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In eþe� event shapes studies at LEP, two different measurements were sometimes performed:

a ‘‘calorimetric’’ measurement using both charged and neutral particles and a ‘‘track-based’’ measurement

using just charged particles. Whereas calorimetric measurements are infrared and collinear safe, and

therefore calculable in perturbative QCD, track-based measurements necessarily depend on nonperturba-

tive hadronization effects. On the other hand, track-based measurements typically have smaller experi-

mental uncertainties. In this paper, we present the first calculation of the event shape ‘‘track thrust’’ and

compare to measurements performed at ALEPH and DELPHI. This calculation is made possible through

the recently developed formalism of track functions, which are nonperturbative objects describing how

energetic partons fragment into charged hadrons. By incorporating track functions into soft-collinear

effective theory, we calculate the distribution for track thrust with next-to-leading logarithmic resumma-

tion. Due to a partial cancellation between nonperturbative parameters, the distributions for calorimeter

thrust and track thrust are remarkably similar, a feature also seen in LEP data.
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I. INTRODUCTION

Detailed investigations of hadronic final states are cru-
cial for understanding the dynamics of high-energy particle
collisions. Charged particles play a particularly important
role in these investigations. Whereas neutral particles can
only be measured using calorimetry, charged particles can
also be measured using tracking detectors, which allows
for excellent momentum resolution and vertex identifica-
tion. At colliders like LEP, tracks were used to perform
precision tests of quantum chromodynamics (QCD)
through measurements of eþe� event shapes and N-jet
production rates [1,2] (see Refs. [3–7] for reviews).
These LEP studies also tested hadronization models
through measurements of charged hadron inclusive distri-
butions. Presently at the LHC, tracking information is used
to improve jet measurements, to understand jet substruc-
ture, and to mitigate the effects of multiple ‘‘pileup’’
collisions per single bunch crossing.

Despite the experimental advantages offered by tracks,
most experimental and theoretical studies are aimed at
infrared and collinear- (IRC-) safe observables, which
include contributions from both neutral and charged parti-
cles. In contrast, there are comparatively few theoretical
tools available to understand and predict track-based
observables. While fragmentation functions (FFs) are use-
ful for understanding the distribution of single charged
particles, more general observables require nonperturba-
tive information about charged particle correlations. For
example, Refs. [8,9] showed how new nonperturbative
functions are needed to calculate the energy-weighted
charge of a jet. Recently in Ref. [10], we introduced
the formalism of track functions, which enables QCD

calculations to be performed on a broad class of
track-based observables, where (otherwise) IRC-safe ob-
servables are modified to include only charged particles.
In this paper, we show how to use track functions to

calculate track-based eþe� event shapes in perturbative
QCD. The track function Tiðx;�Þ is a nonperturbative
object that describes how an energetic parton i fragments
to a collection of tracks carrying a fraction x of the original
parton energy [10]. Like the FF and the jet charge distri-
bution, the track function has a well-defined renormaliza-
tion group (RG) evolution in �, such that one can measure
Tiðx;�Þ at one scale� and use QCD perturbation theory to
make predictions at another scale �0. We will focus on the
‘‘track thrust’’ event shape and compare our calculations
to LEP measurements made by the ALEPH [1] and
DELPHI [2] Collaborations.
Our previous work in Ref. [10] explained how to inter-

face track functions with fixed-order calculations up to
next-to-leading order (NLO). To get reliable predictions
for track thrust, we need to include the effects of logarith-
mic resummation. With the help of soft-collinear effective
theory (SCET) [11–14], we obtain results at next-to-
leading logarithmic accuracy (NLL) including Oð�sÞ
fixed-order matching contributions, i.e. up to NLL0 order.
This turns out to be sufficiently accurate to understand both
the qualitative and quantitative behavior of the track thrust
distribution.
We will show that ordinary (i.e. calorimeter) thrust and

track thrust are remarkably similar, with the leading dif-
ferences encoded in a small number of nonperturbative
parameters. Since an extraction of track functions from
data has not yet been performed, we estimate these
nonperturbative parameters using Monte Carlo event
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generators that have been tuned to LEP data (PYTHIA 8
[15,16] in this study). We find cancellations between the
nonperturbative parameters, such that the predicted distri-
butions for calorimeter thrust and track thrust are nearly
identical, a feature also seen in LEP data. This behavior
could have been anticipated based on the observation in
Ref. [10] that hadronization effects are strongly correlated
between the numerator and denominator of dimensionless
track-based ratios. We can now put this qualitative obser-
vation on a firmer quantitative footing.

An interesting theoretical feature of our calculation
is that hadronization effects enter directly into the track
thrust resummation. In particular, nonperturbative track
parameters appear in the anomalous dimensions of the
(track-based) jet and soft functions, two important objects
in the factorization theorem for the track thrust distribu-
tion. As a nice consistency check of our formalism, we find
that the hard, jet, and soft anomalous dimensions still
cancel, despite the appearance of these parameters. We
also show how to incorporate the leading nonperturbative
power correction in the track thrust distribution.

This paper is structured as follows. Section II contains a
summary of our results and the most significant plots,
including a comparison to LEP data. The underlying tech-
nical details are discussed in the rest of the paper. We review
our track function formalism in Sec. III and calculate track
thrust at Oð�sÞ in Sec. IV. In Sec. V we present the facto-
rization theorem for track thrust as well as the ingredients
needed for a resummation up to NLL0 order in SCET, with
details on the RG evolution given in the appendices.
A simple expression for track thrust at NLL order is derived
in Sec. VI, which allows us to better understand the simi-
larity between calorimeter and track thrust. Our final
numerical results are presented in Sec. VII. We conclude
in Sec. VIII with a discussion of possible generalizations of
our results to other track-based observables.

II. SUMMARY OF RESULTS

To begin, we define the two main event shapes used in
our study: calorimeter thrust � and track thrust ��. The
classic event shape thrust [17] is defined as

T ¼ max
t̂

P
i jt̂ � ~pijP
i j ~pij ; (1)

where the sum runs over all final-state hadrons with
momenta ~pi, and the unit vector t̂ defines the thrust axis.
It is more convenient to work with

� � 1� T ¼ min
t̂

P
iðj ~pij � jt̂ � ~pijÞP

i j ~pij ; (2)

which we will refer to as ‘‘thrust’’ from now on. Since this
is measured using all final-state hadrons (charged plus
neutral), we call � ‘‘calorimeter thrust.’’ Track thrust �� is
defined analogously to Eq. (2), except that the sum over i is

restricted to charged particles in both the numerator and the
denominator. In this paper, a bar will always indicate a
track-based quantity.
For the later discussion of the factorization theorem for

track thrust in Sec. V, it will be convenient to rewrite thrust
in terms of contributions from hemispheres A and B,
separated by a plane perpendicular to the thrust axis.
The relevant kinematics are illustrated in Fig. 1. Fixing
two light-cone vectors n� and �n� such that n � �n ¼ 2, the
light-cone components of any four-vector w� are given by
wþ ¼ n � w, w� ¼ �n � w, and w�

?, such that

w� ¼ wþ �n�

2
þ w� n�

2
þ w�

?: (3)

Choosing n� ¼ ð1; 0; 0; 1Þ and �n� ¼ ð1; 0; 0;�1Þ with the
3-axis aligned along t̂, we can rewrite Eq. (2) for tracks as

�� ¼ 2ð �kþA þ �k�B Þ
ðxA þ xBÞQ : (4)

Here, Q is the eþe� center-of-mass energy, xA;B are the

energy fractions of charged particles in the respective
hemispheres, and �kþA ¼ �k0A � �k3A and �k�B ¼ �k0B þ �k3B are

the small light-cone momentum components of all the
charged particles in hemisphere A and B, respectively. In
this paper, we ignore the subtleties of hadron masses and
measurement schemes, which will affect power corrections
(see Refs. [18,19]).
At LEP, differential cross sections for calorimeter thrust

� and track thrust �� were measured at both ALEPH [1] and
DELPHI [2] on the Z pole (Q ¼ 91 GeV). (To our knowl-
edge, these are the only two experiments with public data
on track thrust.) In both experiments, measurements were
unfolded to the hadron level (including both charged and
neutral hadrons for �, and only charged hadrons for ��). The
ALEPH and DELPHI normalized distributions are shown
in Fig. 2, where we note a remarkable similarity between

FIG. 1. Illustration of the track thrust measurement in an eþe�
event with jets initiated by a q �q pair. Solid lines indicate charged
particles and dashed lines indicate neutral particles. For track
thrust, the thrust axis t̂ is determined by the charged particles
alone. The event is divided into hemispheres A and B by a plane
perpendicular to the thrust axis.
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the calorimetric and track-based measurements. Indeed,
for all bins outside of the peak region, the distributions
are compatible within error bars, and a key goal of this
paper is to gain an analytic understanding for why the � and
�� distributions are so similar. Note also that the experi-
mental uncertainty is significantly smaller for the thrust
measurements made using tracks.

In Fig. 3, we show the main result of the paper: the
resummed NLL0 distributions for calorimeter and track
thrust. The latter was obtained using track functions
extracted from PYTHIA 8, which itself was tuned to LEP
data. The effects of the leading nonperturbative power
correction are included through the parameters ��

1 and
���
1, which are different for calorimeter and track thrust.

Interestingly, the NLL0 distributions exhibit the qualitative
similarity seen in data between calorimeter thrust and track
thrust. We also see excellent quantitative agreement
between our result and DELPHI measurements in the
peak and tail regions. To the left of the peak there are
deviations due to important nonperturbative corrections
and in the far-tail region our calculation is missing (known)
higher-order perturbative effects.

We now briefly discuss why the � and �� distributions are
so similar, referring the reader to Sec. VI for further details.
In Eq. (4), the numerator is dominated by soft gluon
emissions which broaden the hemisphere jets, whereas
the denominator is mainly affected by fragmentation of

the energetic quark and antiquark emerging from the
underlying scattering process. These effects are thus
controlled by different track functions (gluon vs. quark)
but nearly cancel each other out due to the specific form of
the (PYTHIA-based) track functions.
This cancellation is best understood by studying the

resummed form of cumulative distributions

�ð�cÞ �
Z �c

0
d�

d�

d�
; ��ð ��cÞ �

Z ��c

0
d ��

d�

d ��
: (5)

As we show in Sec. VI, at NLL the difference between the
cumulative distributions (for �c < 1=3) is almost entirely
captured by

��ð ��cÞ ’ �ð ��cÞ � ð3 ��cÞ�; (6)

where the exponent � redistributes the cross section
between the peak and tail regions. In terms of the strong
coupling constant �s and the quark color-factor CF ¼ 4=3,
the explicit form of � is
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FIG. 2 (color online). ALEPH (top) and DELPHI (bottom)
measurements of calorimeter and track thrust. Error bars corre-
spond to the statistical and systematic uncertainties added in
quadrature. The experimental uncertainties associated with the
track-based measurements are noticeably smaller.

0.0 0.1 0.2 0.3
0

5

10

15

20

1 d

d

Tracks

Calorimeter

NLL' 1

Track Thrust
NLL' 1

DELPHI

0.0 0.1 0.2 0.3

1 d

d

0

5

10

15

20

FIG. 3 (color online). Top: NLL0 distributions for calorimeter
and track thrust including the leading nonperturbative correction
��

1. Next-to-leading logarithmic resummation is included

together with Oð�sÞ fixed-order matching contributions. The
NLL0 calculation exhibits the same qualitative similarity
between calorimeter and track thrust as seen in LEP data.
Bottom: comparing our analytic results to the DELPHI mea-
surement. There is good quantitative agreement in the tail region
where our NLL0 calculation is most accurate. The theoretical
uncertainties are from scale variation alone, and do not include
the (correlated) uncertainties in �s or ��

1, nor uncertainties in

our track function extraction.

CALCULATING TRACK THRUST WITH TRACK FUNCTIONS PHYSICAL REVIEW D 88, 034030 (2013)

034030-3



� ¼ 2�sCF

�
ðgL1 � qLÞ; (7)

which depends on just two nonperturbative parameters: a
logarithmic moment of a single gluon track function gL1
and a logarithmic moment of two quark track functions qL.
The similarity between the � and �� distributions can thus be
traced to a cancellation between gL1 and qL such that
j�j ’ 0:004 [see Eq. (62)].

There are additional effects atNLL0 from the fixed-order
matching which yield further (small) differences between �
and �� which are compatible with the ALEPH and DELPHI
measurements. The nonperturbative power corrections ��

1

and ���
1 lead to a respective shift of the � and �� distributions

by a very similar amount, but increase the difference in the
peak region. Overall, though, the similarity between calo-
rimeter and track thrust is well-described by the NLL
distribution, and we expect similar cancellations to occur
for a variety of (dimensionless) track-based observables.

III. REVIEW OF TRACK FUNCTION FORMALISM

A rigorous QCD description of track-based observables
involves track functions Tiðx;�Þ [10] as key ingredients.
A parton (quark or gluon) with flavor index i and four-
momentum p

�
i hadronizes into charged particles (tracks)

with total four-momentum �p
�
i � xp

�
i þOð�QCDÞ. The

track function is the distribution in the energy fraction x
of all tracks (irrespective of their multiplicity or individual
properties), and it is normalized asZ 1

0
dxTiðx;�Þ ¼ 1: (8)

We will often refer to x as the track fraction.
In the context of factorization theorems, track functions

can be used for track-based observables where partons in
the underlying process are well separated, i.e. where their
typical pairwise invariant masses are larger than �QCD. In

this limit, each parton has its own independent track func-
tion, with correlations captured by power corrections (to be
discussed more in Sec. VC). The track functions then
encode process-independent nonperturbative information
about the hadronization. Like a FF or a parton distribution
function (PDF), Tiðx;�Þ absorbs infrared (IR) divergences
in partonic calculations. It has a well-defined dependence
on the RG scale � through an evolution equation which is
closely reminiscent of the jet charge distribution [9].

QCD calculations of track-based observables require the
determination of matching contributions from partonic
cross sections. First recall that the cross section for an
IRC-safe observable emeasured using partons has the form

d�

de
¼ X

N

Z
d�N

d�N

d�N

�½e� êðfp�
i gÞ�; (9)

where we drop possible convolutions with PDFs to keep the
notation simple. Here,�N denotes theN-body phase space,
d�N=d�N is the corresponding partonic cross section, and

êðfpigÞ implements the measurement on the partonic four-
momenta p

�
i . Since e is IRC safe, a cancellation of final

state IR divergences between real and virtual diagrams is
guaranteed by the KLN theorem [20,21].
For the same observable measured using only tracks, we

can write the cross section in the form

d�

d�e
¼ X

N

Z
d�N

d ��N

d�N

Z YN
i¼1

dxiTiðxiÞ�½ �e� êðfxip�
i gÞ�:

(10)

Here, the partonic cross section ��N should be thought of as
a finite matching coefficient where the IR divergences in
�N have been removed using some scheme. These IR
(collinear) divergences are absorbed by the track function
TiðxiÞ (which is similarly scheme-dependent). The univer-
sality of collinear divergences in QCD [22–24] guarantees
the feasibility of this matching to all orders in �s.
In Ref. [10] we explicitly showed the cancellation of
IR-divergent terms in the partonic cross section eþe� !
q �qg, which enters the NLO distribution for the energy
fraction of charged particles in eþe� collisions.
The (bare) track function is defined in QCD in a fashion

analogous to the unpolarized FF (cf. [25,26]). Expressed in
terms of light-cone components [see Eq. (3)], the quark
track function is

TqðxÞ ¼
Z

dyþd2y?eik
�yþ=2 1

2Nc

X
C;N

�

�
x� p�

C

k�

�

� tr

�
�n

2
h0jc ðyþ; 0; y?ÞjCNihCNj �c ð0Þj0i

�
; (11)

where c is the quark field, C (N) denote charged (neutral)
hadrons, and p�

C is the large momentum component of all

charged particles. As for the FF, gauge invariance requires
the addition of eikonal Wilson lines. The factor 1=ð2NcÞ in
Eq. (11) comes from averaging over the color and spin of
the hadronizing quark. The gluon track function is defined
analogously. In d space-time dimensions,

TgðxÞ ¼ � 1

ðd� 2ÞðN2
c � 1Þk�

Z
dyþd2y?eik

�yþ=2

�X
C;N

�

�
x� p�

C

k�

�
�n� �n�h0jGa

��ðyþ; 0; y?ÞjCNi

� hCNjG�;a
� ð0Þj0i; (12)

where G�� ¼ P
aG

a
��T

a is the QCD field-strength tensor

and an average over colors and the (d� 2) polarizations of
the gluon is performed.
For the sake of completeness, we also give SCET

expressions for the quark and gluon track functions, given
in a form which is invariant under nonsingular gauge trans-
formations. In terms of the SCET n-collinear quark 	nðyÞ
and gluon B�

n?ðyÞ fields, we obtain
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TqðxÞ ¼ 2ð2�Þ3 1

2Nc

X
C;N

�

�
x� p�

C

k�

�

� tr

�
�n

2
h0j½�ðk� � �P Þ�2ðP?Þ	nð0Þ�jCNi

� hCNj �	nð0Þj0i
�
; (13)

and

TgðxÞ ¼ �2ð2�Þ3 k�

ðd� 2ÞðN2
c � 1Þ

X
C;N

�

�
x� p�

C

k�

�

� h0j½�ðk� � �P Þ�2ðP?ÞB�;a
n? ð0Þ�jCNi

� hCNjBa
n?;�ð0Þj0i; (14)

where the momentum operators �P ¼ �n � P (P�
?) return

the sum of the minus (perpendicular) label momentum
components of all collinear fields on which they act.
For the definition of the SCET fields, we refer the reader to
e.g. Ref. [27].

Although the track function is a nonperturbative object,
some of its properties can be calculated in perturbation
theory. In particular, the RG evolution of the track function
follows from its ultraviolet (UV) divergences, as we show
below. A partonic calculation of the track function is also
necessary for extracting the matching coefficient ��N in
Eq. (10), by using that this equation holds at both the
hadronic and partonic level.

At NLO, we can relate the bare track function Tð1Þ
i;bareðxÞ

to the tree-level track functions Tð0Þ
j ðx1Þ and Tð0Þ

k ðx2Þ via a
collinear splitting i ! jk. As indicated in Fig. 4, this
splitting is controlled by the timelike Altarelli-Parisi
splitting functions Pi!jkðxÞ [28]. In pure dimensional regu-

larization with d ¼ 4� 2
,

Tð1Þ
i;bareðxÞ ¼

1

2

X
j;k

Z 1

0
dz

�
�sð�Þ
2�

�
1


UV
� 1


IR

�
Pi!jkðzÞ

�

�
Z

dx1dx2T
ð0Þ
j ðx1ÞTð0Þ

k ðx2Þ
� �½x� zx1 � ð1� zÞx2�: (15)

If j¼k, the factor 1=2 is needed for identical particles,
whereas if j�k this factor gets cancelled by permutations
of the two indices. In contrast to the FFor PDF, theNLO track
function gets contributions from both branches of the
splitting.

Renormalizing the UV divergences in the MS-scheme
leads to the following evolution equation for the track
function,

�
d

d�
Tiðx;�Þ ¼ 1

2

X
j;k

Z 1

0
dzdx1dx2

�sð�Þ
�

Pi!jkðzÞTjðx1;�Þ

�Tkðx2;�Þ�½x� zx1�ð1� zÞx2�: (16)

By solving this, Tiðx;�Þ can be extracted at one scale and
RG evolved to another scale, and the evolution preserves

the normalization in Eq. (8). We note that the number of
convolutions in the track function RG equation (RGE)
grows accordingly to the perturbative order due to multiple
branchings, so it becomes numerically more involved to
solve this RGE at higher orders. At leading logarithmic
(LL) accuracy, the RG evolution in Eq. (16) is equivalent to
a parton shower [9], and is in excellent agreement with the
parton shower evolution in PYTHIA [10].
Throughout this paper, we determine the track functions

used in our analytic formulae using the method of
Ref. [10]. That is, we generate pure quark and gluon jet
samples with PYTHIA 8.150 [15,16], measure the normal-
ized distribution for the track fraction x within those jets,
and extract the track functions by numerically inverting the
analytic expression for the same quantity at either LO or
NLO. In all of the plots shown here, we use NLO track
functions. We emphasize that the use of PYTHIA is not
fundamental, and one could imagine extracting the same
information from eþe� data. That said, since PYTHIA is
tuned to LEP data, we expect these track functions to be
realistic, but we have not attempted to assign uncertainties
to the track functions.
One important point is the choice of �s. Since we are

working at NLL0 order in the MS scheme, it would be
natural to take the value from Ref. [29] of �sðMZÞ ¼
0:1203� 0:0079. However, we have extracted the track

FIG. 4. Perturbative QCD calculation of the quark (top) and
gluon (middle and bottom) track functions at NLO from
Eqs. (11) and (12) with partonic intermediate states. The NLO
track function gets contributions from both branches of the
collinear splitting. We do not display virtual diagrams, which
vanish in pure dimensional regularization, or diagrams corre-
sponding to Wilson line emissions.
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functions from PYTHIA 8 whose default value is �sðMZÞ ¼
0:1383 for the final state parton shower, leading to a formal
mismatch between our perturbative and nonperturbative
objects. Given the large uncertainties at NLL0, we will
make an (imperfect) compromise, and extract the NLO
track functions from PYTHIA using PYTHIA’s value of �s,
but then use

�sðMZÞ ¼ 0:125; (17)

for all subsequent calculations. This choice, along with the
leading power correction in Sec. VC, gives a good descrip-
tion of the LEP calorimeter thrust data. As emphasized in
Ref. [29], there are strong correlations between the value of
�s and the leading power correction�

�
1, so there are many

different choices which would give comparable results; for
example the PYTHIA value �sðMZÞ ¼ 0:1383 matches the
LEP calorimeter thrust distributions quite well with ��

1 ¼
0. A proper treatment of the correlations between these
parameters is beyond the scope of this paper, so we will
not show the uncertainties associated with �sðMZÞ or��

1.

IV. FIXED-ORDER ANALYSIS OF TRACK THRUST

The leading nontrivial process for thrust at the partonic
level is eþe� ! q �qg, which appears at Oð�sÞ in a fixed-
order expansion. Given an eþe� collision at a center-of-
mass energy Q, the kinematics of this process are
determined by the partonic energy fractions yi ¼ 2Ei=Q
carried by the quark and antiquark, with the gluon energy
fraction given by y3 ¼ 2� y1 � y2. From this informa-
tion, one can readily find the three-momenta of the partons
~p1, ~p2, and ~p3 and determine calorimeter thrust from
Eq. (2). For three partons, finding the thrust axis is straight-
forward, and thrust takes a reasonably simple form

� ¼ 1�max i¼1;2;3j ~pCM � 2 ~pijP
i j ~pij ; (18)

where we have defined

~pCM � ~p1 þ ~p2 þ ~p3: (19)

To obtain the charged track three-momenta, one simply
rescales the parton momenta by the track fraction xi,

~�pi ¼ xi ~pi: (20)

Track thrust can then be calculated from Eq. (18) with

all ~p replaced by ~�p. Note that in the eþe� rest frame,

j ~pCMj ¼ 0, but j ~�pCMj is typically nonzero.
The calculation of the track thrust distribution at Oð�sÞ

is very similar to the one performed in Ref. [10] for the
total charged particle energy fraction. Weighting each
parton by the corresponding track function, we find

d�

d ��
¼
Z 1

0
dy1dy2

d ��ð�Þ
dy1dy2

Z 1

0
dx1dx2dx3Tqðx1; �ÞTqðx2; �Þ

� Tgðx3; �Þ�½ ��� ��ðy1; y2; x1; x2; x3Þ�: (21)

where the measurement function ��ðy1; y2; x1; x2; x3Þ imple-
ments Eq. (18). Note that Tq ¼ T �q, by charge conjugation.

The relevant doubly differential partonic cross section is

given in Ref. [10] in the MS scheme. Ignoring the singu-
larities at y1 ¼ 1 and y2 ¼ 1 (which only contribute to a
delta function at �� ¼ 0),

d ��ð�Þ
dy1dy2

¼ �0

�sð�ÞCF

2�

�ðy1 þ y2 � 1Þðy21 þ y22Þ
ð1� y1Þð1� y2Þ þ � � � :

(22)

Here, �0 is the total Born cross section

�0¼4��2Nc

3Q2

�
�
Q2

qþ
ðv2

qþa2qÞðv2
‘þa2‘Þ�2Qqvqv‘ð1�M2

Z=Q
2Þ

ð1�M2
Z=Q

2Þ2þM2
Z�

2
Z=Q

4

�
;

(23)

which depends on the (anti)quark flavor through its electric
charge Qq and vector and axial couplings vq and aq to the

intermediate vector boson.
In Fig. 5 we compare the calorimeter versus track thrust

distributions at Oð�sÞ, and find that they are remarkably
similar. One might wonder if this small difference is a
fundamental feature of Eq. (21) or simply an accident of
the specific forms of our (PYTHIA-based) track functions.
We can test this by calculating track thrust using the
following ‘‘dummy’’ track functions,

Tqðx;� ¼ MZÞ ¼ 30x4ð1� xÞ;
Tgðx;� ¼ MZÞ ¼ 252x2ð1� xÞ6:

(24)

Indeed, the difference in Fig. 6 between track and calo-
rimeter thrust is now large. Thus, the similarity between
the � and �� distributions has to do with the specific prop-
erties of the track function. We will be able to achieve a
better analytic understanding of why the effect of switch-
ing from calorimeter to tracks is so small in Sec. VI.
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FIG. 5 (color online). Distributions for calorimeter and track
thrust from Eq. (21) at Oð�sÞ. The NLO track functions are
extracted from PYTHIA 8.150 [15,16] using the procedure in
Ref. [10].
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V. FACTORIZATION AND RESUMMATION OF
TRACK THRUST

The thrust distribution can be divided into three
regions: the peak region (� ’ 2�QCD=Q), the tail region

(2�QCD=Q � � < 1=3), and the far-tail region (1=3 & � �
1=2). For � ’ 0, events are described by two narrow back-
to-back jets, each carrying about half of the center-of-mass
energy. For � close to the kinematic endpoint 1=2, the event
is characterized by an isotropic multi-particle final state. At
Oð�sÞ from Sec. IV, the kinematic endpoint is 1=3 corre-
sponding to three maximally separated jets. We therefore do
not obtain a reliable description of the far-tail region.

In this paper, we are interested in properly describing the
tail region of the thrust distribution, which dominantly
consists of broader dijets and 3-jet events. In this region,
the dynamics is governed by three well-separated scales:
the hard scale (�H ’ Q) which is set by the eþe� center-
of-mass energyQ, the jet scale (�J ’ Q

ffiffiffi
�

p
) which is set by

the momentum of the particles transverse to thrust axis,
and the soft scale (�S ’ Q�) which is set by the typical
energy of soft radiation between the hard jets. When
� � 1, there will be large hierarchies between these scales,
so we will need to resum double logarithms of the form
�n
s ln

m� (m � 2n). Because we focus on the region where
�S ’ �Q 	 �QCD, the contribution from soft radiation is

accurately described by perturbation theory, with nonper-
turbative effects captured by a series of power correction
parameters. We will only use the leading power correction
���
1 in our analysis, though if were interested in describing

the peak region correctly we would have to include a full
nonperturbative shape function, see Sec. VC.

The leading-power factorization theorem for calorimeter
thrust is well known [30–33]:

d�

d�
¼ �0HðQ2; �Þ

Z 1

0
dkdsAdsBSðk;�ÞJðsA;�ÞJðsB;�Þ

� �

�
�� 1

Q

�
sA
Q

þ sB
Q

þ k

��
: (25)

Here, �0 is the Born cross section from Eq. (23), H, J, and
S are respectively the hard, jet, and soft functions, sA;B are

the invariant mass-squareds of collinear radiation in hemi-
spheres A and B, and k is the contribution to thrust from
soft radiation.
The goal of this section is to translate Eq. (25) into a

factorization theorem for track thrust. This procedure
is made straightforward by applying the matching proce-
dure defined in Eq. (10) to the objects S and J. The final
answer is:

d�

d ��
¼ �0HðQ2; �Þ

Z 1

0
d �kd�sAd�sB

Z 1

0
dxAdxB

� �Sð �k;�Þ �Jð �sA; xA; �Þ �Jð �sB; xB; �Þ
� �

�
��� 2

ðxA þ xBÞQ
�
�sA
Q

þ �sB
Q

þ �k

��
: (26)

We now explain each of the ingredients in this formula,
with details to appear in the subsequent subsections.
The delta function in Eq. (26) comes from the form of ��

given in Eq. (4). Dividing phase space into hemispheres A
and B defined by the thrust axis, track thrust depends on the
track fractions xi, the rescaled track invariant mass-squared
of collinear radiation �si ¼ stracksi =xi, and the track soft
contribution �k. The reason we are using the rescaled �si
(and not stracksi directly) is that �sA ¼ Q �kþA and �sB ¼ Q �k�B
directly enter the definition of track thrust.
The hard function HðQ2; �Þ is the same as for calorime-

ter thrust and encodes virtual effects arising from the
production of the q �q pair at the hard scale. We give the
form of H in Sec. VA.
The track thrust soft function �Sð �k;�Þ, where �k ¼ �kþA þ

�k�B , describes the contribution to track thrust due to soft
parton emissions which then hadronize into tracks. At
NLO, soft radiation consists of only a single gluon emis-
sion so we can simply rescale

�k ¼ xk; (27)

where x is the track fraction of the gluon. This leads to a
straightforward relationship between the ordinary thrust
soft function and the track-based version, as discussed in
Sec. VB. At higher orders, the expression for �k will
become more complicated. The track-based soft function
also incorporates information about nonperturbative
physics through power corrections, and we discuss the

leading power correction ���
1 in Sec. VC.

The track-based jet function �Jð �s; x; �Þ encodes the (real
and virtual) collinear radiation in each hemisphere. At
NLO, a hemisphere jet consist of just two partons, so

�si ¼ x1x2
xi

si; (28)

where x1 and x2 are the track fractions of the two partons,
xi is the track fraction of the hemisphere (i ¼ A, B), and si
is the (calorimeter) invariant mass of the hemisphere.
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FIG. 6 (color online). Distributions for calorimeter and track
thrust using dummy track functions. Comparing to Fig. 5, we
conclude that the similarity between � and �� is due to the specific
form of the track function.
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Unlike the calorimetric version, �J depends not only on the
rescaled track invariant mass �s (given by Eq. (28) at NLO),
but also on the track fraction x. For this reason, the track-
based jet function is considerably more complicated than
the usual jet function, and requires a more complicated
matching calculation, as described in Sec. VD.

In order to resum logarithms, we not only need the forms
of theH, �J, and �S, but also their anomalous dimensions. At
LL order, this means incorporating the one-loop cusp
anomalous dimension to resum the Sudakov double logs.
In this paper, we incorporate NLL resummation, which
includes the two-loop cusp and the one-loop noncusp
anomalous dimension terms. Correspondingly, the running
of �s is consistently implemented at two loops, using the Z
pole value for �s in Eq. (17). Track thrust resummation is
very similar to the calorimetric case, as discussed in
Sec. VI and the appendices. The main difference is that
the anomalous dimensions of �J and �S now depend on
nonperturbative parameters.

In addition to the ingredients above, we will incorporate
fixed-order nonsingular corrections described in Sec. V F.
Following the primed counting scheme of Ref. [29], fixed-
order matching contributions are included at one order
higher in the expansion in �s compared to the usual (non-
primed) counting. Here we work to NLL0 order which
incorporates all of the Oð�sÞ terms contained in Eq. (21).

A. Hard function

At leading order in the electroweak interactions, the hard
function is given by the square of the Wilson coefficient
in the matching of the quark current from QCD onto
SCET [34,35],

HðQ2;�Þ¼1þ�sð�ÞCF

2�

�
�
�ln2

�
Q2

�2

�
þ3ln

�
Q2

�2

�
�8þ7�2

6

�
: (29)

The anomalous dimension of this object is

�
d

d�
HðQ2; �Þ ¼ �HðQ2; �ÞHðQ2; �Þ;

�HðQ2; �Þ ¼ 2�cusp½�sð�Þ� lnQ
2

�2
þ �H½�sð�Þ�;

�H½�s� ¼ � 3�sCF

�
: (30)

The cusp anomalous dimension �cusp is given in Eqs. (A6)

and (A7). We will use the noncusp �H to perform a con-
sistency check on our factorization theorem in Eq. (51).

B. Soft function

At NLO, there is only one soft gluon emission, so in
order to obtain the soft function, we can simply convolve
the NLO thrust soft function with the gluon track function,

�Sð �k;�Þ ¼
Z 1

0
dkSðk;�Þ

Z 1

0
dxTgðx;�Þ�ð �k� xkÞ; (31)

where we have used the relationship between the kinemat-
ics in Eq. (27). This is the simplest possible version of the
matching equation in Eq. (10).
The ordinary thrust soft function S is defined through

the vacuum matrix element of eikonal Wilson lines and its
one-loop perturbative expression for calorimeter thrust can
be obtained from Refs. [33,36],

Sðk;�Þ¼�ðkÞþ�sð�ÞCF

2�

�
� 8

�
L1

�
k

�

�
þ�2

6
�ðkÞ

�
; (32)

where the plus distributionsLn are defined in Appendix C.
Using Eq. (31), the corresponding track-based version �S

is given by

�Sð �k;�Þ ¼
Z 1

0

dx

x
Tgðx;�Þ

�
�ð �k=xÞ

þ �sCF

2�

�
� 8

�
L1

� �k

x�

�
þ �2

6
�ð �k=xÞ

��

¼ �ð �kÞ þ �sCF

2�

�
� 8

�
L1

� �k

�

�
þ 8gL1

�
L0

� �k

�

�

þ
�
�2

6
� 4gL2

�
�ð �kÞ

�
: (33)

While one naively might think that �S would depend on the
entire track function, from the rescaling properties of the
plus distributions in Eq. (C4), we see that only two loga-
rithmic moments of the gluon track function appear in the
soft function, namely gL1 and gL2 , defined as

gLn ð�Þ �
Z 1

0
dxTgðx;�Þln nx: (34)

From Eq. (33), we can derive the anomalous dimension
of the track soft function

�
d

d�
�Sð �k;�Þ¼

Z �k

0
d �k0� �Sð �k� �k0;�Þ �Sð �k0;�Þ;

� �Sð �k;�Þ¼4�cusp½�sð�Þ� 1
�
L0

� �k

�

�
þ� �S½�sð�Þ��ðkÞ;

� �S½�s�¼�4�sCF

�
gL1 : (35)

Interestingly, the noncusp anomalous dimension depends
on the logarithmic moment gL1 of the gluon track function.
This arises because the RG evolution sums multiple emis-
sions, and thus the effect of the hadronization of these
emissions must be exponentiated. Note that gL1 depends
(weakly) on the renormalization scale �, but this effect is
beyond the order that we are working.

C. Leading power correction

In the tail region of the thrust distribution, nonperturba-
tive physics is captured via power corrections. As we will
now review, the leading power correction simply acts as a
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shift of the soft function in Eq. (33) by an amount propor-
tional to�QCD [37–40]. The amount of the shift is different

for calorimeter and track thrust, but the essential formalism
is the same in both cases.

Given a hadronic final state with charged hadrons C and
neutral hadrons N, we define a calorimeter measurement
operator

k̂jCNi ¼ X
i2C;N

ðj ~pij � jt̂ � ~pijÞjCNi; (36)

where the sum runs over all hadrons in C and N, t̂ is the
thrust axis, and ~pi is the three-momentum for hadron i.
This operator measures the numerator of Eq. (2). The track
measurement operator is almost the same, but the sum only
runs over the charged hadrons C.

The soft function S describes the cross section to pro-
duce a measurement k in the presence of back-to-back
eikonal quarks. Formally, it is defined as

Sðk;�Þ ¼ 1

Nc

h0jtr �YT
�nYn�ðk� k̂ÞYy

n �Y

�nj0i; (37)

where Yy
n ð0Þ ¼ P exp ðigR1

0 dsn � AðnsÞÞ is a (ultra)soft

Wilson line in the fundamental representation, �Yy
�n is the

analogue in the �3 representation, and the trace is taken over
color indices.

For an additive observable like thrust, the soft function
factorizes into a partonic perturbative part Spart [calculated
already in Eq. (32)] and a nonperturbative part SNP (also
called the shape function [31,41–43])

SðkÞ ¼
Z 1

0
d‘Spartðk� ‘ÞSNPð‘Þ: (38)

In the tail region where k ’ Q� 	 �QCD, we can perform

an operator product expansion (OPE) on SNPð‘Þ
SNPð‘Þ ¼ �ð‘Þ � �0ð‘Þ��

1 þ � � � ; (39)

where the leading power correction for thrust ��
1 ’ �QCD

is defined via the nonperturbative matrix element

��
1 ¼

1

Nc

h0jtr �YT
�n ð0ÞYnð0Þk̂Yy

n ð0Þ �Y

�nð0Þj0i: (40)

The full soft function in Eq. (38) can then be approximated
as a shift

SðkÞ ’ Spartðk���
1Þ þO

�
�s�QCD

k2

�
þO

��2
QCD

k3

�
: (41)

This in turn leads to an overall shift in the thrust distribu-
tion, whose effect is most prominent at small �.

The formalism above applies equally well to calorimeter
thrust and track thrust. Focussing on calorimeter thrust,
the value of ��

1 must be extracted from data, since it
is a fundamentally nonperturbative parameter. Typically,
one expresses ��

1 in terms of the universal power correc-
tion �1 [40,44,45]

��
1 � 2�1; (42)

though strictly speaking,�1 is only universal for measure-
ments in the same universality class (see Ref. [19]). Putting
aside that subtlety, the analysis in Ref. [29] extracted a

value of �1 ¼ 0:264� 0:213 GeV in the MS scheme at
NLL0 from fits to (calorimeter) thrust data. We will there-
fore take a value of

��
1 ¼ 0:5 GeV (43)

for our analysis of calorimeter thrust. As mentioned near
Eq. (17), there are strong correlations between �s and ��

1,
and this choice gives a reasonable (but not perfect)
description of LEP data.

For track thrust, we estimate that the parameter ���
1

entering the analogous OPE for �SNPð �kÞ is given by

���
1 ’ hxi��

1 ¼ 0:3 GeV; (44)

where we have taken the average track fraction hxi to be 0.6
[10]. This approximation is only justified if the matrix

element defining ���
1 is dominated by a single gluon emis-

sion and if the gluon track function has a narrow width.

More generally, ���
1 will encode hadronization correlations.

We emphasize that we have applied this nonperturbative

shift ���
1 to the track-based soft function directly,

�Sð �k;�Þ ’ �Spartð �k� ���
1; �Þ: (45)

Note that a shift in the track soft function �Sð �kÞ does not
amount to an overall shift of the whole track thrust distri-
bution due to the more complicated convolution structure
in Eq. (26). Looking at Eq. (31), we could have tried to
apply the usual shift ��

1 to S instead, but this would have
ignored the important fact that the track function Tg itself

has nonperturbative power corrections. The power correc-

tion ���
1 includes both of these effects. For the subleading

power corrections (beyond the scope of this paper), it may
or may not be preferable to separately treat the nonpertur-
bative corrections to S and Tg.

D. Jet function

For the collinear radiation, described by the jet function,
we need both the dependence on the energy fraction x of
the collinear tracks as well as their contribution to the
rescaled hemisphere track invariant mass-squared �s. The
NLO jet function consists of one perturbative q ! qg split-
ting whose branches hadronize independently. To carry out
the matching in Eq. (10), we can use the matching coeffi-
cient J qqðs; z; �Þ given in Refs. [27,46], since the cancel-

lation of IR divergences proceeds in an identical manner.
Here, s is the qg invariant mass and z is the momentum
fraction of the final quark. Inserting this matching coeffi-
cient into Eq. (10), the matching calculation yields
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�Jð �s;x;�Þ¼
Z 1

0
ds
Z 1

0
dz

J qqðs;z;�Þ
2ð2�Þ3

�
Z 1

0
dx1dx2Tqðx1;�ÞTgðx2;�Þ

��½x�zx1�ð1�zÞx2��
�
�s�x1x2

x
s

�
; (46)

where we have used the kinematics in Eq. (28). The same
coefficients J ijðs; z; �Þ also appeared in the description of

the fragmentation of a hadron inside a jet [27,47], as they
describe the perturbative splittings building up the jet
radiation.
The expression for the matching coefficient is [27,46]

J qqðs; z; �Þ
2ð2�Þ3 ¼ �ðsÞ�ð1� zÞ þ �sð�ÞCF

2�

�
2

�2
L1

�
s

�2

�
�ð1� zÞ þ 1

�2
L0

�
s

�2

�
ð1þ z2ÞL0ð1� zÞ

þ �ðsÞ
�
ð1þ z2ÞL1ð1� zÞ þ 1þ z2

1� z
ln zþ 1� z� �2

6
�ð1� zÞ

��
; (47)

so evaluating Eq. (46), we obtain

�Jð �s; x; �Þ ¼
�
�ð �sÞ þ �sCF

2�

�
2

�2
L1

�
�s

�2

�
� 2gL1

�2
L0

�
�s

�2

�
þ �ð �sÞ

�
gL2 � �2

6

���
TqðxÞ

þ �sCF

2�

Z 1

0
dx2

Z 1

0

dz

z

�
1

�2
L0

�
�s

�2

�
ð1þ z2ÞL0ð1� zÞ þ �ð �sÞ

�
ð1þ z2ÞL1ð1� zÞ

þ ln

�
xz2

½x� ð1� zÞx2�x2
�
ð1þ z2ÞL0ð1� zÞ þ 1� z

��
Tq

�
x� ð1� zÞx2

z

�
Tgðx2Þ: (48)

Here we use that the track function vanishes outside the
range x 2 ½0; 1� to avoid writing explicit Heaviside func-
tions. Unlike the soft function, the jet function depends on
the full functional form of the quark and gluon track
functions, and not just the logarithmic moments. To per-
form these integrals numerically, we used the CUBA pack-
age [48].

The corresponding anomalous dimension is given by

�
d

d�
�Jð �s; x; �Þ ¼

Z �s

0
d�s0� �Jð �s� �s0; �Þ �Jð�s0; x; �Þ;

� �Jð �s;�Þ ¼ �2�cusp½�sð�Þ� 1

�2
L0

�
�s

�2

�
þ � �J½�sð�Þ��ð�sÞ;

� �J½�s� ¼ �sCF

�

�
2gL1 þ 3

2

�
: (49)

Note that the evolution only affects �s and not x. As for the
soft function, the logarithmic moment of the gluon track
function gL1 contributes to the noncusp anomalous
dimension.

E. Resummation

In the effective field theory approach we follow here, the
resummation of large double logarithms �n

s ln
m� (m � 2n)

is achieved by evaluating the hard, jet, and soft functions at
their natural scales �H, �J, and �S where they contain no
large logarithms, and running them to a common scale �
using their respective RG equations.

These RG evolution kernels were implicit in the cross
section in Eq. (26) and are given in Appendix A. Explicitly
including them,

d�

d ��
¼�0HðQ2;�HÞUHðQ2;�H;�Þ

�
Z
d�sAd�s

0
A
�Jð�sA� �s0A;�JÞU �Jð �s0A;�J;�Þ

�
Z
d�sBd�s

0
B
�Jð �sB� �s0B;�JÞU �Jð �s0B;�J;�Þ

�
Z
d �kd �k0 �Sð �k� �k0;�SÞU �Sð �k0;�S;�Þ

��

�
��� 2

ðxAþxBÞQ
�
�sA
Q
þ �sB

Q
þ �k

��
: (50)

Consistency of the factorization theorem requires that
the cross section is �-independent at the order that we are
working, implying a cancellation between the anomalous
dimensions. For the cusp anomalous dimension, this can-
cellation is the same as for calorimeter thrust. For the
noncusp pieces from Eqs. (30), (35), and (49), there are
additional terms involving gL1 in � �S and � �J, but they cancel
in the sum

�noncusp
H þ 2�noncusp

�J
þ �noncusp

�S
¼ 0; (51)

to fulfill consistency requirements.
An important question is the choice of scales �H, �J,

and �S to use in this formula. While our focus is on the
tail region of the thrust distribution, where �H ’ Q,
�J ’

ffiffiffi
�

p
Q and �S ’ �Q, we do want our formulas to be
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accurate for all values of �. Since there are three distinct
kinematic regions characterizing the thrust distribution, the
resummation of the logarithms of � must be handled in
different ways. A smooth transition between the three
regions is achieved through profile functions [29,43] as
described in Appendix B. Our choice of the profile pa-
rameters is such that resummation is turned off at �� ’ 1=3,
which is the Oð�sÞ endpoint from Sec. IV. (This is in
contrast to the higher-order calculation in Refs. [29,49]
where the resummation is only turned off at the true
endpoint � ’ 1=2.)

For the plots in Sec. VII, we calculate the cumulative
version of Eq. (50)

��ð ��cÞ �
Z ��c

0
d ��

d�

d ��
(52)

atNLL0 using the scales�H,�J, and�S set by the value of

��c. We then take the numerical derivative of ��ð ��cÞ to find
the track thrust distribution (see Ref. [29] for a discussion
of alternative choices). This derivative picks up both the
explicit ��-dependence as well as the implicit ��-dependence
of our scale choice for �H, �J, and �S. The differential
version in Eq. (50) misses the latter contribution, though it
is a small effect.

F. Nonsingular contribution

The factorization theorem in Eqs. (26) and (50) includes
all the terms in the track thrust distribution that are singular
in � as � ! 0. There is an additional nonsingular contri-
bution of Oð�Þ, which is thus important in the endpoint
region. This contribution needs to be included to have our
distribution formally accurate to Oð�sÞ and is the last step
in attaining NLL0 accuracy.

We can extract the nonsingular corrections by subtract-
ing the singular terms [obtained from setting �H ¼ �J ¼
�S ¼ � in Eq. (26)] from the fixed-order Oð�sÞ cross
section in Eq. (21). At the level of the cumulative cross
section in Eq. (52),

��nsð ��cÞ ¼ ��FOð ��cÞ � ��singð ��cÞ: (53)

Our extraction of ��nsð ��cÞ is shown in Fig. 7. The fact that
��nsð ��c ¼ 0Þ ¼ 0 provides another consistency check of
our formalism, showing that our factorization formula
successfully reproduces the singular part of the Oð�sÞ
cross section. We use � ¼ MZ as the central value for

extracting ��nsð ��cÞ, and estimate perturbative uncertainties
by varying � between MZ=2 and 2MZ.

VI. SIMPLIFICATIONS AT NLL

In both the LEP data in Fig. 2 and the fixed-order calcu-
lation in Fig. 5, we saw a remarkable similarity between the
calorimeter and track thrust distributions. Wewill now try to
understand this from our resummed calculation by looking
at the leading effect of switching to tracks.
The first nontrivial order in the resummed distribution is

NLL. This consists of evaluating Eq. (50) with only the
leading order hard, jet, and soft functions, but including
the subleading evolution kernels. Using the solutions to
the RG equations in Appendix A, the NLL cumulative
distribution is

��ð ��cÞ ¼ �0e
KH

�
Q2

�2
H

�

H eK �S��E
 �S

�ð1þ 
 �SÞ
�
Q ��c

�S

�

 �S

�
Z

dxAdxBTqðxA;�JÞTqðxB;�JÞ
�
xA þ xB

2

�

 �S

;

(54)

where �E is Euler’s constant, and we have chosen to evolve
the hard and soft scales to the jet scale �J. The functions
KHð�H;�JÞ, 
Hð�H;�JÞ, K �Sð�S;�JÞ and 
 �Sð�S;�JÞ are
given in Appendix A and depend on our choice for�H,�J,
and �S, which we discuss below. Note that this expression
contains an explicit dependence on the quark track func-
tions Tq since they appear in the tree-level jet functions.

Eq. (54) contains only the information needed at NLL
accuracy, and therefore does not include the leading ha-
dronization power correction or nonsingular contributions.
There are various steps we can take to simplify the

expression in Eq. (54). We first consider the scales �H,
�J, and�S. In Sec. VE, we advocated the use of the profile
functions in Appendix B to achieve a smooth transition
between the different regions of the thrust distribution.
Here, we simplify our choice of natural scales to obtain a
more illuminating analytic formula:

�H ¼ Q; �J ¼
ffiffiffiffiffiffiffiffi
3 ��c

p
Q; �S ¼ 3 ��cQ: (55)

This choice has still the effect of turning off the resumma-
tion at ��c ¼ 1=3.
Second, we can simplify the dependence on the two

quark track functions. Defining

qLð�Þ�
Z
dxAdxBTqðxA;�ÞTqðxB;�Þ ln

�
xAþxB

2

�
; (56)

it is helpful to use the approximation
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FIG. 7 (color online). Nonsingular contribution to the normal-
ized cumulative thrust distribution at Oð�sÞ. The central value
corresponds to � ¼ MZ, with the uncertainty bands from vary-
ing � 2 ½MZ=2; 2MZ�.
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Z
dxAdxBTqðxAÞTqðxBÞ

�
xA þ xB

2

�

 �S � exp ðqL
 �SÞ: (57)

This is formally justified only for 
 �S � 1, but for the
(PYTHIA-based) track functions, the error is only a few
percent even for 
 �S ¼ 1. By contrast, using a linear (as
opposed to exponential) approximation in Eq. (57) would
yield a ’ 20% error at 
 �S ¼ 1.

Finally, because the only difference between the NLL
evolution kernels for calorimeter thrust and track thrust
appears in the noncusp anomalous dimensions, we can

write the track thrust cumulative �� in terms of the calo-
rimeter thrust cumulative � as

��ð ��cÞ ¼ �ð ��cÞ exp ðK �S � KSÞ exp ðqL
 �SÞ: (58)

From Eq. (A5), we find that the difference between K �S and
KS is

K �Sð�S;�JÞ � KSð�S;�JÞ ¼ 8CFg
L
1

�0

ln
�sð�JÞ
�sð�SÞ

� 4�sCF

�
gL1 ln

�S

�J

¼ 2�sCF

�
gL1 ln ð3 ��cÞ: (59)

Here we used the running of �s to obtain the second line,
and inserted the natural scales from Eq. (55) in the last step.
(Since we only kept the leading term in�s, different choices
for the scale of�s correspond to effects beyond the order we
are working.) Similarly, we find that 
 �S is given by


 �Sð�S;�JÞ¼�8CF

�0

ln
�sð�JÞ
�sð�SÞ��2�sCF

�
lnð3 ��cÞ: (60)

This leads to

��ð ��cÞ � �ð ��cÞ exp
�
2�sCF

�
ðgL1 � qLÞ ln ð3 ��cÞ

�
; (61)

as anticipated in Eq. (6).
Based on Eq. (61), we now have a better understanding of

why track thrust and calorimeter thrust are so similar. At
NLL order, the difference between the cumulative distribu-
tions for track and calorimeter thrust is basically given by an
exponential factor. However, this factor depends on gL1 and
qL, which happen to be nearly equal for the track functions
extracted from PYTHIA. For concreteness, we evaluate gL1
and qL at the scale� ’ 20 GeV, though any choice of scale
between �S and �J is acceptable at this order. We find

gL1 ’ �0:52; qL 2 ½�0:49;�0:54�; (62)

where the range corresponds to the variation between differ-
ent quark flavors. This leads to a cancellation in Eq. (61),
which is responsible for the similarity between the calo-
rimeter and track thrust distributions. These parameters have
only a mild � dependence, and the partial cancellation
between gL1 and qL persists over a wide range of scales.

VII. NUMERICAL RESULTS

With all of the ingredients for the track thrust distribu-
tion in place, we now show numerical results as we
increase the accuracy of our calculation. In all cases, we
show normalized cross sections ð1=�Þðd�=d�Þ, and use
our (PYTHIA-based) NLO track functions as input.
In Fig. 8, we show the NLL result from Eq. (54) for

calorimeter and track thrust. Here we use the central values
for the canonical running scales described in Appendix B.
As argued in Sec. VI, the difference between calorimeter
and track thrust is very small at NLL order, and is in fact
barely visible on this plot.
To achieve NLL0 accuracy, we have to take into account

higher-order terms inH, �J, and �S in Eq. (50), as well as the
nonsingular terms from Sec. V F. The result of going from
NLL to NLL0 is shown in Fig. 9, which compares the track
thrust distributions in the peak and tail regions. The
inclusion of the one-loop corrections to the hard, jet, and
soft functions at NLL0 reduces the purely perturbative
uncertainty bands coming from scale variations. Note
that this uncertainty estimate does not include the uncer-
tainty associated with the value of �sðMZÞ or with the input
track functions.
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FIG. 8 (color online). Track thrust and calorimeter thrust at
NLL. As explained in Sec. VI, these distributions are remarkably
similar.
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FIG. 9 (color online). Track thrust distribution going from
NLL to NLL0. The bands encode perturbative uncertainties
from RG scale variations, but not uncertainties in �s or the track
functions themselves.
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The effect of the nonsingular terms on the tail and far-
tail regions are highlighted in Fig. 10. The inclusion of
these terms guarantees that the cross section merges with
the Oð�sÞ fixed-order result in the region where the re-
summation is no longer important. It also ensures that the
cross section vanishes beyond the Oð�sÞ kinematic end-
point � ¼ 1=3. (For this to happen, it is crucial that the
profile functions in Appendix B turn off the resummation
at the endpoint.) As desired, the full NLL0 distribution
interpolates between the NLL0 result (without nonsingular
terms) at small � and the fixed-order result at large �.

In Fig. 11, we augment the NLL0 results with the leading
power correction ���

1. For track thrust, the dominant effect of
���
1 is a shift, though there are important effects in the peak

region which do not amount to a shift. (For the calorimeter
thrust distribution, the only effect of ��

1 is to shift the
distribution.) Note, however, that the peak region is also
sensitive to higher-order power corrections which we have
not included. The comparison between calorimeter and track
thrust with the leading power correction is shown in Fig. 3.

In Fig. 12 we superimpose our theoretical predictions
for the calorimeter and track thrust distributions with

experimental data from the DELPHI Collaboration. At

NLL0 order with the leading power correction ���
1, the

agreement is quite good, though we emphasize that we

chose values of �s and
���
1 to ensure reasonable agreement

with the calorimeter thrust data. We show the effect of
scale uncertainties in Fig. 3, which are in general larger
than the experimental uncertainties, motivating future
studies of track thrust with higher orders of resummation
and more accurate fixed-order corrections.
As a final cross check of our analysis, we show the

calorimeter and track thrust distributions from PYTHIA in
Fig. 13. Since PYTHIA has been tuned to LEP data, it agrees
well with the DELPHI measurements. There is good agree-
ment between PYTHIA and our NLL0 result in the tail
region, but there are difference in the peak region due to
the fact that PYTHIA includes an estimate of the full non-
perturbative corrections, whereas we only include the lead-
ing power correction. Future track thrust calculations could
use a full nonperturbative shape function for better model-
ing of the �� ’ 0 region.
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FIG. 10 (color online). Track thrust distribution in the tail and
far-tail regions, illustrating the effect of including the nonsin-
gular contribution at NLL0 order. The full NLL0 distribution
interpolates between the resummed and fixed-order results.
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FIG. 11 (color online). Track thrust at NLL0 adding the leading
power correction.
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FIG. 12 (color online). Comparison of analytical predictions
with DELPHI data for both track and calorimeter thrust distri-
butions. There is good qualitative and quantitative agreement in
the tail region, though as shown in Fig. 3, the theoretical
uncertainties at NLL0 are larger than the experimental ones.
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FIG. 13 (color online). Calorimeter and track thrust distribu-
tions obtained from PYTHIA 8. Apart from deviations in the peak
region due to higher-order nonperturbative corrections, these
agree well with our NLL0 calculation after the leading power
correction is included (compare to Fig. 3).
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VIII. DISCUSSION

In this paper, we have presented the first calculation of
track thrust in perturbative QCD. Our result is accurate to
Oð�sÞ in a fixed-order expansion while also including NLL
resummation, i.e. NLL0 order. By incorporating both track
functions and the leading power correction, we have
accounted for the dominant nonperturbative effects that
determine the track thrust distribution. Our result is in
good agreement with track thrust measurements performed
at ALEPH and DELPHI.

One feature seen in the data is a remarkable similarity
between the calorimeter thrust and track thrust distributions.
At NLL, we traced this feature to a partial cancellation
between two nonperturbative parameters—one associated
with the gluon track function gL1 , and one associated with
pairs of quark track functions qL. We conjecture that a
similar cancellation should be present in most (if not all)
dimensionless track-based observables. This should be rela-
tively straightforward to prove for eþe� dijet event shapes
with a thrust-like factorization theorem, but is likely to
persist for more general track-based observables, including
jet shapes relevant for the LHC such asN-subjettiness ratios
[50,51] or energy correlation functions ratios [52]. It is
worth further study to understand whether this partial can-
cellation is just an accident or reflects some deeper property
of track functions. Crucially, we have seen that neither
higher-order terms atNLL0 nor the leading power correction
qualitatively spoil the similarity.

The track functions were originally designed to describe
the energy fraction of a parton carried by tracks (i.e. the
large component of the light-cone momentum). Track
thrust essentially measures the small component of the
light-cone momentum carried by tracks, so it is perhaps
surprising that the same track functions can be used in this
context. The reason this works is that the track thrust
distribution can be thought of as arising from multiple
gluon emissions, each of which carries its own track func-
tion. Just as multiple emissions can be exponentiated in the
case of calorimeter thrust, multiple emissions with track
functions can also be exponentiated. In our calculation, this
shows up in the fact that the anomalous dimension of the
soft and jet functions depend on the logarithmic moment of
the gluon track function gL1 . We are confident that similar

techniques could be applied to any track-based observable,
as long as the calorimetric version of that observable has a
valid factorization theorem. This motivates future experi-
mental and theoretical studies of track-based observables.
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APPENDIX A: RESUMMATION

For the NLL0 distribution in Eq. (50), we need expres-
sions for the evolution kernels. Apart from the nonpertur-
bative parameter gL1 , the evolution kernels are the same
between calorimeter thrust and track thrust, and governed
by the relevant RGEs given in Sec. V.
The RGE for the hard function in Eq. (30) leads to the

evolution

HðQ2; �Þ ¼ HðQ2; �0ÞUHðQ2; �0; �Þ;

UHðQ2; �0; �Þ ¼ eKHð�0;�Þ
�
Q2

�2
0

�

Hð�0;�Þ

;

KHð�0; �Þ ¼ �4K�ð�0; �Þ þ K�H
ð�0; �Þ;


Hð�0; �Þ ¼ 2
�ð�0; �Þ;

(A1)

where K�ð�0; �Þ, 
�ð�0; �Þ and K� are given below in

Eq. (A4). Similarly, the RGE for the jet function in Eq. (49)
leads to the evolution

�Jð �s;x;�Þ¼
Z �s

0
d�s0U �Jð�s� �s0;�0;�Þ �Jð �s0;x;�0Þ;

U �Jð �s;�0;�Þ¼ eK �J��E
 �J

�ð1þ
 �JÞ
�

 �J

�2
0

L
 �J

�
�s

�2
0

�
þ�ð�sÞ

�
;

K �Jð�0;�Þ¼ 4K�ð�0;�ÞþK� �J
ð�0;�Þ;


 �Jð�0;�Þ¼�2
�ð�0;�Þ:

(A2)

The function K� �J
contains the contribution from the non-

perturbative parameter gL1 to the noncusp anomalous
dimension � �J½�s�. Finally, the RGE for the soft function
in Eq. (35) leads to the evolution

�Sð �k;�Þ¼
Z �k

0
d �k0U �Sð �k� �k0;�0;�Þ �Sð �k0;�0Þ;

U �Sð �k;�0;�Þ¼ eK �S��E
 �S

�ð1þ
 �SÞ
�

 �S

�0

L
 �S

� �k

�0

�
þ�ð �kÞ

�
;

K �Sð�0;�Þ¼�4K�ð�0;�ÞþK� �S
ð�0;�Þ;


 �Sð�0;�Þ¼ 4
�ð�0;�Þ:

(A3)

Here, K� �S
contains the contribution from gL1 to � �S½�s�.

The functions K�ð�0; �Þ, 
�ð�0; �Þ, and K�x
ð�0; �Þ in

the above RGE solutions are defined as
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Ki
�ð�0;�Þ¼

Z �sð�Þ

�sð�0Þ
d�s

�ð�sÞ�
i
cuspð�sÞ

Z �s

�sð�0Þ
d�0

s

�ð�0
sÞ ;


i
�ð�0;�Þ¼

Z �sð�Þ

�sð�0Þ
d�s

�ð�sÞ�
i
cuspð�sÞ;

K�x
ð�0;�Þ¼

Z �sð�Þ

�sð�0Þ
d�s

�ð�sÞ�xð�sÞ;

(A4)

and their explicit expressions at NLL order are

K�ð�0; �Þ ¼ � �0

4�2
0

�
4�

�sð�0Þ
�
1� 1

r
� ln r

�

þ
�
�1

�0

� �1

�0

�
ð1� rþ ln rÞ þ �1

2�0

ln 2r

�
;


�ð�0; �Þ ¼ � �0

2�0

�
ln rþ �sð�0Þ

4�

�
�1

�0

� �1

�0

�
ðr� 1Þ

�
;

K�x
ð�0; �Þ ¼ � �x;0

2�0

ln r: (A5)

Here r ¼ �sð�Þ=�sð�0Þ, and �i, �i, and �x;i are the

coefficients of the � function, the cusp, and the noncusp
anomalous dimensions in their �s expansion,

�ð�sÞ ¼ �2�s

X1
n¼0

�n

�
�s

4�

�
nþ1

;

�cuspð�sÞ ¼
X1
n¼0

�n

�
�s

4�

�
nþ1

;

�xð�sÞ ¼
X1
n¼0

�x;n

�
�s

4�

�
nþ1

:

(A6)

At NLL0 order, we only need the first two coefficients of
�ð�sÞ and �cuspð�sÞ, which are

�0 ¼ 11

3
CA � 4

3
TFnf;

�1 ¼ 34

3
C2
A �

�
20

3
CA þ 4CF

�
TFnf;

�0 ¼ 4CF;

�1 ¼ 4CF

��
67

9
� �2

3

�
CA � 20

9
TFnf

�
:

(A7)

For the noncusp anomalous dimension �xð�sÞ we only
need the first coefficient, given in Eqs. (30), (35), and (49).

APPENDIX B: PROFILE FUNCTIONS

The optimal choice of RG scales depends on the value of
�, so we use profile functions to smoothly interpolate
between the small � and large � regions.

Our choice of running scales is adopted from Ref. [29]
with some modifications:

�H ¼ eHQ;

�Jð�Þ ¼
�
1þ eJ�ð�3 � �Þ

�
1� �

�3

�
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�H�runð�;�HÞ
q

;

�Sð�Þ ¼
�
1þ eS�ð�3 � �Þ

�
1� �

�3

�
2
�
�runð�;�HÞ; (B1)

where �run is given by

�runð�;�Þ¼

8>>>><
>>>>:

�0þa�2=�1 ���1;

2a�þb �1����2;

��að���3Þ2=ð�3��2Þ �2����3;

� �>�3;

a¼ �0��

�1��2��3
; b¼��1��0ð�2þ�3Þ

�1��2��3
: (B2)

The expressions for a and b follow from demanding that
�run is continuous and has a continuous derivative. The
value of �0 determines the scales at � ¼ 0, while �1;2;3
determine the transition between the peak, tail, and far-tail
regions discussed in Sec. V. For � > �3, our choice for�run

ensures that the resummation of logarithms of � turns off.
The parameters for the central curve are

eH ¼ 1; eB ¼ eS ¼ 0; �0 ¼ 2 GeV;

�1 ¼ 2 GeV

Q
; �2 ¼ 0:15; �3 ¼ 0:33:

(B3)

The scale uncertainty bands are obtained by taking the
envelope of the following scale variations:

ðaÞ eH ¼ 2�1; eJ ¼ eS ¼ 0;

ðbÞ eH ¼ 1; eJ ¼ �0:5; eS ¼ 0;

ðcÞ eH ¼ 1; eJ ¼ 0; eS ¼ �0:5:

(B4)

APPENDIX C: PLUS DISTRIBUTIONS

The standard plus distribution for some function gðxÞ is
defined as

½�ðxÞgðxÞ�þ ¼ lim
�!0

d

dx
½�ðx� �ÞGðxÞ� (C1)

with

GðxÞ ¼
Z x

1
dx0gðx0Þ: (C2)

This satisfies the boundary condition
R
1
0 dx½�ðxÞgðxÞ�þ¼0.

The two special cases we need in this paper are
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LnðxÞ �
�
�ðxÞln nx

x

�
þ

¼ lim
�!0

�
�ðx� �Þln nx

x
þ �ðx� �Þ ln

nþ1�

nþ 1

�
;

L
ðxÞ �
�
�ðxÞ
x1�


�
þ
¼ lim

�!0

�
�ðx� �Þ
x1�


þ �ðx� �Þ x

 � 1




�
:

(C3)

In our calculations, we use the plus distribution identi-
ties appearing in Appendix B of Ref. [43]. In particular,
we utilize the following rescaling identity for a
constant �:

�Lnð�xÞ¼ lnnþ1ð�Þ
nþ1

�ðxÞþXn
k¼0

n

k

 !
lnn�kð�ÞLkðxÞ: (C4)
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