzik coefficients and
the stout smearing parameters. In Appendix B we provide
the general form of e1, e2 and tabulate their numerical
values for the Wilson and tree-level Symanzik cases; for
other actions see Appendix C. In all expressions the sys-
tematic errors (coming from an extrapolation to infinite
lattice size of our numerical loop integrals) are smaller
than the last digit we present.

S�1
1-loop ¼

�X
�

�

�
q1 � q2 þ 


a
��

�
ip�ð�1ÞC1�

�

�
�
1þ g2CF

16
2

��
e1 þ 4:79201�� �

�
log ða2m2 þ a2p2Þ þm2

p2
�m4

p4
log

�
1þ p2

m2

����
þ �ðq1 � q2Þm

�
�
1þ g2CF

16
2

�
e2 þ 5:79201�� ð3þ �Þ

�
log ða2m2 þ a2p2Þ þm2

p2
log

�
1þ p2

m2

����
þOða1Þ; (36)

q1, q2: external momenta, CF � N2
c�1
2Nc

, ap� � ðaq1� þ


2Þmod
 � 


2 ¼ ðaq2� þ 

2Þmod
 � 


2 , and C1 is defined in

Eq. (33). Equation (36) does have the expected structure
of an inverse propagator, once one identifies in the
continuum limit:

X
�

�

�
q1�q2þ


a
��

�
p�ð�1ÞC1�!

a!0
�ðq01�q02Þ6q01: (37)

We denote the expression in square brackets in the last

line of Eq. (36) as �mðq2; mÞ; from this we will extract

the multiplicative renormalization of the Lagrangian
mass, Zm.

B. Fermion bilinears

In the context of this work we also study the 1PI,
amputated, two-point Green’s functions of the operators

O� defined in Eqs. (18)–(20) up to one loop: �1-loop
O�

. The

1PI Feynman diagrams that enter the calculation of the
above Green’s functions are shown in Fig. 3, and include
up to two-gluon vertices extracted from the operator

FIG. 2. One-loop diagrams contributing to the fermion propa-
gator. Wavy (solid) lines represent gluons (fermions).

FIG. 3. One-loop diagrams contributing to the fermion-
antifermion Green’s functions of the bilinear operators. A
wavy (solid) line represents gluons (fermions). A cross denotes
an insertion of the operator O�.
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(the cross in the diagrams). The appearance of gluon lines
on the operator stems from the productUC;D in the operator

definition [Eq. (16)].1

Analogous expressions to Eq. (36) arise for the

bilinears as well. We note that the extraction of ZO�
in

a mass-independent scheme, such as RI0-MOM, necessi-

tates evaluation of �
1-loop
O�

for m ¼ 0 only. Nevertheless,

we have included a nonzero Lagrangian mass to our

computations; this allows us to derive the renormalized

Green’s functions at m � 0. Comparing the latter with

results using a different regularization scheme (e.g.

dimensional regularization) provides another check in
our computation.
Although computing the diagrams of Fig. 3 does not use

the expression of the propagator [Eq. (36)], all our results
shown in Eqs. (38)–(42) are expressed in terms of e1
[see Eqs. (36) and (B1)]. The reason for that is to
show explicitly the contribution of the quantities �O
[Eqs. (57)–(61)] which appear in the renormalization func-
tions ZO [Eqs. (43)–(47)].
Dropping an overall Dirac � function of momentum

conservation, and denoting the physical momentum of

the fermion and antifermion by p, we obtain �
1-loop
O

�1-loop
S ¼ 1þ g2CF

16
2

�
e1 � �S þ 5:79201�þ i 6p

�
4�

m3

ðp2Þ2 log

�
1þ p2

m2

�
� 4�

m

p2

�
� ð�þ 3Þ

�
3
m2

p2
log

�
1þ p2

m2

�

þ log ða2m2 þ a2p2Þ
��

; (38)

�
1-loop
V ¼��þg2CF

16
2

�
��

�
e1��V þ4:79201���

m2

p2
�� log ða2m2þa2p2Þþ�

m4

ðp2Þ2 log
�
1þ p2

m2

��

þ ip�

�
2�

m

p2
þ6

m

p2
�
�
2�

m3

ðp2Þ2þ6
m3

ðp2Þ2
�
log

�
1þ p2

m2

��
� 6pp�

�
2�

1

p2
�4�

m2

ðp2Þ2þ4�
m4

ðp2Þ3 log
�
1þ p2

m2

���
;

(39)

�1-loop
T ¼���þg2CF

16
2

�
����

�
e1��T þ3:79201��ð1��Þ

�
2
m2

p2
� log ða2m2þa2p2Þ�

�
2

m4

ðp2Þ2þ
m2

p2

�
log

�
1þ p2

m2

���

�ð�� 6pp���� 6pp�Þð1��Þ
��
4

m4

ðp2Þ3þ2
m2

ðp2Þ2
�
log

�
1þ p2

m2

�
�4

m2

ðp2Þ2
�

� i���� 6p
�
4

m3

ðp2Þ2 log
�
1þ p2

m2

�
�4

m

p2

�
� ið��p����p�Þ

�
4
m

p2
�4

m3

ðp2Þ2 log
�
1þ p2

m2

���
; (40)

�1-loop
A ¼ �5�� þ g2

16
2
CF�5

�
��

�
e1 � �A þ 4:79021�� ð2� �Þm

2

p2
� � log ða2m2 þ a2p2Þ

þ
�
2ð1� �Þ m4

ðp2Þ2 � 2ð1þ �Þm
2

p2

�
log

�
1þ p2

m2

��
� ip�ð1� �Þ

�
2
m

p2
� 2

m3

ðp2Þ2 log

�
1þ p2

m2

��

þ i�� 6pð1� �Þ
�
2
m

p2
� 2

m3

ðp2Þ2 log

�
1þ p2

m2

��
� 6pp�

�
�8

m2

ðp2Þ2 þ 2�
1

p2
þ 4�

m2

ðp2Þ2 þ
�
8

m4

ðp2Þ3 � 4�
m4

ðp2Þ3

þ 4
m2

ðp2Þ2 � 4�
m2

ðp2Þ2
�
log

�
1þ p2

m2

���
; (41)

�
1-loop
P ¼ �5 þ g2CF

16
2
�5

�
e1 � �P þ 5:79201�� ð�þ 3Þm

2

p2
log

�
1þ p2

m2

�
� ð�þ 3Þ log ða2m2 þ a2p2Þ

�
: (42)

The quantities �O are independent of the mass, gauge

parameter, external momentum, and lattice spacing; they

depend on the gluon action and the stout parameters. As

discussed earlier, we have employed different parameters

for the two smearing steps; in fact, we have also kept the

parameters of the action’s smearing procedure ð!A1
; !A2

Þ
distinct from the parameters of the operator smearing

ð!O1
; !O2

Þ. For the tree-level Symanzik action and for

general values of the stout parameters we obtained

1For OS only the top right diagram of Fig. 3 contributes, since
UC;D ¼ 1.
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�S ¼ �34:3217þ 389:210ð!A1
þ!A2

Þ � 1403:65ð!2
A1

þ!2
A2
Þ � 5614:59!A1

!A2
þ 23395:4ð!2

A1
!A2

þ!A1
!2

A2
Þ

� 106814!2
A1
!2

A2
; (43)

�V ¼ 86:7568½ð!A1
þ!A2

Þ � ð!O1
þ!O2

Þ� � 337:383½ð!2
A1

þ!2
A2
Þ � ð!2

O1
þ!2

O2
Þ�

� 1349:53ð!A1
!A2

�!O1
!O2

Þ þ 5950:81½ð!2
A1
!A2

þ!A1
!2

A2
Þ � ð!2

O1
!O2

þ!O1
!2

O2
Þ�

� 28627:2ð!2
A1
!2

A2
�!2

O1
!2

O2
Þ; (44)

�T ¼ 8:88342þ 116:579ð!A1
þ!A2

Þ � 200:588ð!O1
þ!O2

Þ � 531:759ð!2
A1

þ!2
A2
Þ þ 780:590ð!2

O1
þ!2

O2
Þ

� 2095:16!A1
!A2

þ 3154:24!O1
!O2

þ 31:8743ð!A1
þ!A2

Þð!O1
þ!O2

Þ þ 9877:233ð!2
A1
!A2

þ!A1
!2

A2
Þ

� 13993:1ð!2
O1
!O2

þ!O1
!2

O2
Þ � 284:001ðð!A1

þ!A2
Þ!O1

!O2
þ!A1

!A2
ð!O1

þ!O2
ÞÞ � 48519:3!2

A1
!2

A2

þ 68237:1!2
O1
!2

O2
þ 2709:49!A1

!A2
!O1

!O2
; (45)

�A ¼ 17:0363þ 117:584ð!A1
þ!A2

Þ � 314:355ð!O1
þ!O2

Þ � 518:419ð!2
A1

þ!2
A2
Þ þ 1223:79ð!2

O1
þ!2

O2
Þ

� 2041:80!A1
!A2

þ 4927:06!O1
!O2

þ 31:8758ð!A1
þ!A2

Þð!O1
þ!O2

Þ þ 9559:98ð!2
A1
!A2

þ!A1
!2

A2
Þ

� 21823:5ð!2
O1
!O2

þ!O1
!2

O2
Þ � 210:274ðð!A1

þ!A2
Þ!O1

!O2
þ!A1

!A2
ð!O1

þ!O2
ÞÞ � 47154:2!2

A1
!2

A2

þ 105754:!2
O1
!2

O2
þ 1396:94!A1

!A2
!O1

!O2
; (46)

�P ¼ 25:7425þ 119:062ð!A1
þ!A2

Þ � 428:120ð!O1
þ!O2

Þ � 518:541ð!2
A1

þ!2
A2
Þ þ 1667:00ð!2

O1
þ!2

O2
Þ

� 2042:29!A1
!A2

þ 6699:88!O1
!O2

þ 31:8765ð!A1
þ!A2

Þð!O1
þ!O2

Þ þ 9435:40ð!2
A1
!A2

þ!A1
!2

A2
Þ

� 29654:0ð!2
O1
!O2

þ!O1
!2

O2
Þ � 210:274ðð!A1

þ!A2
Þ!O1

!O2
þ!A1

!A2
ð!O1

þ!O2
ÞÞ � 44803:9!2

A1
!2

A2

þ 143482:!2
O1
!2

O2
þ 1657:76!A1

!A2
!O1

!O2
: (47)

We note in passing that in the absence of stout
smearing (!Ai

¼ !Oi
¼ 0) �V ¼ 0, which implies that

ZRI0
V ¼ ZMS

V ¼ 1 [cf. Eqs. (59) and (68)], as is well known
from current conservation. In addition, Eq. (44) shows that
nonrenormalization of OV applies also when !Ai

¼ !Oi
;

this follows from the fact that the stout link version of OV

mimics that of the action, and thus current conservation
applies equally well in this case.

The dependence of the Green’s functions of
Eqs. (38)–(42) on mass and external momentum is regu-
larization independent and agrees for instance with the
results of Refs. [22,24]. As is well known, in the limit of
zero mass the vector and axial Green’s functions beyond
tree level are not multiples of their tree-level values:
There appear additional, finite contributions with tensor
structures which are distinct from those at tree level. These

contributions denoted as �ð2Þ
V and �ð2Þ

A can be read off

Eqs. (39) and (41):

�ð2Þ
V ¼ g2CF

16
2

�
�2�

6qq�
q2

�
; (48)

�ð2Þ
A ¼ g2CF

16
2

�
�2�

�5 6qq�
q2

�
: (49)

A similar contribution for the tensor bilinear does not
appear up to, and including, three loops [28]. The role of

�ð2Þ
V and �ð2Þ

A in the renormalization of OV and OA will be
discussed in the next section.

IV. RENORMALIZATION FUNCTIONS

A. Fermion field and fermion bilinear renormalization
functions in the RI0-MOM scheme

RFs for operators and action parameters relate bare
quantities regularized on the lattice to their renormalized
continuum counterparts:

c renorm ¼ Z
1
2
qc bare; mrenorm ¼ Zmm

bare;

Orenorm
� ¼ ZO�

Obare
� : (50)

The RFs of lattice operators are necessary ingredients in
the prediction of physical probability amplitudes from
lattice matrix elements. In this section we present the
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multiplicative RFs in the RI0-MOM scheme of the fermion
field (Zq), the fermion mass (Zm), and the fermion

bilinears.
The RI0-MOM renormalization scheme consists in

requiring that the forward amputated Green’s function
�ðpÞ computed in the chiral limit and at a given (large
Euclidean) scale p2 ¼ �2 be equal to its tree-level value.
Our results for the RFs are presented for arbitrary values of
the renormalization scale �. This requirement leads to the

following definitions for ZRI0
q , ZRI0

m , ZRI0
O�
:

S�1
1-loopjp2¼�2;m¼0 ¼ S�1

treejp2¼�2;m¼0Z
RI0
q ð�Þ; (51)

�mjp2¼�2;m¼0 ¼ ZRI0
m ð�ÞZRI0

q ð�Þ; (52)

�1-loop
O�

jp2¼�2;m¼0 ¼ �tree
O�

ZRI0
q ð�ÞðZRI0

O�
ð�ÞÞ�1;

ð� ¼ S; T; PÞ; (53)

where S�1
tree is the tree-level result for the inverse propaga-

tor, and �tree
O�

is the tree-level value of the Green’s function

for O�.

The presence of �ð2Þ
V and �ð2Þ

A in the one-loop Green’s

functions of OV and OA makes a prescription such as
Eq. (53) inapplicable in those cases. Instead we employ

ð�1-loop
V;A � �ð2Þ

V;AÞjp2¼�2;m¼0 ¼ �tree
V;AZ

RI0
q ð�ÞðZRI0

V;Að�ÞÞ�1;

(54)

and thus take into account only the terms in�V;A which are

proportional to their corresponding tree-level values.

The expressions we obtain using our results for �
1-loop
O�

are shown here only for the tree-level improved
Symanzik gauge action. The quantities �O are defined in
Eqs. (43)–(47). We note that the results for Zm and ZS are
related by Zm ¼ Z�1

S as expected,

ZRI0
q ¼ 1þ g2CF

16
2
½�� log ða2�2Þ þ 4:79201�� 7:21363þ 124:515ð!A1

þ!A2
Þ � 518:433ð!2

A1
þ!2

A2
Þ

� 2073:73!A1
!A2

þ 9435:35ð!2
A1
!A2

þ!A1
!2

A2
Þ � 45903:1!2

A1
!2

A2
�; (55)

ZRI0
m ¼ 1þ g2CF

16
2
½�3 log ða2�2Þ þ �þ 34:3217� 389:210ð!A1

þ!A2
Þ þ 1403:65ð!2

A1
þ!2

A2
Þ

þ 5614:59!A1
!A2

� 23395:4ð!2
A1
!A2

þ!A1
!2

A2
Þ þ 106813:!2

A1
!2

A2
�; (56)

ZRI0
S ¼ 1þ g2CF

16
2
½�S � �þ 3 log ða2�2Þ�; (57)

ZRI0
V ¼ 1þ g2CF

16
2
½�V�; (58)

ZRI0
T ¼ 1þ g2CF

16
2
½�T þ �� log ða2�2Þ�; (59)

ZRI0
A ¼ 1þ g2CF

16
2
½�A�; (60)

ZRI0
P ¼ 1þ g2CF

16
2
½�P � �þ 3 log ða2�2Þ�: (61)

In order to compare perturbative and nonperturbative estimates of RFs one clearly needs to employ the same

renormalization prescription in both cases. In the context of a numerical simulation the term �ð2Þ for the vector and axial
cases is often not removed from the Green’s functions, in contrast to what is done perturbatively in Eq. (54). Therefore, an
alternative RI0 renormalization prescription appears more natural:

Z�1
q ZRI0 alter

V;A Tr½�1-loop
V;A �tree

V;A� ¼ Tr½�tree
V;A�

tree
V;A�: (62)
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Using the above prescription, the extracted ZRI0 alter
V and

ZRI0 alter
A take the form

ZRI0 alter
V ¼ ZRI0

V þ g2CF

16
2

�

2
; (63)

ZRI0 alter
A ¼ ZRI0

A þ g2CF

16
2

�

2
: (64)

B. Conversion to the MS scheme

In this section we provide the expressions for the RFs in

the MS continuum scheme using conversion factors
adapted from Ref. [28]. These conversion factors do not
depend on the regularization scheme (and, thus, they are
independent of the lattice discretization) when expressed in
terms of the renormalized coupling constant. However,
expressing them in terms of the bare coupling constant
introduces a dependence on the action. In our analysis we
use one-loop formulas, which are action independent. The
definition for the conversion factors CO is as follows:

ZMS;NDR
O�

¼ COZ
RI0
O�
: (65)

The above conversion factors refer to the naive

dimensional regularization (NDR) of the MS scheme
(see e.g., Ref. [29]), in which CP ¼ CS and CA ¼ CV .
From Eq. (65) one obtains2

ZMS;NDR
q ¼ ZRI0

q � g2CF

16
2
�þOðg4Þ; (66)

ZMS;NDR
S;P ¼ ZRI0

S;P þ g2CF

16
2
ð4þ �Þ þOðg4Þ; (67)

ZMS;NDR
V;A ¼ ZRI0

V;A; (68)

ZMS;NDR
T ¼ ZRI0

T � g2CF

16
2
�þOðg4Þ: (69)

Other modified minimal subtraction schemes are related to
NDR via additional finite renormalization and affect the
operators which include a �5, due to the nonunique general-
ization of �5 to D dimensions. Thus, the treatment of the

pseudoscalar and axial operators in the MS scheme requires

special attention. The MS renormalized pseudoscalar and
axial operators, as defined in the scheme of ’t Hooft and
Veltman (HV) [30], involve extra finite factors, ZP

5 , Z
A
5 , in

addition to the conversion factors of Eqs. (67) and (68) [31]:

ZP
5 ¼ 1� g2

16
2
ð8CFÞ; (70)

ZA
5 ¼ 1� g2

16
2
ð4CFÞ: (71)

The relation between the NDR and the HV schemes is

ZMS;HV
P ¼ ZMS;NDR

P ZP
5 ; (72)

ZMS;HV
A ¼ ZMS;NDR

A ZA
5 : (73)

Wewould like to point out that although the expressions for
ZA
5 and ZP

5 are, in general, different for flavor singlet and

nonsinglet operators, at one-loop level they coincide.

Other variants of MS include the DREZ and DRED
schemes; the conversion from one scheme to another can
be found in Sec. 4 of Ref. [13]. Our results for the fermion
bilinears using the Wilson gauge action and without stout
smearing converted in the DREZ scheme agree with the
corresponding results of Ref. [13].
Having obtained ZX

O�
in some renormalization scheme

[X ¼ ðRI0Þ, ðRI0alterÞ, ðMS;NDRÞ, ðMS;HVÞ, etc.] the
expressions for the renormalized Green’s functions in

that scheme �renorm;X
O�

ðp;mÞ follow immediately:

�renorm;X
O�

ðp;mÞ ¼ �bare;X
O�

ðp;mÞðZX
q Þ�1ZX

O�
: (74)

V. SUMMARY

In this paper we presented the calculation of the fermion
propagator and the Green’s functions for the ultralocal
fermion bilinear operators: scalar, pseudoscalar, vector,
axial, and tensor. The computations were performed to
one loop in lattice perturbation theory using staggered
fermions and Symanzik improved gluons parametrized
by three independent ‘‘Symanzik’’ coefficients; explicit
results are presented for some of the most commonly
used actions in this family: Wilson, tree-level Symanzik,
tadpole improved Lüscher-Weisz, Iwasaki, and DBW2.
The novelty in our calculations was the stout smearing

of the links that we applied in both the fermion action and
in the bilinear operators. More precisely, we used two steps
of stout smearing with distinguishable parameters. To
make our results as general as possible we also distin-
guished between the stout parameters appearing in the
fermion action and in the bilinears.
Our expressions for the fermion propagator and the

Green’s functions of the bilinear operators exhibit a rather
nontrivial dependence on the external momentum (q) and
the fermion mass (m), and they are polynomial functions of
the gauge parameter (�), stout parameters ð!Ai

;!Oi
Þ, and

coupling constant (g). The numerical coefficients appearing
in these expressions depend on the Symanzik parameters of
the gluon action and were presented for the tree-level
Symanzik improved gluon action; the most general expres-
sions can be found in the electronic document in the form of
a Mathematica input file, ‘‘Staggered.m.’’

2Note that, at variance with Eq. (68), the conversion factors
CV;A will not be equal to 1 if one uses, e.g., the ‘‘alternative’’ RI0
renormalization scheme of Eq. (62).
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Using the aforementioned results we extract the
renormalization function of the fermion field and those
of the fermion bilinears in the RI0-MOM scheme and we

provide the appropriate conversion factors to the MS
scheme; we pay particular attention to the operators
which include a �5 in their definition. Moreover, for the
case of the vector and axial operators we give an alter-
native prescription to obtain the renormalizations in the
RI0 scheme.

There are several directions in which the present work
could be extended.

(i) A natural extension would be the computation of the
Green’s functions for operators including covariant
derivatives, such as the one-derivative vector and

axial operators3: �c�f�D
$

�gc , �c�5�f�D
$

�gc . The

corresponding renormalization functions may be
applied to the nonperturbative lattice evaluation of
the momentum fraction of the nucleon, hxiq, and the

moment of the polarized quark distribution of the
nucleon, hxi�q.

(ii) A related further work using staggered fermions
with stout improvement would be a computation
of Green’s functions for four-Fermi operators; a
work in this direction can be found in Ref. [32].

(iii) A possible improvement to the action may
involve further iterations of stout smearing; such

a procedure has been applied to clover [33] and
Wilson fermions [34].

(iv) It would be also interesting to calculate the Green’s
functions up to second order in the lattice spacing;
such an extension would not only be useful to
constructing improved versions of the operators
but also to remove Oðg2a2Þ contributions from
the nonperturbative estimates of the renormaliza-
tion functions. Similar computations have been
performed recently with Wilson/clover/twisted
mass fermions [23,17,35].
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APPENDIX A: STOUT SMEARING OF THE LINKS

Here we present the doubly stout one-gluon link, Uð1Þ,
for general values of !1 and !2, as well as the two-gluon

link, Uð2Þ (only for !2 ¼ 0, to simplify the latter’s lengthy
expression):

~~U
ð1Þ
� ðx;!1; !2Þ ¼ ig

�
þA�ðxÞ þ ð!1 þ!2Þ

�
�8A�ðxÞ þ

X�4

�¼�1

ðA�ðxþ a�̂Þ þ A�ðxÞ � A�ðxþ a�̂ÞÞ
�

þ ð!1!2Þ
�
64A�ðxÞ þ

X�4

�¼�1

ð�16A�ðxþ a�̂Þ � 8A�ðxÞ þ 8A�ðxþ a�̂ÞÞ

þ X�4

�¼�1

X�4

�¼�1

ðA�ðxþ a�̂Þ � A�ðxþ a�̂þ a�̂Þ þ A�ðxþ a�̂þ a�̂ÞÞ
��

; (A1)

~Uð2Þ
� ðx;!1; !2 ¼ 0Þ ¼ g2

�
�A�ðxÞ2

2
þ!1

�
8A�ðxÞ2 �

X�4

�¼�1

A�ðxÞðA�ðxþ a�̂Þ þ A�ðxÞ � A�ðxþ a�̂ÞÞ
�

þ!2
1

�
�32A�ðxÞ2 þ

X�4

�¼�1

ð8A�ðxÞðA�ðxþ a�̂Þ þ A�ðxÞ � A�ðxþ a�̂ÞÞÞ

þ X�4

�¼�1

X�4

�¼�1

�
� 1

2
A�ðxþ a�̂ÞA�ðxþ a�̂Þ � A�ðxþ a�̂ÞA�ðxÞ � 1

2
A�ðxÞA�ðxÞ

þ 1

2
A�ðxþ a�̂ÞA�ðxÞ þ 1

2
A�ðxþ a�̂� a�̂ÞA�ðxþ a�̂Þ þ A�ðxþ a�̂ÞA�ðxþ a�̂Þ

� 1

2
A�ðx� a�̂ÞA�ðxþ a�̂Þ

���
; (A2)

where we define A��ðyÞ ¼ �A�ðy� a�̂Þ, � > 0.

3Curly brackets denote symmetrization and subtraction of the trace.
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Note: The order in which a product of gluon fields

appear in ~Uð2Þ
� is irrelevant for the particular diagrams

which we compute (since these two gluons are contracted
among themselves); we have used this fact in order to

simplify the expression for ~Uð2Þ
� .

APPENDIX B: NUMERICAL RESULTS
FOR THE PROPAGATOR

In this appendix we present the numerical coefficients e1
and e2 appearing in Eq. (36); these are polynomials in the
two stout smearing parameters of the action ð!A1

; !A2
Þ:

e1 ¼ eð1;1Þ þ eð1;2Þð!A1
þ!A2

Þ þ eð1;3Þð!2
A1

þ!2
A2
Þ

þ eð1;4Þ!A1
!A2

þ eð1;5Þð!2
A1
!A2

þ!A1
!2

A2
Þ

þ eð1;6Þ!2
A1
!2

A2
; (B1)

e2 ¼ eð2;1Þ þ eð2;2Þð!A1
þ!A2

Þ þ eð2;3Þð!2
A1

þ!2
A2
Þ

þ eð2;4Þ!A1
!A2

þ eð2;5Þð!2
A1
!A2

þ!A1
!2

A2
Þ

þ eð2;6Þ!2
A1
!2

A2
: (B2)

The dependence of the quantities eði;jÞ on the Symanzik
coefficients cannot be given in closed form; their values for
the Wilson and tree-level Symanzik gluon actions can be

read in Table I. For other actions the values of eði;jÞ are
provided in electronic form (see Appendix C).

APPENDIX C: NOTATION IN MATHEMATICA
FILE STAGGERED.M

The full body of our results can be accessed online
through the file ‘‘Staggered.m,’’ which is a Mathematica
input file [36]. It includes the following.

1. One-and two-gluon doubly stout links

The expressions for the one- and two-gluon doubly stout
links for different stout parameters in the first and second
smearing step:

~~U
ð1Þ
� ðx;!1; !2Þ ¼ U1½x;mu; omega1; omega2�; (C1)

~~U
ð2Þ
� ðx;!1; !2Þ ¼ U2½x;mu; omega1; omega2�: (C2)

The arguments of U1 and U2 are the following:
(i) x: position of the link in the lattice
(ii) mu: direction of the link
(iii) omega1: the first stout parameter
(iv) omega2: the second stout parameter

Moreover, the gluon field is denoted as4 A�ðxþ a�̂Þ �
A½sigma; xþ tau�. The indices rho[1]-rho[4] appearing in
~~U
ð1Þ
� and ~~U

ð2Þ
� are dummy: a summation

Pþ4
rho½1�¼þ1 is im-

plied, but only in terms which contain rho[1], similarly for
rho[2]-rho[4].

2. One-loop inverse propagator

The one-loop inverse propagator is

S�1
1-loop ¼ propagator½Action; alpha; omegaA1; omegaA2;

g2tilde;m�: (C3)

This expression depends on the following variables.
(a) Action (selection of improved gauge action as

follows [24]):
1: Plaquette,
2: Tree-level Symanzik,
3: TILW (	c0 ¼ 8:60),
4: TILW (	c0 ¼ 8:45),
5: TILW (	c0 ¼ 8:30),
6: TILW (	c0 ¼ 8:20),
7: TILW (	c0 ¼ 8:10),
8: TILW (	c0 ¼ 8:00),
9: Iwasaki,
10: DBW2,

where 	 ¼ 2Nc=g
2
0.

(b) alpha: gauge parameter (Landau/Feynman/generic
correspond to 0=1=alpha)

(c) omegaA1(omegaA2): the first (second) stout pa-
rameter coming from the smearing of the links
appearing in the action

(d) g2tilde: ~g2 � g2CF

16
2 (g: coupling constant)

(e) m: Lagrangian mass
(f) pslash � 6p
(g) p2 � p2

TABLE I. Numerical coefficients eði;jÞ of the propagator for
the Wilson and tree-level Symanzik actions.

eði;jÞ Wilson Tree-level Symanzik

eð1;1Þ �9:831 70 �7:213 63
eð1;2Þ 167.367 124.515

eð1;3Þ �710:612 �518:433
eð1;4Þ �2842:45 �2073:73
eð1;5Þ 13 134.2 9435.35

eð1;6Þ �64 757:6 �45 903:1
eð2;1Þ 33.3933 27.1081

eð2;2Þ �342:525 �264:695
eð2;3Þ 1174.37 885.215

eð2;4Þ 4697.49 3540.86

eð2;5Þ �18 790:0 �13 960:0
eð2;6Þ 82 920.9 60 910.8

4Regarding the ordering in products of gluon fields in ~~U
ð2Þ
� see

Note in Appendix A.
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3. Amputated Green’s functions

The amputated Green’s functions relevant to the ultra-
local operators:

�1-loop
S ¼ scalar½Action; alpha; omegaA1; omegaA2;

omegaO1; omegaO2; g2tilde;m�; (C4)

�1-loop
P ¼ pseudoscalar½Action; alpha;omegaA1;omegaA2;

omegaO1;omegaO2;g2tilde;m�; (C5)

�
1-loop
V ¼ vector½Action; alpha; omegaA1; omegaA2;

omegaO1; omegaO2; g2tilde;m�; (C6)

�
1-loop
A ¼ axial½Action; alpha; omegaA1; omegaA2;

omegaO1; omegaO2; g2tilde;m�; (C7)

�
1-loop
T ¼ tensor½Action; alpha; omegaA1; omegaA2;

omegaO1; omegaO2; g2tilde;m�; (C8)

where
omegaO1 (omegaO2) � !O1

(!O2
)

p½mu� � p�

p½nu� � p�

gamma5 � �5

gamma1 � ��

gamma2 � ��

gamma5gamma1 � �5��

gamma5pslash � �5 6p
gamma5gamma1pslash � �5�� 6p
gamma1gamma2 � ����

gamma2gamma1 � ����

gamma1gamma2pslash � ���� 6p

gamma1pslash � �� 6p
gamma2pslash � �� 6p

We note that Eqs. (C4)–(C8) hold for fermions with the
same Lagrangian mass.

4. RFs

The RFs of the fermion field and fermion bilinears in the
RI0-MOM scheme:

ZRI0
q ¼ zq½Action; alpha; omegaA1; omegaA2; g2tilde; p2�;

(C9)

ZRI0
S ¼ zs½Action; alpha; omegaA1; omegaA2; omegaO1;

omegaO2; g2tilde; p2�; (C10)

ZRI0
P ¼ zp½Action; alpha; omegaA1; omegaA2; omegaO1;

omegaO2; g2tilde; p2�; (C11)

ZRI0
V ¼ zv½Action; alpha; omegaA1; omegaA2; omegaO1;

omegaO2; g2tilde; p2�; (C12)

ZRI0
A ¼ za½Action; alpha; omegaA1; omegaA2; omegaO1;

omegaO2; g2tilde; p2�; (C13)

ZRI0
T ¼ zt½Action; alpha; omegaA1; omegaA2; omegaO1;

omegaO2; g2tilde; p2�: (C14)

For convenience, all quantities in Eqs. (C3)–(C14) may be
also retrieved using only their first argument; thus, for

example, vector[9] will result in �1-loop
V for the Iwasaki

action with generic values of �, !Ai
, !Oi

, g, m, p.
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G. Endrődi, S. D. Katz, H. Panagopoulos, and
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[34] S. Borsányi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg

et al., Proc. Sci., LATTICE2011 (2011) 209
[arXiv:1111.3500].

[35] M. Constantinou, M. Costa, M. Göckeler, R. Horsley,
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