
Equilibration of anisotropic quark-gluon plasma produced by decays of color flux tubes

Radoslaw Ryblewski1,* and Wojciech Florkowski1,2,†
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A set of kinetic equations is used to study equilibration of the anisotropic quark-gluon plasma produced

by decays of color flux tubes possibly created at the very early stages of ultrarelativistic heavy-ion

collisions. The decay rates of the initial color fields are given by the Schwinger formula, and the collision

terms are treated in the relaxation-time approximation. By connecting the relaxation time with viscosity

we are able to study production and thermalization processes in the plasma characterized by different

values of the ratio of the shear viscosity to entropy density, ��. For the lowest (Kovtun-Son-Starinets) value

of this ratio, 4� �� ¼ 1, and realistic initial conditions for the fields, the system approaches the viscous-

hydrodynamics regime within 1–2 fm=c. On the other hand, for larger values of the viscosity, 4� �� � 3,

the collisions in the plasma become inefficient to destroy collective phenomena which manifest

themselves as oscillations of different plasma parameters. The presence of such oscillations brings in

differences between the kinetic and hydrodynamic descriptions, which suggest that the viscous-

hydrodynamics approach after 1–2 fm=c is not complete if 4� �� � 3 and should be extended to include

dissipative phenomena connected with color conductivity.
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I. INTRODUCTION

In this paper, we analyze equilibration of the anisotropic
quark-gluon plasma produced by decays of color flux tubes
possibly created at the very early stages of ultrarelativistic
heavy-ion collisions [1–8]. Our approach is based on the
kinetic theory [9–15] where decay rates of the initial color
fields are given by the Schwinger formula and appear as the
source terms in the kinetic equations. The produced quarks
and gluons interact with the mean color field and collide
with each other. The collisions are described by the colli-
sion terms treated in the relaxation-time approximation
[16–20]. By connecting the relaxation time with the sys-
tem’s shear viscosity, we are able to study production and
thermalization processes in the quark-gluon plasma char-
acterized by different values of the ratio of the shear
viscosity to entropy density, �� ¼ �=�.

In our numerical calculations we use the values of the
parameter 4� �� which vary between 1 and 10. The values in
the range 1 � 4� �� � 3 have been extracted from the recent
hydrodynamic analyses of ultrarelativistic heavy-ion colli-
sions studied at Relativistic Heavy-Ion Collider (RHIC) and
the Large Hadron Collider (LHC). The value 4� �� ¼ 10 is
expected by leading log perturbative results extrapolated to
RHIC and the LHC energies. On the other hand, our lowest
value corresponds to the Kovtun-Son-Starinets (KSS)
bound obtained from black hole physics [21].

The proposed model is one dimensional and assumes
boost invariance; hence, it may be applied only to the early
stages of the collisions and to the central rapidity region.

We note that the boost-invariance assumption has been
found to be an obstacle in describing thermalization pro-
cesses within the color glass condensate theory [22,23].
In this case, only the quantum fluctuations that break boost
invariance allow us to describe equilibration [24–26]. In our
case, the situation is quite different. Although our system is
boost invariant, we explicitly include the collisions between
the produced particles, and the latter are responsible (if fast
enough) for the thermalization of the produced system.
Although similar models to ours have been analyzed

before [27–30], our formulation has a few novel features.
First of all, by studying different components of the
energy-momentum tensor we can analyze in more detail
how the system approaches the hydrodynamic limit.
In particular, we calculate separately the longitudinal and
transverse pressure of the system and study their time
dependence. Second, using different values of the ratio
of the shear viscosity to entropy density, we may study
equilibration of the quark-gluon plasma with reference to
recent viscous-hydrodynamics models of ultrarelativistic
heavy-ion collisions [31–48].
The use of a constant value for �� in the kinetic equations

implies that the relaxation time becomes a function of an
effective temperature of the plasma. As a consequence, the
present work extends earlier frameworks where the relaxa-
tion time was treated as a constant, although we do not take
into account the non-Abelian terms in the field equations or
the minijet production, which are included in Refs. [28,29]
or [30], respectively. A general time-dependent relaxation
time was used in [19,20], however, without incorporating
the color fields.
Our approach originates from the color-flux-tube model

and transport theory formulated in Refs. [1–15]. At the
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very initial stage of a nucleus-nucleus collision a longitu-
dinal chromoelectric field is formed, which decays subse-
quently via the Schwinger mechanism. Such an initial
configuration of the field is similar to the glasma state
[22,49] where both chromoelectric and chromomagnetic
longitudinal color fields are present at the very early stages
of the collisions. We note that a similar framework to that
presented in this paper has been used recently in Ref. [50]
to study oscillations of the quark-gluon plasma around
expanding anisotropic (color neutral) backgrounds. Our
present approach goes much beyond the framework of
Ref. [50] by solving the coupled kinetic and Maxwell
equations in a self-consistent manner.

The strength of the initial color fields is chosen in such a
way that the effective temperature of the produced plasma
reaches realistic values Tmax � 300–500 MeV. For such
initial conditions and the KSS value of the ratio of the shear
viscosity to entropy density, i.e., in the case 4� �� ¼ 1,
the plasma approaches the viscous-hydrodynamics regime
within 1–2 fm=c. On the other hand, for larger values
of the viscosity, 4� �� � 3, the collisions in the plasma
become inefficient to destroy collective phenomena
which demonstrate themselves as oscillations of different
plasma parameters. The presence of such oscillations
brings in differences between the kinetic and viscous-
hydrodynamics descriptions.

This leads us to the conclusion that after the first 1 fm=c
the viscous-hydrodynamics description of the created
quark-gluon plasma is quite appropriate if 4� �� ¼ 1; how-
ever, it is not completely satisfactory if 4� �� � 3. In the
latter case the hydrodynamic approach should be extended
to include transport phenomena connected with color con-
ductivity. On the other hand, it is quite interesting to
observe that for 4� ��� 3 the plasma might be character-
ized by an effective viscosity ��eff which fluctuates around
the fixed value of ��. Hence, in this case one may consider
averaging over different color flux tubes which washes out
the oscillations in such a way that the averaged system may
be effectively well described by the viscous hydrodynam-
ics. Quantitative analysis of this issue is left for a separate
study.

The structure of the paper is as follows. In Sec. II we
define our symbols and conventions. In Sec. III the kinetic
equations for the quark-gluon plasma are introduced. In
Sec. IV our approach is rewritten in a boost-invariant way
and formal solutions of the kinetic and Maxwell equations
are presented. The energy-momentum conservation laws
are discussed in more detail in Sec. V. The results of our
numerical calculations are given in Sec. VI. We conclude
in Sec. VII. The details of the calculations are given in the
Appendixes which close the paper.

II. CONVENTIONS

We use the standard parameterizations of the four-
momentum and spacetime coordinates of a particle:

p� ¼ ðE; ~p?; pkÞ ¼ ðm? cosh y; px; py; m? sinh yÞ;
x� ¼ ðt; ~x?; zÞ ¼ ð� cosh�; x; y; � sinh�Þ: (1)

Here m? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
y

q
is the transverse mass,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � z2

p
is the longitudinal proper time, y is the

rapidity

y ¼ 1

2
ln
Eþ pk
E� pk

; (2)

and � is the spacetime rapidity

� ¼ 1

2
ln
tþ z

t� z
: (3)

The flow of matter is described by the four-vector

U� ¼ �ð1; vx; vy; vzÞ; � ¼ ð1� v2Þ�1: (4)

Throughout the paper we use natural units where c ¼ 1,
kB ¼ 1, and ℏ ¼ 1.

III. QUARK-GLUON PLASMA FORMATION
BY DECAYS OF COLOR FLUX TUBES

A. Kinetic equations, color isotopic charge,
and color hypercharge

Our approach is based on the Abelian dominance
approximation in which the kinetic equations for quarks,
antiquarks, and charged gluons can be written as follows
[9–11]:

ðp�@� þ g�i � F��p�@
p
�ÞGifðx; pÞ ¼

dNif

d�inv

þ Cif; (5)

ðp�@� � g�i � F��p�@
p
�Þ �Gifðx; pÞ ¼

dNif

d�inv

þ �Cif; (6)

ðp�@� þ g�ij � F��p�@
p
�Þ ~Gijðx; pÞ ¼

d ~Nij

d�inv

þ ~Cij: (7)

HereGifðx; pÞ, �Gifðx; pÞ, andGijðx; pÞ are the phase-space
densities of quarks, antiquarks, and gluons, respectively.
The indices i, j ¼ ð1; 2; 3Þ define the color of quarks and
gluons, while the index f ¼ ðu; d; s; . . .Þ defines the quark
flavor. In the definitions of the gluon distribution functions
~Gijðx; pÞ and other similar objects, the two color indices i

and j must be different.
The terms on the left-hand sides of Eqs. (5)–(7) describe

the free motion of particles and their interaction with the
mean field F��. In this work, the only nonzero components
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of the tensor F�� ¼ ðF��
ð3Þ ; F

��
ð8Þ Þ are those corresponding

to the longitudinal chromoelectric field E ¼ ðF30
ð3Þ; F

30
ð8ÞÞ.1

The quarks couple to the chromoelectric field E through
the charges [51]

�1 ¼ 1

2

0
@1;

ffiffiffi
1

3

s 1
A; �2 ¼ 1

2

0
@�1;

ffiffiffi
1

3

s 1
A; �3 ¼

0
@0;�

ffiffiffi
1

3

s 1
A:
(8)

The charged gluons couple to E through the charges �ij

defined by the relation

�ij ¼ �i � �j: (9)

The two components of the color charges (8) and (9)
are called the color isotopic charge and color hypercharge
[51].

B. Initial conditions

The Gauss law applied to a color flux tube yields EA ¼
kgq, where A ¼ �r2 denotes the area of the transverse
cross section of the tube, k is the number of color charges at
the end of the tube, and gq ¼ gðqð3Þ; qð8ÞÞ is the color

charge of a quark or a gluon. Since the string tension is
the energy of an elementary tube (with k ¼ 1) per unit
length, we may write

� ¼ 1

2
AE � E ¼ g2

2A
q � q: (10)

Substitution of the quark charges (8) into Eq. (10) gives
(independently of the color index i) �q ¼ g2=ð6AÞ.
Similarly, the gluon charges (9) give (independently of
the color indices i, j) �g ¼ g2=ð2AÞ. We conclude that

the string tension of a tube spanned by gluons is 3 times
larger than the string tension of a quark tube. The Gauss
law can be rewritten in the following form:

E ¼
ffiffiffiffiffiffiffiffiffi
2�g

�r2

s
kq ¼

ffiffiffiffiffiffiffiffiffi
6�q

�r2

s
kq: (11)

This equation determines the value of the initial chromo-
electric field spanned by the two receding nuclei.

We have three parameters which characterize an
elementary tube: the string tension �, the strong coupling
constant g, and the tube radius r. For the standard value
�q ¼ 1 GeV=fm (�g ¼ 3 GeV=fm) which is used in

our calculations, we find the following relation between
g and r:

g2 ¼ 6AGeV=fm � 30�r2=fm2: (12)

For a single tube we assume �r2 ¼ 1 fm2; hence, we find
g ¼ 5:48. Consequently, our coupling constant is quite
large, which excludes any perturbative treatment of the
considered physical processes. The number of color
charges k may be obtained from the hypothesis of random
walk in color space [52]:

k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number of collisions

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�

d2s
�r2

s
;

where d�=d2s is the number of collisions per unit trans-
verse area. In the original papers on the color-flux-tube
model the values of k between 1 and 5 were used. In this
paper, to obtain the initial effective temperature of the
plasma which is similar to that used in the hydrodynamic
calculations describing the RHIC and the LHC data, we
use k ¼ 5 and k ¼ 10.

C. Schwinger tunneling

The terms dN=d�inv on the right-hand sides of
Eqs. (5)–(7) describe production of quarks and gluons
due to the decay of the chromoelectric field. In the refer-
ence frame where the particles emerge from the vacuum
with the vanishing longitudinal momentum, the production
rate of quarks in the chromoelectric field is given by the
formula

dNif

d�inv

¼ �i

4�3

��������ln
�
1� exp

�
��m2

f?
�i

�����������ðpkÞp0

� Rif�ðpkÞp0; (13)

where mf? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ p2
x þ p2

y

q
is the transverse mass,

�i ¼ ðgj�i � Ej � �qÞ	ðgj�i � Ej � �qÞ; (14)

and 	 is the step function. The quantity �i describes the
effective force acting on the tunneling quarks. The effect of
the screening of the initial field by the tunneling particles is
taken into account by subtraction of the ‘‘elementary
force’’ characterized by the quark string tension �q [2,6].

Similarly, for gluons one can find

d ~Nij

d�inv

¼ �ij

4�3

��������ln
�
1þ exp

�
��p2

?
�ij

�����������ðpkÞp0

� ~Rij�ðpkÞp0; (15)

where the effective force is

�ij ¼ ðgj�ij � Ej � �gÞ	ðgj�ij � Ej � �gÞ: (16)

The covariant form of the production rates which is valid in
arbitrary reference frames is given in Sec. IVB.

1For the one-dimensional boost-invariant geometry considered
in this work, one may check that the initial longitudinal chromo-
electric field generates no other field components in later times;
hence, our reduced form of the field tensor is consistent with the
assumed form of expansion. The inclusion of other possible field
components (in particular, of the longitudinal chromomagnetic
field) is left for future studies.
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D. Collision terms and Landau matching

The terms C are the collision terms which we treat in the
relaxation-time approximation [16–20]:

Cif ¼ p � UGeq
if �Gif

�eq
; �Cif ¼ p �U

�Geq
if � �Gif

�eq
;

~Cij ¼ p � U
~Geq
ij � ~Gij

�eq
: (17)

The background equilibrium distributions G
eq
if ,

�G
eq
if , and

~G
eq
ij are all equal and given by the Boltzmann distribution2

Geq ¼ 2

ð2�Þ3 exp

�
�p �U

T

�
: (18)

Similarly, we assume that all the relaxation times are equal.
The effect of having different relaxation times for different
particle species has been recently analyzed in a similar
framework in Ref. [53].

The factor 2 in Eq. (18) accounts for spin degeneracy.
The effective temperature T is obtained from the Landau
matching

Z
dPp � Up�

�X3
i¼1

X
f

ðGeq
if �Gif þ �G

eq
if � �GifÞ

þ X3
i;j¼1

ð ~Geq
ij � ~GijÞ

�
¼ 0 (19)

or Z
dPp �Up�

�
ð6Nf þ 6ÞGeq

�X
i

X
f

ðGif þ �GifÞ �
X3
i;j¼1

~Gij

�
¼ 0: (20)

The factors 6 account for six types of quarks (three
quarks and three antiquarks) and six types of gluons
(the two extra gluon degrees of freedom are treated as
fields). As we shall see below, the Landau matching is
reduced to the condition which demands that the energy
density obtained from the quark and gluon distribution
functions is equal to the energy density determined from
the equilibrium background (defined by the sum of
thermal distributions).

E. Relaxation time

As stated above, the relaxation time used in Eq. (17) is
the same for all parton species and independent of momen-
tum. On the other hand, it may depend on the proper time.

In the numerical calculations we use the following relation
between the relaxation time and the viscosity [54–60]:

�eqð�Þ ¼ 5 ��

Tð�Þ : (21)

Here �� is the ratio of the viscosity to the entropy ratio
which is treated as a constant in our approach. We consider
three values of ��:

�� ¼ 1

4�
;
3

4�
;
10

4�
: (22)

The first two numbers on the right-hand side of Eq. (22)
determine the viscosity range extracted from the recent
hydrodynamic analyses of relativistic heavy-ion collisions
studied at RHIC and the LHC. The last value is on the order
expected by leading log perturbative results extrapolated to
RHIC and the LHC energies.

F. Maxwell equations

Equations (5)–(7) determine the time changes of parton
densities caused by the presence of the mean field and
parton collisions. In order to obtain a self-consistent set
of equations we should have also the dynamic equation for
the field. It can be written in the following Maxwell form:

@�F
��ðxÞ ¼ j�ðxÞ þ j�DðxÞ; (23)

where

j�ðxÞ ¼ g
Z

dPp�

�X
i

�i
X
f

ðGifðx; pÞ � �Gifðx; pÞÞ

þ X3
i;j¼1

�ij
~Gijðx; pÞ

�
� g

Z
dPp�Að�; w; p?Þ

(24)

and

j�DðxÞ ¼
Z

dP

�X
i

X
f

dNif

d�inv

d�
if þ

X
i>j

d ~Nij

d�inv

d�
ij

�
: (25)

Here dP ¼ d3p=E is the invariant momentum integration
measure.3 The current (23) has two components. The first
one (conductive current), defined by Eq. (24), is related to
the simple fact that particles carry color charges �i and �ij.

The second one (displacement current), defined by
Eq. (25), has the origin in the tunneling of quarks and
gluons and, hence, in the creation of color charges from
the vacuum. On the right-hand side of Eq. (24) we have
introduced Að�;w; p?Þ, which is an antisymmetric
function of w.

2The generalization of our approach in such a way as to
include quantum Bose-Einstein or Fermi-Dirac statistics is quite
straightforward. It typically brings only different normalization
factors.

3The spin degeneracy factor of 2 is included in the production
rates (13) and (15). Therefore, we include it also in the defini-
tions of the quark and gluon distribution functions.
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The quantities d� are the dipole moments of the
produced pairs whose third Lorentz components equal

d3
if ¼

2�i
�i � E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þm2

f

q
; d3

ij ¼
2�ij

�ij � E p?: (26)

Below, in Sec. VC, we show that the form of
Eqs. (23)–(26) follows directly from the energy-
momentum conservation law.

IV. IMPLEMENTATION OF BOOST INVARIANCE

A. Boost-invariant variables

In the case of one-dimensional boost-invariant expan-
sion, all scalar functions of time and space coordinates
(for example, energy density, transverse and longitudinal
pressure, and temperature) should depend only on the
proper time �. In addition, the hydrodynamic flow U�

should have the form (4) with vx ¼ vy ¼ 0 and vz ¼
z=t; hence, U� ¼ ðt=�; 0; 0; z=�Þ [61].

The phase-space distribution functions behave also like
scalars under Lorentz transformations. The requirement of
boost invariance implies in this case that they may depend
only on the variables �, w, and ~p? [3]. The boost-invariant
variable w is defined by the formula

w ¼ tpk � zE: (27)

We note that at z ¼ 0 the variable w is reduced to the
longitudinal momentum multiplied by the time coordinate
t. Knowing w and ~p? we define

v ¼ Et� pkz ¼ �p �U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ ðm2 þ ~p2

?Þ�2
q

: (28)

At z ¼ 0, v is reduced to the energy multiplied by t. In the
numerical calculations we neglect the quark masses and set
m ¼ 0. From (27) and (28) one can easily find the energy
and the longitudinal momentum of a parton:

E ¼ vtþ wz

�2
; pk ¼ wtþ vz

�2
: (29)

The integration measure in the momentum sector of the
phase space is

dP ¼ 2d4p�ðp2Þ	ðp0Þ ¼ dpk
p0

d2p? ¼ dw

v
d2p?: (30)

A chromoelectric field E ¼ F30 does not change under
Lorentz transformations along the z axis; thus, it may be
also treated as a scalar and written in the form

Eð�Þ ¼ �2
dhð�Þ
du

¼ � 1

�

dhð�Þ
d�

; (31)

where h is a function of the variable � only.

B. Boost-invariant form of the kinetic
equations and their solutions

Using the boost-invariant variables introduced in
the previous section we find simple forms of the terms
appearing in the kinetic equations (5)–(7), namely,

p�@�G ¼ v

�

@G

@�
; F��p�@

p
�G ¼ Ev

@G

@w
;

dN

d�inv

¼ v�ðwÞR:
(32)

Using (32) in (5)–(7) one obtains�
@

@�
� dhi

d�

@

@w

�
Gif ¼ �Rif�ðwÞ þ

Geq �Gif

�eq
;

�
@

@�
þ dhi

d�

@

@w

�
�Gif ¼ �Rif�ðwÞ þ

Geq � �Gif

�eq
;

�
@

@�
� dhij

d�

@

@w

�
~Gij ¼ � ~Rij�ðwÞ þ

Geq � ~Gij

�eq
:

(33)

Here we have introduced the functions

hið�Þ ¼ g�i � hð�Þ; hijð�Þ ¼ g�ij � hð�Þ: (34)

One may notice that the distribution functions in (33)
satisfy the following symmetry relations:

�Gifð�; w; p?Þ ¼ Gifð�;�w;p?Þ;
~Gijð�; w; p?Þ ¼ ~Gjið�;�w;p?Þ:

(35)

Equations (33) have general solutions of the form

Gifð�;w;p?Þ ¼
Z �

0
d�0Dð�;�0Þ

�
�0Rifð�0; p?Þ�ð�hi þwÞ

þGeqð�0;�hi þw;p?Þ
�eqð�0Þ

�
;

�Gifð�;w;p?Þ ¼
Z �

0
d�0Dð�;�0Þ

�
�0Rifð�0; p?Þ�ð�hi �wÞ

þGeqð�0;�hi �w;p?Þ
�eqð�0Þ

�
;

Gijð�;w;p?Þ ¼
Z �

0
d�0Dð�;�0Þ

�
�0Rijð�0; p?Þ�ð�hij þwÞ

þGeqð�0;�hij þw;p?Þ
�eqð�0Þ

�
: (36)

Here we have introduced the damping function

Dð�2; �1Þ ¼ exp

�
�
Z �2

�1

d�00

�eqð�00Þ
�

(37)

and the functions �hið�; �0Þ ¼ hið�Þ � hið�0Þ and
�hijð�; �0Þ ¼ hijð�Þ � hijð�0Þ. Equations (36) are general-

izations of the formulas used previously in the literature
where the relaxation time was constant [27]. By using the
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boost-invariant variables, the equilibrium distribution
function may be rewritten in the following form:

Geqð�;w; p?Þ ¼ 2

ð2�Þ3 exp

2
4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ p2

?�
2

q
Tð�Þ�

3
5: (38)

C. Boost-invariant form of the conductive
and displacement currents

1. Conductive current

By the explicit calculations starting with Eq. (24) one
can check that the boost-invariant conductive current has
the form

j� ¼ ðz; 0; 0; tÞJð�Þ; (39)

where

Jð�Þ ¼ g

�2

Z dw

v
d2p?wAð�;w; p?Þ: (40)

The function Að�; w; p?Þ is a combination of the distribu-
tion functions multiplied by the appropriate color charges;
see Eq. (24). This leads us to the expression

Jð�Þ ¼ gNf

4�3

X
i

�i
Z �

0
d�0Dð�; �0Þ

� ½2�0�2
i ð�0Þ
ið�; �0ÞC�ð
ið�; �0ÞÞ � �J

i ð�; �0Þ	
þ g

4�3

X
i>j

�ij

Z �

0
d�0Dð�; �0Þ½2�0�2

ijð�0Þ
ijð�; �0Þ

� Cþð
ijð�; �0ÞÞ � �J
ijð�; �0Þ	: (41)

The function 
ð�; �0Þ is defined by the formula (below,
for clarity of notation, in most places we skip the color
indices i, j)


ð�; �0Þ ¼ �hð�; �0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2ð�; �0Þ þ�ð�0Þ�2=�p ; (42)

whereas the functions C
 are defined as integrals [11]

C
ð
Þ ¼
Z 1

0
d�

j ln ð1
 e��Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 þ ð1� 
2Þ�p : (43)

The function �Jð�; �0Þ appearing in (41) is defined as an
integral over the equilibrium distribution function

�Jð�; �0Þ ¼ 8�3

�eqð�0Þ
Z

dw
Z

d2p?
w

v

�Geqð�0;�hð�; �0Þ þ w;p?Þ: (44)

In the limit �eq ! 1 the �J terms in (41) vanish, and

Eq. (41) is reduced to the expression derived for the first
time in [11].

2. Displacement current

The boost-invariant displacement current has the same
form as the conductive current, namely,

j�D ¼ ðz; 0; 0; tÞJDð�Þ; (45)

where

JDð�Þ¼
gNf

2�3�

X
i

�i�ið�Þ
�ið�Þþ�q

ffiffiffiffiffiffiffiffiffiffiffiffi
�ið�Þ
�

s
sgnð�i �EÞD�ð0Þ

þ g

2�3�

X
i>j

�ij�ijð�Þ
�ijð�Þþ�g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ijð�Þ
�

s
sgnð�ij �EÞDþð0Þ;

(46)

and the functions D
ð
Þ are defined as integrals [11]

D
ð
Þ ¼
Z 1

0
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 þ ð1� 
2Þ�

q
j ln ð1
 e��Þj: (47)

We note that Eq. (46) agrees again with the expression used
before in [11].

D. Boost-invariant Maxwell equations

With all the substitutions required by the boost invari-
ance, the field equation (23) may be written in a very
compact form as

d2hð�Þ
d�2

¼ 1

�

dhð�Þ
d�

þ �2½Jð�Þ þ JDð�Þ	: (48)

This is an integro-differential equation for the function
hð�Þ, because the conductive current Jð�Þ depends not
only on hð�Þ but also on the values of hð�0Þ for 0 � �0 �
�. Equation (48) has to be solved numerically for given
initial values. These are taken in the form

hð0Þ ¼ 0;
1

�

dh

d�
ð0Þ ¼ �E0 ¼ �

ffiffiffiffiffiffiffiffiffi
6�q

�r2

s
kq: (49)

In practice, to solve Eq. (48) we apply the iterative method
introduced in [27]. We first assume a certain temperature
time profile in the background thermal distributions; i.e.,
we start with an arbitrary function Tð�Þ and solve the
equation for the field hð�Þ in this background. At the
same time we determine the new temperature profile
from the Landau matching condition. In the next step, we
use the new temperature profile to solve the field equations
and determine the next temperature profile from the
Landau matching condition. Repeating this procedure sev-
eral times, we come to the stable solution for Tð�Þ and the
field hð�Þ.
The solution of (48) is independent of the initial condi-

tion for hð�Þ because of the cancellations connected with
the gauge transformation which leaves E unchanged. Since
the exchange of color charges at the initial stage of a
heavy-ion collision leads to the color fields spanned by
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gluons, we assume that q is one of the gluon color charges
�ij. In reality, after a collision the color distribution of

nuclear disks may be strongly fluctuating in the transverse
direction. In this approach such fluctuations are smoothed
out.

V. ENERGY-MOMENTUM CONSERVATION LAW

A. Energy-momentum tensor of quarks and gluons

The energy-momentum tensor of the produced quarks
and gluons has the form

T�� ¼
Z

dPp�p�

�X
i

X
f

ðGifðx; pÞ þ �Gifðx; pÞÞ

þ X3
i;j¼1

~Gijðx; pÞ
�

¼
Z

dPp�p�Sð�; w; p?Þ: (50)

Here we have introduced the function Sð�; w; p?Þ to denote
the expression in the square brackets in (50). The symme-
try properties (35) imply that Sð�; w; p?Þ is an even func-
tion of w. Using this fact as well as Eqs. (29) and (30) we
find that the energy-momentum tensor (50) may be written
in the form

T�� ¼ ð"þ P?ÞU�U� � P?g�� þ ðPk � P?ÞV�V�;

(51)

where

"ð�Þ ¼
Z

dP
v2

�2
Sð�; w; p?Þ; (52)

Pkð�Þ ¼
Z

dP
w2

�2
Sð�; w; p?Þ; (53)

P?ð�Þ ¼
Z

dP
p2
?
2

Sð�;w; p?Þ: (54)

The structure of the energy-momentum tensor (51) is
typical for anisotropic systems; for example, see [62–64].

If we used the equilibrium distribution functions in (50),
we would obtain the equilibrium energy-momentum tensor
of the form

T
��
eq ¼ ð"eq þ PeqÞU�U� � Peqg

��; (55)

where

"eq ¼ ð6Nf þ 6Þ 6T
4

�2
¼ 36ðNf þ 1ÞT4

�2
; Peq ¼ 1

3
"eq:

(56)

The factor 6T4=�2 describes the energy density of classical
(Boltzmann) massless particles with the spin degeneracy 2.
The Landau matching (20) is reduced in this case to the
equation

"ð�Þ ¼ "eqð�Þ ¼
36ðNf þ 1ÞT4ð�Þ

�2
: (57)

Equation (57) allows us to determine the effective tem-
perature of the system and to use it in the background
distribution functions.

B. Energy conservation for field and matter

The energy-momentum conservation law for the system
of quarks, gluons, and the chromoelectric field has the form

@�T
��ðxÞ þ @�T

��
fieldðxÞ ¼ 0: (58)

Here T�� is given by Eq. (51), while T
��
field is a diagonal

energy-momentum tensor of the field

T��
field ¼

"field 0 0 0

0 "field 0 0

0 0 "field 0

0 0 0 �"field

0
BBBBB@

1
CCCCCA; "field ¼ 1

2
E2:

(59)

One may notice that the field acts as matter whose trans-
verse pressure is positive and equal to the field energy
density "field. On the other hand, the field longitudinal
pressure is negative and equals �"field.
The total energy momentum tensor may be written in the

form analogous to (51), namely,

T��
total ¼ ð"þ P? þ 2"fieldÞU�U� � ðP? þ "fieldÞg��

þ ðPk � P? � 2"fieldÞV�V�

� ð"total þ P?
totalÞU�U� � P?

totalg
��

þ ðPk
total � P?

totalÞV�V�: (60)

The energy-momentum conservation (58) implies that the
following equation should be always satisfied:

d"field
d�

þ d"

d�
¼ �"þ Pk

�
: (61)

We note that, in the case without the field, the first term on
the left-hand side of Eq. (61) is absent and (61) is reduced
to the equation used in anisotropic hydrodynamics for one-
dimensional and boost-invariant expansion. Moreover,
for isotropic pressure, Pk ¼ "=3, Eq. (61) is reduced to

Bjorken’s law.

C. Equations of motion

In this section, we show that the field equations
(23)–(25) guarantee that the energy and momentum of
our system are conserved quantities. The � ¼ 0 component
of the energy-momentum conservation equation includes
the terms

@�T
�0
field ¼

@

@t

�
1

2
E2

�
¼ E � @E

@t
¼ �F30 � @F

03

@t
(62)
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and

@�T
�0 ¼

Z
dPp0p�@�

�X
i

X
f

ðGif þ �GifÞ þ
X3
i;j¼1

~Gij

�

¼ �gF�� �
Z

dPp0p�@
p
�

�X
i

�i
X
f

ðGif � �GifÞ

þ X3
i;j¼1

�ij
~Gij

�

þ 2
Z

dPp0

�X
i

X
f

dNif

d�inv

þX
i>j

d ~Nij

d�inv

�
: (63)

In Eq. (63) we used the kinetic equations (5)–(7) and
applied the Landau matching (20). This allows us to write
the � ¼ 0 component of the total energy-momentum
conservation law in the form

F30 � @F
03

@t
¼ F30 � g

Z
dPp3

�X
i

�i
X
f

ðGif � �GifÞ

þ X3
i;j¼1

�ij
~Gij

�
þ F30 �

Z
dP

�X
i

2p0�i
�i � F30

�X
f

dNif

d�inv

þX
i>j

2p0�ij

�ij � F30

d ~Nij

d�inv

�
: (64)

We thus see that the field equations (23)–(25) with the
definitions of the dipole moments (26) represent a suffi-
cient condition to have the total energy of the system
conserved (note that the delta functions present in the
production rates generate zero longitudinal momenta at
z ¼ 0). Similarly, we may analyze the � ¼ 3 component
of the energy-momentum conservation law and obtain the
same conclusion.

VI. RESULTS

A. Initial conditions and model parameters

In this section, we present our main results. In the
numerical calculations we use two values of the parameter
k (k ¼ 5 and k ¼ 10) and three values of the parameter
4� ��; see Eqs. (21) and (22). The extra cases defined by the
condition 4� �� ¼ 1 correspond to the situations where the
collision terms are absent and the system’s dynamics is
determined by the mean field only (Boltzmann-Vlasov
limit). For the sake of simplicity, the masses of quarks
are neglected and we take into account only two quark
flavors, Nf ¼ 2 (the incorporation of the finite quark

masses into the present formalism is quite straightforward,
but all the equations become much more intricate; see, for
example, Ref. [12]). In addition, we assume that the initial
field is spanned by the gluons with the charge �12:

E0 ¼ ðE0
ð3Þ; E

0
ð8Þ ¼ 0Þ ¼

ffiffiffiffiffiffiffiffiffi
6�q

�r2

s
k�12: (65)

In this case, the second component of the field is always
zero. With the initial condition (65) we solve Eq. (48) and
obtain the functions hð�Þ ¼ ðhð3Þð�Þ; hð8Þð�Þ ¼ 0Þ and Tð�Þ.
The knowledge of hð3Þð�Þ and Tð�Þ allows us to calculate

all other interesting physical quantities.

B. Oscillations vs damping of the color fields

In Fig. 1, we show the time dependence of the chromo-
electric field normalized to its initial value, for k ¼ 5 (left)
and k ¼ 10 (right). Different curves describe our results
obtained for different values of the viscosity. In the case
4� �� ¼ 1 and k ¼ 5 (dotted green line in the left part of
Fig. 1) we reproduce the result obtained earlier in Ref. [11].
This result describes oscillations of the chromoelectric
field which are slowly damped due to the longitudinal
expansion of the system. Similarly, in the case 4� �� ¼ 1
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FIG. 1 (color online). Time dependence of the chromoelectric field for different values of the viscosity in the case k ¼ 5 (left) and
k ¼ 10 (right). The values of the field are normalized to its initial value.
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and k ¼ 10 (dotted green line in the right part of Fig. 1) we
deal again with the oscillations of the chromoelectric
field—they are faster than those found in the case 4� �� ¼
1 and k ¼ 5. The increase of the field frequency with the
increasing strength of the initial chromoelectric field was
observed earlier for k � 5 in Ref. [11].

A new aspect of the present work is the inclusion of the
viscosity effects which are characterized by the parameter
4� ��. As the viscosity of the system decreases, the colli-
sions between particles become more frequent, the system
becomes more dissipative, and the oscillations of the chro-
moelectric field are more and more damped. For 4� �� ¼ 1
the oscillations practically disappear for both k ¼ 5 and
k ¼ 10 (solid red lines in the left and right parts of Fig. 1).
Nevertheless, for larger values of the viscosity (for
example, for 4� �� ¼ 3) the effects of collisions do not
seem to be efficient enough to completely damp down
the plasma oscillations. Only if the viscosity is defined
by the KSS bound may the oscillations be neglected.

It is interesting to note that the dependence of the
relaxation time on the inverse of the effective temperature
makes �eq on average smaller in the case k ¼ 10 than in the

case k ¼ 5. This leads to similarities between the cases
k ¼ 5 and k ¼ 10, because larger initial fields in the case
k ¼ 10 are damped faster by the collisions, while the
smaller initial fields in the case k ¼ 5 are damped slower.

C. Effective temperature and effective viscosity

Figure 2 shows the time dependence of the effective
temperature Tð�Þ of the system for k ¼ 5 (left) and k ¼
10 (right). Again, different curves describe our results
obtained for different values of the viscosity. The effective
temperature is a measure of the energy density of the
produced quarks and gluons; see Eq. (57). Initially, it is
equal to zero; however, due to the fast decay of the initial
chromoelectric field, it grows rapidly at the very early
stages of the evolution of the system. After the initial rapid

growth, the effective temperature decreases in a qualita-
tively similar way to that predicted in the Bjorken model

[61]; one may check that Tð�Þ � ��1=3. However, the
presence of both viscosity and color fields leads to notice-
able deviations from the Bjorken-scaling behavior.
In order to quantitatively characterize the system’s

behavior at later times we assume that the plasma may
be characterized by the first-order viscous-hydrodynamics
equations. In the case of one-dimensional boost-invariant
expansion, the ratio of the shear viscosity to entropy den-
sity is connected with the system’s effective temperature
Tð�Þ and its time derivative dTð�Þ=d� through the formula

dT

d�
þ T

3�
¼ 4 ��eff

9�2
: (66)

We use the numerical results for the functions Tð�Þ shown
in Fig. 2 and substitute them into the left-hand side of
Eq. (66) in order to calculate the effective viscosity ��eff .
The functions ��effð�Þ obtained for different values of the
parameters k and 4� �� are shown in Fig. 3.
At first, in the two upper parts of Fig. 3, one can notice

that in the minimum viscosity case (defined by the condi-
tion 4� �� ¼ 1) the effective viscosity of the system starts to
agree very well with the viscosity parameter �� after
1–2 fm=c, for both k ¼ 5 and k ¼ 10. In practice, this
means that for � > 1 fm=c our complicated system of
fields and particles is very well described by the first-order
viscous hydrodynamics (and, consequently, also by the
second-order hydrodynamics).
On the other hand, for larger values of the viscosity,

for example, in the cases 4� �� ¼ 3 and 4� �� ¼ 10
(see the two middle and two lower parts of Fig. 3), the
effective viscosity ��eff differs from the value of ��. In these
cases the collisions in the plasma become inefficient to
damp down the plasma oscillations. The presence of such
oscillations brings in differences between the kinetic and
viscous-hydrodynamics descriptions and indicates that the
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FIG. 2 (color online). Time dependence of the effective temperature T for different values of the viscosity in the case k ¼ 5 (left) and
k ¼ 10 (right).
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viscous-hydrodynamics description after 1–2 fm=c is not
completely satisfactory if 4� �� � 3.4 The presence of
the color fields at this stage suggests that the viscous
hydrodynamics should be extended to include transport
phenomena connected with color conductivity.

However, it is interesting to observe in the case
4� �� ¼ 3 that, although ��eff and �� are different, after
1–2 fm=c the effective viscosity starts to fluctuate around
the constant value corresponding to ��. In this case, one
may consider averaging over different color flux tubes
which washes out the oscillations in such a way that the
averaged system may be effectively well described by the
viscous hydrodynamics. It is also interesting to notice that
similar patterns in the behavior of the effective viscosity
have been observed in Ref. [25]; see also [65].

D. Energy density, longitudinal pressure,
and transverse pressure

In Fig. 4, we show the time dependence of the energy
density "ð�Þ, the longitudinal pressure Pkð�Þ, and the

transverse pressure P?ð�Þ of the produced quarks and
gluons. These quantities have been calculated according
to the formulas given in Appendix A—see discussions

following Eqs. (A1), (A4), and (A7). Here we use again
the values k ¼ 5 (left) and k ¼ 10 (right). In order to have
similar time asymptotic behavior for all thermodynamics-
like quantities shown in the figure, the two pressures are
multiplied by a factor of 3. Three panels in the left and right
parts of Fig. 4 correspond to three different values of the
parameter 4� ��.
The two upper parts of Fig. 4 may be interpreted as an

illustration of the fast and almost complete thermalization
of matter—the energy density of the plasma as well as the
two rescaled pressures approach each other very fast. This
result indicates that the viscosity corresponding to the
choice 4� �� ¼ 1 is efficient to equilibrate the system
within 1–2 fm=c. Nevertheless, small differences between
the energy density and the two rescaled pressures remain.
They are caused by the nonzero viscosity included in the
kinetic approach, which has been discussed above.
The two middle panels of Fig. 4 show our results

obtained for 4� �� ¼ 3. In this case the differences between
the functions "ð�Þ, 3Pkð�Þ, and 3P?ð�Þ are larger. In par-

ticular, the longitudinal pressure (dashed lines) is clearly
below the transverse pressure (dotted lines) for � >
1 fm=c. This is certainly an effect of the nonzero viscosity
of the system which tends to lower the longitudinal
pressure and to increase the transverse pressure.
The differences between the transverse and longitudinal

pressures become even larger in the case 4� �� ¼ 10, which
is shown in the two lower panels of Fig. 4. In this case, the
longitudinal pressure is not only much smaller than the
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FIG. 3 (color online). Time dependence of the effective viscosity ��eff for different values of the parameter 4� �� in the case k ¼ 5
(left) and k ¼ 10 (right).

4The same holds if one uses the second-order hydrodynamics.
The oscillations of the plasma parameters imply strong varia-
tions in the initial conditions for hydrodynamics and make the
pure hydrodynamic predictions very unstable.
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transverse pressure but it strongly oscillates in time. The
survival of such oscillations indicates that the collision rate
is not sufficiently fast to destroy collective phenomena in
the plasma.

E. Longitudinal vs transverse pressure

In order to follow in more detail the system’s approach
towards local thermodynamic equilibrium, in Fig. 5 we
show the time dependence of the ratio Pkð�Þ=P?ð�Þ. At
� ¼ 0 the longitudinal pressure is zero. This behavior is
connected with the fact that tunneling particles emerge

from the vacuum with vanishing longitudinal momenta
[see the Dirac delta functions �ðpkÞ or �ðwÞ appearing in

the quark and gluon production rates, Eqs. (13), (15), and
(32)]. In the collisionless case 4� �� ¼ 1, the ratio of the
two pressures strongly oscillates and its average value is
significantly smaller than 1. With decreasing viscosity, the
ratio Pkð�Þ=P?ð�Þ gets closer to unity.

In Fig. 5, the two pressures characterize the produced
quarks and gluons. It is interesting to note, however, that
the chromoelectric field gives extra contributions to the
longitudinal and transverse pressures, and the complete
expressions for the pressures should include the field parts.
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FIG. 5 (color online). Time dependence of the ratio Pkð�Þ=P?ð�Þ for k ¼ 5 (left) and k ¼ 10 and for different values of the viscosity.
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FIG. 4 (color online). Time dependence of the energy density, longitudinal pressure, and transverse pressure of the produced
quark-gluon plasma again in the case k ¼ 5 (left) and k ¼ 10 (right).
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The ratio of the total (particlesþ field) longitudinal pres-
sure and the total (particlesþ field) transverse pressure is
shown in Fig. 6. Since the longitudinal chromoelectric
field gives a negative contribution to the longitudinal
pressure and a positive contribution to the transverse
pressure, the main effect of the field is to lower the
Pkð�Þ=P?ð�Þ ratio calculated for the system of particles

only. This effect is, of course, the strongest at the initial
stages when the color fields are the strongest. For later
times, when the field decays and becomes negligible, the
field contributions to the energy-momentum tensor
become irrelevant and the results shown in Figs. 5 and 6
are very much similar.

VII. CONCLUSIONS

In this paper we have analyzed equilibration of the
quark-gluon plasma produced by decays of color flux tubes
possibly created at the early stages of relativistic heavy-ion
collisions. A novel feature of our approach is the imple-
mentation of the viscosity of the produced quark-gluon
plasma in terms of a constant ratio of the shear viscosity
coefficient to the entropy density, �� ¼ �=� ¼ const. For
constant ��, the relaxation time in the collision terms
becomes a function of the effective temperature of the
plasma, and the numerical analysis of the kinetic equations
becomes much more involved than that applied in the case
where the relaxation time is a constant.

In our numerical calculations we have used realistic
values of the initial field strength and the viscosity.
The initial field strength is chosen in such a way that the
effective temperature of the produced plasma reaches
values expected at RHIC and the LHC, Tmax �
300–500 MeV. For the lowest (KSS) value of the ratio of
the shear viscosity to the entropy density, 4� �� ¼ 1, the
analyzed system approaches the viscous-hydrodynamics
regime within 1–2 fm=c. On the other hand, for larger

values of the viscosity, 4� �� � 3, the collisions in the
plasma are not efficient to destroy collective phenomena
in the plasma, which manifest themselves as oscillations of
different plasma parameters. The presence of such oscil-
lations after the first 1–2 fm=c brings in differences
between the kinetic and viscous hydrodynamic descrip-
tions, which suggests that the viscous-hydrodynamics
description is not complete at this stage if 4� �� � 3 and
should be extended to include dissipative phenomena
connected with color conductivity.
Although our model includes nonperturbative phe-

nomena connected with the Schwinger tunneling
process, the proposed framework is based on the Abelian
assumption. For fast varying fields, such an assumption
may not be justified, and further developments of our
approach are necessary to achieve a more realistic picture
of the quark-gluon plasma. The further developments
should include the gluon saturation phenomenon in the
initial condition and the presence of the chromomagnetic
field in addition to the chromoelectric field in the color
flux tubes.
Another way of extension of the present framework is

the inclusion of the transverse expansion of the produced
matter. However, in this case the system’s description
becomes much more complicated, and, perhaps, com-
pletely different realizations of the color-flux-tube
model might be necessary, for example, in the form of
Monte-Carlo simulations of decaying and interacting
tubes; see [66].
To some extent, the framework presented in this paper

may be regarded as complementary to other approaches
used nowadays to analyze the isotropization or thermaliza-
tion of matter produced in relativistic heavy-ion collisions
[67–73]. For example, in contrast to Refs. [67,68] where
(i) one uses weak coupling techniques, (ii) the background
distribution function is fixed (describing the parton
free streaming), and (iii) the plasma instabilities in the

0 1 2 3 4 5
1

0

1

2

3

fm c

P
to

ta
l
P

to
ta

l

k 5
4 1
4 3
4 10
4

0 1 2 3 4 5
1

0

1

2

3

fm c

P
to

ta
l
P

to
ta

l

k 10
4 1
4 3
4 10
4

FIG. 6 (color online). The same as Fig. 5 but the pressures include the contributions from the field.
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non-Abelian version are taken into account, (i) our
approach uses the large coupling constant, (ii) the kinetic
and field equations are solved in a self-consistent way, and
(iii) there are no plasma instabilities in our Abelian case.
In the future analyses it will be interesting to check if the
damping of the plasma oscillations described in this paper
may have its analog in a possible damping of unstable
modes in the plasma (an effect which may also lead to
thermalization). In the very recent paper [26], a rapid
increase with the coupling constant of the ratio of
longitudinal to transverse pressure has been shown. This
type of dependence on the coupling constant is qualita-
tively reproduced in our model by decreasing the value
of viscosity.
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APPENDIX A: ENERGY DENSITY,
LONGITUDINAL PRESSURE,
AND TRANSVERSE PRESSURE

In this Appendix, we give details of our calculations of
the energy density and the two pressures, which have been
presented in Sec. VI.

1. Energy density

Our starting point for the calculation of the energy
density of quarks and gluons is Eq. (52):

"ð�Þ ¼
Z

dP
v2

�2

�
Nf

X
i

ðGiðx; pÞ þ �Giðx; pÞÞ

þX
i>j

ð ~Gijðx; pÞ þ ~Gjiðx; pÞÞ
�

¼ 2

�2

Z
dw

Z
d2p?v

�
Nf

X
i

Giðx; pÞ þ
X
i>j

~Gijðx; pÞ
�
:

(A1)

Since in the numerical calculations we take into account
only two massless flavors, we have changed here our
notation from Gifðx; pÞ to Giðx; pÞ and replaced the

sum by the factor Nf. We have also used the symmetry

properties of the distribution functions with respect to the
change w ! �w; see Eq. (35). In the next step we use
the general forms of the solutions of the kinetic
equations (36) and substitute them into Eq. (A1). In this
way we obtain

"ð�Þ¼ Nf

4�3�2

Z �

0
d�0Dð�;�0ÞX

i

�
2�0�2

i ð�0ÞD�ð
ið�;�0ÞÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2i ð�;�0Þþ

�ið�0Þ�2
�

s
þ�"

i ð�;�0Þ
�

þ 1

4�3�2

Z �

0
d�0Dð�;�0ÞX

i>j

�
2�0�2

ijð�0ÞDþð
ijð�;�0ÞÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2ijð�;�0Þþ

�ijð�0Þ�2
�

s
þ�"

ijð�;�0Þ
�
: (A2)

The function 
ð�; �0Þ has been already defined by Eq. (42),
while the functions D
ð
Þ have been defined by Eq. (47).
The function �"ð�; �0Þ is defined as an integral over the
equilibrium distribution function

�"ð�;�0Þ¼ 8�3

�eqð�0Þ
Z
dw

Z
d2p?vGeqð�0;�hð�;�0Þþw;p?Þ:

(A3)

2. Longitudinal pressure

In order to calculate the longitudinal pressure we use
Eq. (53):

Pkð�Þ¼
Z
dP

w2

�2

�
Nf

X
i
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�
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X
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(A4)

Using Eqs. (36) one finds

Pkð�Þ¼
Nf
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(A5)

where the functions C
ð
Þ have been defined by Eq. (43)
and

�kð�; �0Þ ¼ 8�3

�eqð�0Þ
Z

dw
Z

d2p?
w2

v

�Geqð�0;�hð�; �0Þ þ w;p?Þ: (A6)
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3. Transverse pressure

The transverse pressure is obtained from Eq. (54):

P?ð�Þ ¼ 1

2
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dPp2
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�
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?
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�
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X
i
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�
:

(A7)

Using again the general forms of the solutions of the
kinetic equations—see Eqs. (36)—one finds

P?ð�Þ ¼
Nf
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(A8)

where

�?ð�; �0Þ ¼ 8�3

�eqð�0Þ
Z

dw
Z

d2p?
p2
?�

2

2v

�Geqð�0;�hð�; �0Þ þ w; p?Þ (A9)

and

E
ð
Þ ¼
Z 1

0

d��j ln ð1
 e��Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 þ ð1� 
2Þ�p : (A10)

The functions (43), (47), and (A10) satisfy the constraint
D
ð
Þ ¼ 
2C
ð
Þ þ ð1� 
2ÞE
ð
Þ.

APPENDIX B: � FUNCTIONS

The functions �ð�; �0Þ defined by Eqs. (44), (A3), (A6),
and (A9) have a form of the integral

�ð�;�0Þ ¼ 8�3

�eqð�0Þ
Z

dw
Z

d2p?Xð�;w;p?Þ

�Geqð�0;�hð�;�0Þ þw;p?Þ
¼ 4�

Z þ1

�1
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Z 1

0
p?dp?Xð�;w;p?Þ

� exp

2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�hð�;�0Þ þwÞ2 þp2

?�
02

q
Tð�0Þ�0

3
5; (B1)

where the function Xð�; w; p?Þ equals w=v, v, w2=v, and

p2
?�

2=ð2vÞ, respectively (we recall that v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þp2

?�
2

q
).

Introducing the new integration variables y ¼ wþ �h and
b ¼ p?=Tð�0Þ and using the notation Tð�0Þ ¼ T0, we
rewrite (B1) as

� ¼ 4�T02 Z þ1

�1
dy

Z 1

0
bdbXð�; y��h; T0bÞ

� exp

2
4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

T02�02
þ b2

s 3
5: (B2)

In the next step we define a ¼ y=ðT0�0Þ and obtain

� ¼ 4�T03�0
Z þ1

�1
da

Z 1

0
bdbXð�; T0�0a� �h; T0bÞ

� exp ½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
	: (B3)

Changing to the polar coordinates a ¼ r cos� and
b ¼ r sin� we find

� ¼ 4�T03�0
Z 1

0
e�rr2dr

Z �

0
d� sin�

� Xð�; T0�0r cos���h; T0r sin�Þ: (B4)

In the case � ¼ �J (X ¼ w=v),

�Jð�; �0Þ ¼ 4�T3ð�0Þ�0
Z 1

0
drr2e�rFJ
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Tð�0Þ�0r ;

�0

�

�
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(B5)

where

FJðx; yÞ ¼ y
Z �

0

sin�ðcos�� xÞd�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2ðcos�� xÞ2 þ sin 2�

p : (B6)

In the case � ¼ �" (X ¼ v),

�"ð�; �0Þ ¼ 4�T4ð�0Þ�2
Z 1

0
drr3e�rF"
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(B7)

where

F"ðx; yÞ ¼ y
Z �

0
sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2ðcos�� xÞ2 þ sin 2�

q
d�: (B8)
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In the case � ¼ �k (X ¼ w2=v),

�kð�; �0Þ ¼ 4�T4ð�0Þ�2
Z 1

0
drr3e�rFk

�
�hð�; �0Þ
Tð�0Þ�0r ;

�0

�

�
;

(B9)

where

Fkðx; yÞ ¼ y3
Z �

0

sin�ðcos�� xÞ2d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2ðcos�� xÞ2 þ sin 2�

p : (B10)

We note that the definition of the variable v—see

Eq. (28)—implies that �" ¼ �k þ 2�?. Hence, the func-
tion �? may be expressed in terms of �" and �k. We also
note that the integrals (B6), (B8), and (B10) are analytic.
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