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We quantitatively examine the extent to which instanton degrees of freedom, contained within standard

Monte-Carlo generated gauge-field configurations, can maintain the characteristic features of the mass

and renormalization functions of the nonperturbative quark propagator. We use over-improved stout-link

smearing to isolate instanton effects on the lattice. Using a variety of measures, we illustrate how gauge

fields consisting almost solely of instantonlike objects are produced after only 50 sweeps of smearing. We

find a full vacuum, with a packing fraction more than three times larger than phenomenological models

predict. We calculate the overlap quark propagator on these smeared configurations, and find that even at

high levels of smearing the majority of the characteristic features of the propagator are reproduced. We

thus conclude that instantons contained within standard Monte-Carlo generated gauge-field configurations

are the degrees of freedom responsible for the dynamical generation of mass observed in lattice QCD.
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I. INTRODUCTION

Instantons are believed to be an essential component of
the long-distance physics of the QCD vacuum, and the
lattice provides a unique opportunity to gain insight into
their role. In this study, we will for the first time quantita-
tively examine the extent to which instanton degrees of
freedom, contained within standard Monte-Carlo gener-
ated gauge-field configurations, can maintain the charac-
teristic features of the mass and renormalization functions
of the nonperturbative quark propagator.

In order to isolate the effects of instanton degrees of
freedom, a UV filter is required to remove topologically
non-trivial fluctuations. A variety of filters have been used,
including cooling [1–3], APE smearing [4], HYP smearing
[5] and stout link smearing [6], among others. These
algorithms can suffer from destruction of the instanton
content of the vacuum, and so in this work we use over-
improved stout-link smearing [7,8], a form of smearing
tuned to preserve instantons. Section II briefly describes
these smearing methods.

We then seek to quantify the effects of smearing on the
lattice gauge fields in Sec. III. We produce configurations
dominated by instantonlike objects, and compare to the
phenomenological instanton liquid model [9–11], which
models the vacuum as composed of a constant number of
instantons and anti-instantons of constant radius.

We will then briefly introduce the Fat Link Irrelevant
Clover(FLIC) overlap action [12] in Sec. IV, an improved
fermion action with a lattice deformed version of chiral
symmetry, which removes the problem of additive mass
renormalization of the quark propagator. Results will be
compared for smeared and unsmeared configurations in
Sec. V, and conclusions summarized in Sec. VI.

II. OVER-IMPROVED STOUT-LINK SMEARING

It has long been known [2,3,13] that smearing the
lattice reveals objects which approximate classical instan-
tons. However, it has been known for nearly as long that
excessive smearing can destroy the same instantonlike
objects or distort their structure.
We can understand this behavior by explicitly consider-

ing the single instanton solution, [14–17]

A�ðx; x0Þ ¼ i

g

ðx� x0Þ2
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where � is the instanton radius, � the Pauli matrices and
x0 the center of the instanton. The Wilson gauge action can
be expanded in powers of a as [7]
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where D�f ¼ ½D�; f� for arbitrary f.

Inserting the instanton solution of Eq. (1) into Eq. (2),
we acquire
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The source of the problem is clear; although at first order
this is equal to the continuum instanton action, the leading
order error term is strictly negative and inversely*
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proportional to �. The use of a plaquette-based smearing
algorithm will reduce the size of instantons in decreasing
the action and ultimately enable lattice artifacts to spoil
and remove the instanton. This situation is not ameliorated
by using improved actions such as the Symanzik action [7].

This issue can be mitigated using over-improved
stout-link smearing, a form of smearing designed to pre-
serve instantons. This was first implemented in Ref. [7],
although here we follow the work Ref. [8], which uses a
slightly modified combination of links. One introduces a
new parameter �, defining

Sð�Þ ¼ 2

g2
X

x

X

�>�

�

5� 2�

3
ð1� P��Þ � 1� �

12
ð1� R��Þ

�

;

(4)

with P�� and R�� the 1� 1 and 1� 2 plaquettes. We note

that a value of � ¼ 1 gives the Wilson plaquette action and
� ¼ 0 gives the Symanzik improved action [18]. Again
substituting the instanton solution into this, one acquires [8]
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A negative value of � will preserve instantonlike objects
by making the first-order error term positive. This has
however, simultaneously introduced a new problem; we
have removed the possibility of shrinking objects and
replaced it with that of enlarging, and so smearing can
distort the topological structure of the lattice if used
excessively with large negative values of �. Following
Ref. [8], we adopt the small value � ¼ �0:25.

Explicitly, a sweep of over-improved stout-link
smearing is implemented by replacing all links on the
lattice with a smeared link, defined by

U0
�ðxÞ ¼ exp ðiQ�ðxÞÞU�ðxÞ; (6)

where

Q�ðxÞ ¼ i

2
ð�y

�ðxÞ ���ðxÞÞ � i

2N
Trð�y
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(7)

with

��ðxÞ ¼ C�ðxÞUy
�ðxÞ: (8)

Then we define
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where � is a parameter controlling the level of smearing
and��� are ‘‘staples’’; the 3 links in the�� plane forming

the P�� plaquette with U� removed, and L�� are analo-

gously defined for 2� 1 rectangles, illustrated in Fig. 1.
Following the work in Ref. [8], we choose � ¼ 0:06 and

� ¼ �0:25, as these provide values of Sð�Þ=Scontinuum close
to 1, and preserve instantonlike objects on the lattice with

size above the dislocation threshold of 1:97a. We note
however, that small objects can still be destroyed by the
smearing process. Pair annihilation can also remove them
from the lattice.

III. EFFECTS OF SMEARING

We wish to find a smearing level such that the configu-
rations are dominated by topological objects as similar to
continuum instantons as possible. At the same time, one
needs to be wary of distorting their topological structure by
enlarging or pair annihilating these objects. We will quan-
tify the effects of smearing in order to choose an optimal
balance between these two effects.
The work in Ref. [19] suggests that after just 20 sweeps

of over-improved stout-link smearing, topological objects
found on the lattice closely approximate instantons. Here
we adopt a similar approach to that taken in Ref. [19],
searching the lattice for sites which are local maxima of the
action in their surrounding hypercube [15]. These are then
taken as the approximate center of an (anti-)instanton,
around which we fit the classical instanton action density,

S0ðxÞ ¼ �
6

�2

�4

ððx� x0Þ2 þ �2Þ4 ; (10)

where �, � and x0 are fit parameters, noting that x0 is not
restricted to lattice sites. The parameter � is introduced as
lattice topological objects are expected to have a higher
action than classical instantons. We wish to determine the
fit by using the shape of the action density around a local
maximum, rather than the height. We can then compare
data obtained for the radii, �, of instanton candidates from
this to the relationship between the radius and topological
charge at the center of an (anti-)instanton.,

qðx0Þ ¼ Q
6

�2�4
; (11)

where Q ¼ �1 for an (anti-)instanton. qðx0Þ at the fitted
values of x0 are found using linear interpolation from
neighboring hypercubes to find an extremum inside the
hypercube containing x0. This data will provide the basis
for our investigation of the effects of smearing.
Simulations are performed on 50 dynamical FLIC

203 � 40 configurations, with a lattice spacing of
0.126 fm, corresponding to a spatial extent of 2.52 fm.
Periodic boundary conditions are used. Up to 300 sweeps
of smearing are investigated. To calculate the action and

FIG. 1. Components of ��� and L��.
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topological charge densities used in our fits we use the
Oða4Þ five-loop improved action and charge densities de-
fined in Ref. [20].

It should be noted that at low levels of smearing we expect
to fit a large number of false positives; local maxima of the
action corresponding to noise. The degree to which fitted
results concur with Eq. (11) will thus be a key first test. This
correspondence is graphed for a single configuration in Fig. 2
for various smearing levels. The number of instanton candi-
dates starts out large and distributed fairly evenly around
sizes of 2–8 lattice units, with little correlation to the pre-
dicted charge lines of Eq. (11). This quickly changes as the
number of smearing sweeps increases, eventually leading to
a very close fit. The number of instanton candidates also
drops off rapidly at first, then steadily decreases. By the 50
sweepmark we can be confident that almost all local maxima
found closely approximate an instanton near the center.
Notably, instanton candidates with low radii have systemati-
cally lower topological charge at the center than predicted by
Eq. (11). This is due to their proximity to the dislocation
threshold of 1:97a, under which objects are shrunk.

We define the squared distance from the theoretical
relationship of Eq. (11), D2

TR, as the minimum distance

of each point from the theoretical relationship, i.e., for an
instanton candidate with radius �0 and topological charge
at the centre q0,

D2
TR ¼ min

�

�

ð�� �0Þ2 þ
� �6

�2�4
� q0

�

2
�

: (12)

The average value of this is plotted for data from 10
configurations in Fig. 3, as a function of the number of
sweeps of overimproved smearing, Nsw. This confirms our
earlier observations; before 50 sweeps,D2

TR decreases very
rapidly as noise is removed from the lattice. After 50
sweeps, the decrease is characteristically slower.
We have seen in Eq. (5) that smearing carries the risk of

distorting the vacuum structure by enlarging topological
objects. This concern is confirmed in Fig. 4, illustrating the
average radius of instanton candidates as a function of
smearing. After an initial rapid drop, attributable to
false positives being rapidly removed by the smearing
algorithm, there is a small but steady increase in the
average radius of the instanton candidates found.
In Fig. 5, we plot the average density of instanton

candidates, Ninst=V, where Ninst is the number of instanton
candidates found on a configuration and V the lattice
volume. This shows a rapid decrease until around 70
sweeps in the early stages of smearing as false positives
are rapidly eliminated. Eventually, instanton/anti-instanton
annihilation becomes the dominant factor, slowing as the
population becomes sparse. Again, the regime of 50
sweeps characterizes this transition. Also of note is the

FIG. 2. The values of the instanton radius �, found by fitting lattice maxima of the action to the classical instanton action density of
Eq. (10) are plotted as crosses, against the topological charge at the center, qðx0Þ, on configurations with 10, 30, 50 and 100 sweeps of
smearing. Results are compared to the theoretical relationship between the instanton radius and topological charge at the center,
Eq. (11) (solid lines), and the dislocation threshold, 1:97a (dash-dotted line).
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density of � 2 fm�4 at this point. In the instanton liquid
model, phenomenological constraints set the instanton ra-
dius to be around � ¼ 1

3 fm and density to N ¼ 1 fm�4,

leading to a packing fraction, the proportion of the vacuum

composed of instantons, of NVinst ¼ N �2�4

2 ¼ 0:05. Here,

Vinst ¼ �2�4

2 is the 4-volume of an instanton of radius �. On

the lattice, we have found a density of between 0:4 fm�4

and 2 fm�4, reaching an equivalent density to the instanton
liquid model at approximately 160 sweeps of smearing. In
the second half of this study, we use configurations with
less than 100 sweeps of smearing, leading to a density
much higher than used in the instanton liquid model.
In order to investigate this further, we have plotted the

topological charge coherence, the proportion of lattice sites
with topological charge of the same sign as at the center,
within 50%, Cðr < 0:5�Þ, and 100%, Cðr < �Þ, of the
fitted instanton radius, in Fig. 6. At 50% of the instanton
radius, almost all sites are charge coherent after a relatively
small number of smearing sweeps, whereas at 100% of
instanton radius, only 85% of the sites are charge coherent,
even after a large amount of smearing. This suggests that our

FIG. 4. Average fitted radius of instanton candidates, as a
function of overimproved smearing sweeps.

FIG. 5. Average density of instanton candidates on the lattice,
as a function of overimproved smearing sweeps.

FIG. 6. The sign coherence, C, of topological charge density at
the center of (anti-)instantons is explored as a function of smear-
ing sweeps, Nsw. Plotted are the fraction of lattice sites within
50% (upper) and 100% (lower) of the fitted radius of an instanton
candidates’ center with topological charge of the same sign.

FIG. 3. Average squared distance from the theoretical relation,
D2

TR, between topological charge at the center of an instanton

candidate and its fitted radius, as a function of smearing sweeps.
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fitted values of � may be overestimating the true radius
of instantons. We thus calculate the packing fraction using
the topological charge found at the center and Eq. (11). This
is plotted in Fig. 7. We note that a packing fraction exceeding
1 is not an issue, as instanton candidates may overlap,
particularly at low levels of smearing. We find a packing
fraction of between 0.15 and 0.3. Once again, this is notably
higher than the instanton liquid model value of 0.05, suggest-
ing that we have found a far ‘‘fuller’’ vacuum on the lattice.

Aggregating these measures, it is clear that between 50
and 100 sweeps of smearing gives an optimal balance,
whereby the gauge field is dominated by instantons without
excessive distortion. We will thus calculate quark propa-
gators at 0, 30, 50, 80 and 100 sweeps of smearing.

IV. THE OVERLAP PROPAGATOR

The overlap fermion operator [21–24] is defined in the
massless case by

Doð0Þ ¼ 1

2
ð1þ 	5�ð	5DðmwÞÞÞ; (13)

with �ðAÞ ¼ A
ffiffiffiffi

A2
p the matrix sign function, and the overlap

kernel, DðmwÞ, any reasonable Hermitian Dirac operator
with mass parameter �mw, governing the resolution of
topologically nontrivial field structures [25,26]. The overlap
is an explicit solution of the Ginsparg-Wilson relation [27],

	5Do þDo	5 ¼ 2Do	5Do; (14)

and will thus have a lattice-deformed version of chiral
symmetry. This is sufficient to prevent additive quark
mass renormalization [28], greatly simplifying propagator
analysis [29–31].

The massive overlap operator is then given by

Doð�Þ ¼ ð1��ÞDoð0Þ þ�; (15)

where the overlap mass parameter� is defined to represent
a bare quark mass

m0 ¼ 2mw�: (16)

We use the FLIC action [32] as the overlap kernel,
as studies have shown it to have superior spectral proper-
ties, accelerating calculation of the overlap operator, and
reduced lattice discretization errors [12,33]. We project
low modes of the kernel and calculate their contribution
to the propagator explicitly, greatly reducing the condition
number of the matrix square root.
Notably, we have found results consistent with the work

of Neuberger [34], who predicts that in the presence of a
sufficiently smooth background field, the eigenvalues of the
Wilson kernel are maximally displaced from 0 at mw ¼ 1.
In Fig. 8, we have plotted the 50 lowest lying eigenvalues of
the FLIC kernel on a configuration with 50 sweeps of
smearing and we observe that the region where the spectrum
becomes dense (i.e. ignoring the isolated low-lying topo-
logical nodes) is indeed maximally separated from 0 near
mw ¼ 1. We choose to perform all calculations at mw ¼ 1.
We consider nine values of �, given in Table I.
In order to define an overlap quark propagator, we naturally

wish to preserve the most important properties of the contin-
uumpropagator. As a simple consequence of chiral symmetry,
in the massless case the continuum quark propagator obeys

f	5; S
cont
m¼0ðpÞg ¼ 0: (17)

We also note that Eq. (14) implies

f	5; D
�1
o g ¼ 2	5; (18)

suggesting an appropriate form for the overlap propagator,

SðpÞm¼0 / ðD�1
o � 1Þ: (19)

It is also important to maintain the correct continuum limit,
and so given

lim
a!0

Do ¼ 1

2mw

6D; (20)

it is then natural to define the massless bare overlap
propagator as [24,26]

FIG. 7. Packing fraction of instantons, the percentage of the
vacuum composed of instantons, as a function of smearing sweeps.

FIG. 8. The 50 lowest-lying eigenvalues of the overlap kernel
as a function of kernel mass parameter mw, from a single
configuration with fifty sweeps of smearing.
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SðpÞm¼0 ¼ 1

2mw

ðD�1
o � 1Þ: (21)

We can then construct the bare massive overlap propagator
simply by adding a bare mass to the inverse of Eq. (21),

SðpÞ�1
m¼m0

¼ SðpÞ�1
m¼0 þm0; (22)

then recalling the definition of the overlap mass parameter in
Eq. (16), we have

SðpÞ ¼ 1

2mwð1��Þ ðD
�1
o � 1Þ: (23)

Due to the lack of additive mass renormalization, the quark
propagator on the lattice will have as its general form

SðpÞ ¼ ZðpÞ
i6qþMðpÞ ; (24)

with MðpÞ the nonperturbative mass function and ZðpÞ con-
taining all renormalization information.

This can be defined as having the inverse

S�1ðpÞ � i
X

�

ðC�ðpÞ	�Þ þ BðpÞ � i6qAðpÞ þ BðpÞ; (25)

where 6q is defined [30] by the tree level propagator,
calculated with U�ðxÞ ¼ 1,

S�1
0 ðpÞ ¼ i6qþm0: (26)

Comparing Eq. (25) to Eq. (24), we see

ZðpÞ ¼ 1

AðpÞ MðpÞ ¼ BðpÞ
AðpÞ : (27)

Multiplying Eq. (25) by 6q and taking the trace provides

AðpÞ ¼ q�C�

q2
: (28)

To determine AðpÞ and BðpÞwe follow Ref. [33] and define
C and B by

SðpÞ ¼ �iCðpÞ þBðpÞ; (29)

such that

BðpÞ¼ 1

nsnc
TrðSðpÞÞ C�ðpÞ¼ i

nsnc
Tr½	�SðpÞ�; (30)

where ns and nc are the extent of spin and color indices.

Comparing to Eq. (25), we find

C�ðpÞ¼
C�ðpÞ

C2ðpÞþB2ðpÞ BðpÞ¼ BðpÞ
C2ðpÞþB2ðpÞ : (31)

Defining

AðpÞ ¼ q�C�
q2

; (32)

we thus have

ZðpÞ ¼ C2ðpÞ þB2ðpÞ
AðpÞ MðpÞ ¼ BðpÞ

AðpÞ : (33)

V. RESULTS

We fix to Landau gauge by maximizing the Oða2Þ
improved gauge fixing functional [35]

TABLE I. The nine values of � considered, with the
corresponding bare mass in physical units.

� mbare (MeV)

0.01271 39.8

0.01694 53.0

0.02119 66.4

0.02543 80.0

0.02966 93.0

0.03390 106.2

0.04238 132.7

0.05076 159.0

0.06356 199.1

FIG. 9 (color online). The renormalization function at
mq ¼ 39:8 MeV, on configurations with 0, 30, 50, 80, and 100

sweeps of smearing.

FIG. 10 (color online). The renormalization function plotted as

a function of N1=2
sw at p values of 0.3, 0.6, 1, 2 and 5 GeV

(ascending order), with mq ¼ 40 MeV.
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F imp ¼
X

x;�

ReTr

�

4

3
U� � 1

12u0
ðU�ðxÞUðxþ ûÞ þ H:c:Þ

�

(34)

using a Fourier transform accelerated algorithm
[35–38]. To avoid Gribov copy issues, we first gauge fix

configurations with 100 sweeps of smearing and then use
these as a preconditioner for the same configurations with
lower levels of smearing [39]. The matrix sign function is
calculated using the Zolotarev rational polynomial ap-
proximation [40]. We average data over spatial symmetries
and choose p ¼ 5 GeV as the renormalization point for

FIG. 11 (color online). The renormalization function at various values ofmq, on configurations with 0, 30, 50, 80, and 100 sweeps of
smearing.

QUARK PROPAGATION IN THE INSTANTONS OF . . . PHYSICAL REVIEW D 88, 034501 (2013)

034501-7



ZðRÞ, with ZðRÞðp ¼ 5 GevÞ ¼ 1. We apply a cylinder cut
[30] to data with a radius of �

2a , and estimate errors using a

second-order single-elimination jack-knife method.

ZðRÞ is plotted in Fig. 9 for the lightest quark mass,
39.8 MeV, for various levels of smearing. This reveals the
well-known shape of the renormalization function for the
unsmeared case, dipping in the infrared region and rising
in the ultraviolet limit. After just 30 sweeps of smearing
however, different behavior is seen. The renormalization
function is more tree like, dipping half the amount and
approximating 1 for p > 3 GeV. The renormalization
function rises earlier to this plateau value, with similar
behavior seen at all levels of smearing. This appears
to confirm our earlier observations; after 30 sweeps most
short-range behavior is removed, and the gauge field struc-
ture of the lattice is much simpler. The physics responsible

for the drop in ZðRÞ is removed early as all curves agree.

To further show this, ZðRÞ is plotted as a function of
ffiffiffiffiffiffiffiffi

Nsw

p
at given values of p in Fig. 10. We have chosen to

plot against
ffiffiffiffiffiffiffiffi

Nsw

p
as this is proportional to the smearing

radius. This shows a large change from 0 to 30 sweeps of
smearing, affirming that the physics responsible for the

drop in ZðRÞ is removed early in the smearing process, after
which smearing has relatively little effect.
Higher masses are illustrated for all p in Fig. 11.

Remarkably little sensitivity to the quark mass is observed.
We note that the lowest two p values are purely timelike,
and thus have comparatively large error bars due to the lack
of symmetries for averaging.
We now plot the mass function for a quark mass of

39.8 MeV in Fig. 12. The unsmeared data reveals the
expected shape—a large effective quark mass in the infra-
red region created through dynamical mass generation,
tapering to an approximate plateau in the ultraviolet region,
where logarithmic corrections produce a running quark

FIG. 13 (color online). The mass function at mq ¼ 39:8 MeV
on unsmeared configurations and with 30, 50, 80 and 100 sweeps
of smearing.

FIG. 14 (color online). The mass function at � ¼ 0:01271 on
unsmeared configurations and at � ¼ 0:02119 on configurations
with 30, 50, 80 and 100 sweeps of smearing.

FIG. 12 (color online). The mass function at mq ¼ 39:8 MeV
on unsmeared configurations and with 30 sweeps of smearing.

FIG. 15 (color online). The mass function plotted as a function

of N1=2
sw at p values of 0.3, 0.6, 1, 2 and 5 GeV (descending

order), with mq ¼ 53 MeV.
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mass higher than the input bare mass, illustrated by the
dot-dash line.

Looking at the lowest level of smearing considered, 30
sweeps, we note that the smeared results consistently have

smaller error bars, particularly in the ultraviolet region,
indicating short distance physics is a significant source of
noise. Although the instanton content of each ensemble is
different, its impact on the mass function remains similar.

FIG. 16 (color online). The mass function at various values of bare quark mass, indicated by the dot-dash line. The same value of
bare mass is used for both smeared and unsmeared results. Configurations with 0, 30, 50, 80 and 100 sweeps of smearing are
considered.
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We also note that, as expected, in the ultraviolet region the
running quark mass is now barely higher than the input bare
mass, due to the spoiling of short distance perturbative
physics at this range. At the lowest momenta, we find
perfect agreement with the unsmeared case, but as we
increase momentum there is some suppression of dynami-
cally generated mass. We attribute this to the destruction of
some topological objects by the smearing algorithm, both
those smaller than the dislocation threshold and those elim-
inated by pair annihilation. Smearing also has the effect of
enlarging objects, again removing dynamically generated
mass from this region. Indeed one anticipates a significant
smearing dependence in the regime of p � 1 GeV.

We now plot all levels of smearing, in Fig. 13. Even at high
levels of smearing, we have maintained the qualitative shape
of the mass function, although increasing smearing results in
a larger loss of dynamically generated mass. As the level of
smearing increases, the mass function becomes flat for lower
values of momenta. This is in accord with the increase of
the smearing radius, the distance within which physics is
suppressed. The most dramatic shift is between the
unsmeared case and 30 sweeps. This suggests that, to at least
some extent, smearing has changed the mass renormaliza-
tion, and so in order to acquire results with the same physical
mass we must shift our value of � for the smeared results.

In Fig. 14 we have plotted smeared results at a value of
� ¼ 0:02119, chosen in order to match unsmeared results
in the ultraviolet limit. This reveals that not all loss of
dynamical mass generation is due to a changing mass
renormalization. Although we have retained the majority
of long-range physics, it is clear that smearing, particularly
after a large number of sweeps, has removed some impor-
tant aspects of vacuum structure, creating a gap between
unsmeared and smeared results.

MðpÞ is plotted as a function of
ffiffiffiffiffiffiffiffi

Nsw

p
at fixed values of

p in Fig. 15, for a quark mass of mq ¼ 53 MeV. This

shows an approximately linear dependence on
ffiffiffiffiffiffiffiffi

Nsw

p
and

thus the smearing radius.
This suggests that the increase in smearing radius is

responsible for loss of dynamical mass generation by
removing topological objects from the lattice. At higher
momenta corresponding to smaller distances, smearing
has removed all relevant physics from the lattice early,
and so an increase in the smearing radius has a smaller
effect.

Higher masses are shown in Fig. 16 for all p, using the
same bare mass for both smeared and unsmeared configu-
rations. These show broadly similar results at all masses,
though the gap between levels of smearing becomes clearer
for larger masses, which should be more sensitive to the
disruption of short distance physics. This reinforces the
necessity of maintaining a high density of topological
objects in the QCD vacuum and reinforcing the danger of
destroying topological objects with excess smearing. The
largest gap, however, remains between no smearing and
30 sweeps.

VI. CONCLUSION

We have used over-improved stout-link smearing, to
reveal an underlying gauge field structure resembling an
instanton liquid. After around 50 sweeps we can be con-
fident the lattice is dominated by instantonlike objects.
Our calculations of the nonperturbative mass function

on smeared configurations reveals that it retains its quali-
tative shape at even high levels of smearing. There is
some loss of dynamical mass generation, increasing with
smearing, which can be attributed to a thinning of the
vacuum through the destruction of instanton/anti-
instanton pairs by the smearing algorithm. Regardless,
we have shown that a gauge configuration consisting
solely of instantonlike objects can accurately reproduce
the majority of the long-range behavior of the quark
propagator, and thus conclude that instantons are
the primary mechanism responsible for the dynamical
generation of mass.

ACKNOWLEDGMENTS

Wewish to thank Craig Roberts for discussions inspiring
this quantitative evaluation of the role of QCD instantons
in the quark propagator. We also thank Peter Moran for his
input. This research was undertaken with the assistance of
resources at the NCI National Facility in Canberra,
Australia, and the iVEC facilities at Murdoch University
(iVEC@Murdoch) and the University of Western Australia
(iVEC@UWA). These resources were provided through
the National Computational Merit Allocation Scheme,
supported by the Australian Government. This research is
supported by the Australian Research Council.

[1] B. Berg, Phys. Lett. 104B, 475 (1981).
[2] M. Teper, Phys. Lett. 162B, 357 (1985).
[3] E. -M. Ilgenfritz, M. L. Laursen, G. Schierholz, M. Muller-

Preussker, and H. Schiller, Nucl. Phys. B268, 693 (1986).
[4] M. Albanese et al. (APE Collaboration), Phys. Lett. B 192,

163 (1987).

[5] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64, 034504
(2001).

[6] C. Morningstar and M. J. Peardon, Phys. Rev. D 69,
054501 (2004).

[7] M. Garcia Perez, A. Gonzalez-Arroyo, J. R. Snippe, and
P. van Baal, Nucl. Phys. B413, 535 (1994).

TREWARTHA et al. PHYSICAL REVIEW D 88, 034501 (2013)

034501-10

http://dx.doi.org/10.1016/0370-2693(81)90518-9
http://dx.doi.org/10.1016/0370-2693(85)90939-6
http://dx.doi.org/10.1016/0550-3213(86)90265-8
http://dx.doi.org/10.1016/0370-2693(87)91160-9
http://dx.doi.org/10.1016/0370-2693(87)91160-9
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://dx.doi.org/10.1016/0550-3213(94)90631-9


[8] P. J. Moran and D. B. Leinweber, Phys. Rev. D 77, 094501
(2008).

[9] E. V. Shuryak, Nucl. Phys. B203, 93 (1982).
[10] E. V. Shuryak, Nucl. Phys. B203, 116 (1982).
[11] E. V. Shuryak, Nucl. Phys. B203, 140 (1982).
[12] W. Kamleh, D.H. Adams, D. B. Leinweber, and A.G.

Williams, Phys. Rev. D 66, 014501 (2002).
[13] T.G. Kovacs, Phys. Rev. D 62, 034502 (2000).
[14] A. A. Belavin, A.M. Polyakov, A. S. Schwartz, and Y. .S.

Tyupkin, Phys. Lett. 59B, 85 (1975).
[15] D.-J. Kusterer, J. Hedditch, W. Kamleh, D. B.

Leinweber, and A.G. Williams, Nucl. Phys. B628, 253
(2002).

[16] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976).
[17] G. ’t Hooft, Phys. Rev. D 14, 3432 (1976) [18, 2199(E)

(1978)].
[18] K. Symanzik, Nucl. Phys. B226, 187 (1983).
[19] P. J. Moran and D. B. Leinweber, Phys. Rev. D 78, 054506

(2008).
[20] S. O. Bilson-Thompson, F. D. R. Bonnet, D. B. Leinweber,

and A.G. Williams, Nucl. Phys. B, Proc. Suppl. 109, 116
(2002).

[21] R. Narayanan and H. Neuberger, Phys. Lett. B 302, 62
(1993).

[22] R. Narayanan and H. Neuberger, Nucl. Phys. B412, 574
(1994).

[23] R. Narayanan and H. Neuberger, Phys. Rev. Lett. 71, 3251
(1993).

[24] R. Narayanan and H. Neuberger, Nucl. Phys. B443, 305
(1995).

[25] P. J. Moran, D. B. Leinweber, and J. Zhang, Phys. Lett. B
695, 337 (2011).

[26] R. G. Edwards, U.M. Heller, and R. Narayanan, Phys.
Rev. D 59, 094510 (1999).

[27] P. H. Ginsparg and K.G. Wilson, Phys. Rev. D 25, 2649
(1982).

[28] P. Hasenfratz, Nucl. Phys. B525, 401 (1998).
[29] J. Skullerud, D. B. Leinweber, and A.G. Williams, Phys.

Rev. D 64, 074508 (2001).
[30] F. D. R. Bonnet, P. Bowman, D. Leinweber, A. Williams,

and J. Zhang (CSSM Lattice Collaboration), Phys. Rev. D
65, 114503 (2002).

[31] J. I. Skullerud and A.G. Williams, Phys. Rev. D 63,
054508 (2001).

[32] J.M. Zanotti, S. Bilson-Thompson, F. Bonnet, P.
Coddington, D. Leinweber, A. Williams, J. Zhang, W.
Melnitchouk, and F. Lee (CSSM Lattice Collaboration),
Phys. Rev. D 65, 074507 (2002).

[33] W. Kamleh, P. O. Bowman, D. B. Leinweber, A. G.
Williams, and J. Zhang, Phys. Rev. D 71, 094507 (2005).

[34] H. Neuberger, Phys. Rev. D 61, 085015 (2000).
[35] C. T.H. Davies, G. Batrouni, G. Katz, A. Kronfeld, G.

Lepage, K. Wilson, P. Rossi, and B. Svetitsky, Phys. Rev.
D 37, 1581 (1988).

[36] D. S. Roberts, W. Kamleh, and D. B. Leinweber, Proc.
Sci., LATTICE 2012 (2012) 261.

[37] D. S. Roberts, P. O. Bowman, W. Kamleh, and D. B.
Leinweber, Phys. Rev. D 83, 094504 (2011).

[38] F. D. R. Bonnet, P. O. Bowman, D. B. Leinweber, A. G.
Williams, andD.G. Richards, Aust. J. Phys. 52, 939 (1999).

[39] J. E. Hetrick and P. de Forcrand, Nucl. Phys. B, Proc.
Suppl. 63, 838 (1998).

[40] T.-W. Chiu, T.-H. Hsieh, C.-H. Huang, and T.-R. Huang,
Phys. Rev. D 66, 114502 (2002).

QUARK PROPAGATION IN THE INSTANTONS OF . . . PHYSICAL REVIEW D 88, 034501 (2013)

034501-11

http://dx.doi.org/10.1103/PhysRevD.77.094501
http://dx.doi.org/10.1103/PhysRevD.77.094501
http://dx.doi.org/10.1016/0550-3213(82)90478-3
http://dx.doi.org/10.1016/0550-3213(82)90479-5
http://dx.doi.org/10.1016/0550-3213(82)90480-1
http://dx.doi.org/10.1103/PhysRevD.66.014501
http://dx.doi.org/10.1103/PhysRevD.62.034502
http://dx.doi.org/10.1016/0370-2693(75)90163-X
http://dx.doi.org/10.1016/S0550-3213(02)00070-6
http://dx.doi.org/10.1016/S0550-3213(02)00070-6
http://dx.doi.org/10.1103/PhysRevLett.37.8
http://dx.doi.org/10.1103/PhysRevD.14.3432
http://dx.doi.org/10.1103/PhysRevD.18.2199.3
http://dx.doi.org/10.1103/PhysRevD.18.2199.3
http://dx.doi.org/10.1016/0550-3213(83)90468-6
http://dx.doi.org/10.1103/PhysRevD.78.054506
http://dx.doi.org/10.1103/PhysRevD.78.054506
http://dx.doi.org/10.1016/S0920-5632(02)01399-3
http://dx.doi.org/10.1016/S0920-5632(02)01399-3
http://dx.doi.org/10.1016/0370-2693(93)90636-V
http://dx.doi.org/10.1016/0370-2693(93)90636-V
http://dx.doi.org/10.1016/0550-3213(94)90393-X
http://dx.doi.org/10.1016/0550-3213(94)90393-X
http://dx.doi.org/10.1103/PhysRevLett.71.3251
http://dx.doi.org/10.1103/PhysRevLett.71.3251
http://dx.doi.org/10.1016/0550-3213(95)00111-5
http://dx.doi.org/10.1016/0550-3213(95)00111-5
http://dx.doi.org/10.1016/j.physletb.2010.11.005
http://dx.doi.org/10.1016/j.physletb.2010.11.005
http://dx.doi.org/10.1103/PhysRevD.59.094510
http://dx.doi.org/10.1103/PhysRevD.59.094510
http://dx.doi.org/10.1103/PhysRevD.25.2649
http://dx.doi.org/10.1103/PhysRevD.25.2649
http://dx.doi.org/10.1016/S0550-3213(98)00399-X
http://dx.doi.org/10.1103/PhysRevD.64.074508
http://dx.doi.org/10.1103/PhysRevD.64.074508
http://dx.doi.org/10.1103/PhysRevD.65.114503
http://dx.doi.org/10.1103/PhysRevD.65.114503
http://dx.doi.org/10.1103/PhysRevD.63.054508
http://dx.doi.org/10.1103/PhysRevD.63.054508
http://dx.doi.org/10.1103/PhysRevD.65.074507
http://dx.doi.org/10.1103/PhysRevD.71.094507
http://dx.doi.org/10.1103/PhysRevD.61.085015
http://dx.doi.org/10.1103/PhysRevD.37.1581
http://dx.doi.org/10.1103/PhysRevD.37.1581
http://dx.doi.org/10.1103/PhysRevD.83.094504
http://dx.doi.org/10.1071/PH99047
http://dx.doi.org/10.1016/S0920-5632(97)00916-X
http://dx.doi.org/10.1016/S0920-5632(97)00916-X
http://dx.doi.org/10.1103/PhysRevD.66.114502

