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The boundary of a manifold can alter the phase of a theory in the bulk. We explore the possibility of a

boundary-induced phase transition for the chiral symmetry of QCD. In particular, we investigate the

consequences of imposing homogeneous Dirichlet boundary conditions on the quark fields. Such

boundary conditions are sometimes employed in lattice gauge theory computations, for example, when

including external electromagnetic fields, or when computing quark propagators with a reduced temporal

extent. Homogeneous Dirichlet boundary conditions force the chiral condensate to vanish at the boundary,

and thereby obstruct the spontaneous breaking of chiral symmetry in the bulk. We show the restoration of

chiral symmetry due to a boundary is a nonperturbative phenomenon depending upon the mechanism of

spontaneous symmetry breaking, and utilize the sigma model to exemplify the issues. Within this model,

we find that chiral symmetry is completely restored if the length of the compact direction is less than

2.0 fm. For lengths greater than about 4 fm, an approximately uniform chiral condensate forms centered

about the midpoint of the compact direction. While the volume-averaged condensate approaches the

infinite volume value as the compact direction becomes very long, the finite-size corrections are shown to

be power law rather than exponential.
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I. INTRODUCTION

One of the hallmark nonperturbative features of QCD is
spontaneous breaking of chiral symmetry. While quark
masses explicitly break the chiral symmetry of the action,
the lightest quarks (up and down) have masses that can be
treated as a perturbation about the symmetric SUð2ÞL �
SUð2ÞR chiral limit. The formation of a chiral condensate
by the QCD vacuum in the chiral limit, namely h �c c i � 0,
spontaneously breaks the chiral symmetry down to the
vector subgroup, SUð2ÞV . This symmetry breaking pattern
along with the explicit breaking due to the quark masses
gives an explanation of the lightness of the isotriplet of
pseudoscalar pions because they must be the emergent
Goldstone bosons.

Lattice gauge theory provides a first principles method
for solving QCD numerically on finite Euclidean space-
time lattices. Strictly speaking, spontaneous symmetry
breaking cannot occur in a finite volume [1]. In practice,
the formation of a chiral condensate on periodic lattices is
determined by the size of the pion Compton wavelength
compared to the lattice size [2]. When the pion Compton
wavelength is small compared to the lattice size, 1=m� �
L, the finite volume effect on the condensate is exponen-
tially small and can be computed in chiral perturbation
theory [3]. On the other hand, when the pion Compton
wavelength is large compared to the lattice size, 1=m� �
L, the zero-momentum mode of the coset of Goldstone

fields becomes strongly coupled [4]. Taking the chiral limit
at finite volume puts one in the latter regime, which is the
regime in which chiral symmetry is restored.
In this work, we explore a different restoration of chiral

symmetry.1 We consider the fate of chiral symmetry on a
Euclidean manifold with three infinite directions, and one
compact direction that, unlike the periodic case, has a
boundary. Specifically the compact direction is subject to
homogeneous Dirichlet boundary conditions. Such bound-
ary conditions are sometimes employed in lattice gauge
theory computations.2 One example occurs in the study of
hadron properties in external electromagnetic fields. Naive
implementation of uniform external fields via linearly
rising four-vector potentials leads to field gradients at the
lattice boundary, and homogeneous Dirichlet boundary
conditions have been sought to mitigate the effect of these
electromagnetic field gradients on the quarks [8–11].
Additionally temporal Dirichlet boundary conditions
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1Throughout we refer exclusively to the nonsinglet chiral
symmetry, SUð2ÞL � SUð2ÞR. For the singlet case, it is conve-
nient to phrase the discussion in terms of the axial symmetry of
the QCD action, Uð1ÞA, which is anomalous in infinite volume.
On a manifold with a boundary, the presence of the axial
anomaly is subtle [5]. With a homogeneous Dirichlet boundary,
it is known that the integral of the singlet axial current’s
divergence vanishes [6]. We leave the investigation of the chiral
anomaly to future work.

2Inhomogeneous Dirichlet boundary conditions are imposed in
the Schrödinger functional representation of QCD [7]. These
boundary conditions too can affect spontaneous chiral symmetry
breaking as will be made clear in a footnote below.
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have been imposed on lattices to compute quark propaga-
tors with a reduced temporal extent (so-called chopping of
lattices) [12–14].3

The possibility that the boundary of a manifold can
affect the phase of a theory in the bulk is a known phe-
nomenon in condensed matter physics, for an overview of
boundary critical phenomena, see [18]. There has been
some very recent work using the Gross-Neveu model to
investigate the relation between chiral symmetry breaking
and the Casimir force through a direct computation of the
boundary separation and temperature dependence of
the model’s vacuum energy [19,20]. To our knowledge,
the effect of homogeneous Dirichlet boundary conditions
on the chiral condensate in QCD has otherwise not been
explored.

We employ a different approach to demonstrate that
homogeneous Dirichlet boundary conditions can lead to
the restoration of chiral symmetry. Our consideration is in
the absence of any external electromagnetic fields. Unlike
on periodic lattices, we find that the restoration of chiral
symmetry in the case of Dirichlet boundary conditions is
not controlled by the size of the pion Compton wavelength.
Instead, the restoration of chiral symmetry in this case
depends on the underlying mechanism of spontaneous
symmetry breaking. To investigate these effects, we utilize
the sigma model and constrain the model parameters from
phenomenology, using some assumptions about the quark
content of the lowest resonance in QCD.While there is rich
phenomenology exploring the role isoscalar scalar states
play in the mechanism of spontaneous chiral symmetry
breaking, see [21,22] and references therein, we employ
the simplest possible model. In the sigma model, the
Compton wavelength of the sigma meson strongly controls
the restoration of chiral symmetry in the presence of a
Dirichlet boundary.We find substantial effects on the chiral
condensate for lattice sizes less than about 4 fm. As our

consideration lies outside of chiral perturbation theory, our
estimate is necessarily model dependent. The sigma model
employed, however, has the minimal features necessary to
address the effect, whereas chiral perturbation theory by
contrast does not. An important finding within this model is
that finite-size effects on the volume-averaged condensate
only vanish as a power law rather than as an exponential.
Our presentation has the following organization. We first

describe the simple sigma model that we employ in Sec. II.
The model is then considered in Sec. III with homogeneous
Dirichlet boundary conditions in one of the space-time
directions. We obtain an expression for the local chiral
condensate by solving the analytical mechanics that deter-
mines the vacuum. The volume-averaged condensate is
shown to approach the infinite volume value up to power-
law corrections. Finally in Sec. IV, a brief summary
concludes this work.

II. SIGMA MODEL

We begin by describing the simple sigma model we
employ. The ingredients are chosen so that the model
shares the same pattern of symmetry breaking as QCD
with two light flavors, and contains the simplest possible
mechanism of spontaneous symmetry breaking. Our con-
sideration in this section is restricted to infinite volume.
The sigma model consists of an isoscalar scalar field, S,

and an isovector pseudoscalar field, ~P. These fields appear
in the Euclidean space action density having the form

LE ¼ 1

2
@�S@�Sþ 1

2
@� ~P � @� ~P� �m

v
S

þ�ðS2 þ ~P2 � v2Þ2: (1)

There are four parameters of this model, m, v, �, and �.
The parameterm is analogous to the quark mass. When the
quark-mass parameter is set to zero, the action density in
Eq. (1) has an SOð4Þ ffi SUð2Þ � SUð2Þ symmetry. The
quartic interaction term, however, leads to spontaneous
breaking of the SOð4Þ symmetry down to SOð3Þ ffi
SUð2Þ, by the formation of a condensate, namely S20 þ
~P2
0 ¼ v2. We append a subscript ‘‘0’’ throughout to

denote the vacuum expectation value of a field. Here the
vacuum expectation values are uniform in space-time, e.g.
S0ðxÞ ¼ S0.
In discussing the sigma model, it is convenient to use a

polar decomposition of the fields. To this end, we write

Sþ i ~P � ~� ¼ �U; (2)

where ~� are the usual isospin matrices, � is a real-valued
field, and U is a unitary field. The latter encompasses the
Goldstone bosons ~� in the form U ¼ exp ði ~� � ~�=FÞ. In
terms of the polar decomposition, the sigma model action
density has the form

3In both of these scenarios, only the valence quarks are
subjected to Dirichlet boundary conditions, and one should
formulate the problem in terms of graded symmetries [15,16].
For a partially quenched theory utilizing the same boundary
conditions in the valence and sea sectors, chiral symmetry
breaking takes the form SUð4j2ÞL � SUð4j2ÞR ! SUð4j2ÞV .
With different boundary conditions, however, there is no
symmetry relating the valence and sea sectors, and the chiral
symmetry of the action must have the form SUð2j2ÞL �
SUð2ÞL � SUð2j2ÞR � SUð2ÞR, which is the same symmetry as
in mixed-action lattice QCD calculations [17]. This reduced
symmetry can break either to SUð2j2ÞV � SUð2ÞV , by the for-
mation of valence and sea quark chiral condensates, or to
SUð2j2ÞL � SUð2j2ÞR � SUð2ÞV , by the formation of only a
sea quark chiral condensate. Our consideration above is for the
valence subgroup of the graded chiral symmetry, i.e. SUð2ÞL �
SUð2ÞR � SUð2j2ÞL � SUð2j2ÞR, and the mesons of the sigma
model should be viewed as built only from valence quarks. One
can go further and generalize the sigma model to appropriately
reflect the graded symmetries; but, this is beyond the scope of
our work.
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LE ¼ 1

4
tr½@��@��þ�2@�U@�U

y�

� �

4v
tr½m�ðUþUyÞ� þ�ð�2 � v2Þ2: (3)

Traces appearing above are taken over isospin. The vac-
uum state of the theory is determined by minimizing the
action density. The action has a minimum for the values:4

U0 ¼ 1 and �0 ¼ v. Expanding about these vacuum

expectation values, U ¼ 1þ i ~�� ~�
F þ � � � , and � ¼ vþ �,

we have to quadratic order in the fields

L ¼ 1

2
@��@��þ 1

2
m2

��
2 þ 1

2
@� ~� � @� ~�þ 1

2
m2

� ~� � ~�;

(4)

with the meson masses identified as m2
� ¼ 8�F2, and

m2
� ¼ �m=F2. Notice we must have the equality F ¼ v

in order for the pion kinetic term to have the proper
canonical normalization.

The chiral condensate, which we denote by h �c c i, can
be found by differentiating the vacuum energy density with
respect to the explicit symmetry breaking parameter, which
is the quark mass m. The value of the chiral condensate is
simply

h �c c i ¼ ��: (5)

This identification enables us to rewrite the pion mass in the
form F2m2

� ¼ jh �c c ijm, which is the Gell-Mann–Oakes–
Renner relation. In the absence of explicit symmetry break-
ing, i.e. the chiral limit whenm ¼ 0, the pions are massless
Goldstone modes. The sigma meson, on the other hand,
remains massive, with its mass scale set by the pion decay
constant F. In the chiral limit, the sigma meson can thus be
integrated out to produce a low-energy theory of just the
Goldstone modes [23]. This theory is chiral perturbation
theory and is a model independent description of low-
energy QCD [24]. To study the effects of a Dirichlet bound-
ary on the chiral condensate, however, we must retain the
sigma degree of freedom. Without the sigma, the chiral
limit condensate would be frozen into a uniform value,
and this conflicts with the quark boundary conditions.

Using some assumptions, we can use phenomenology to
fix the model parameters. With our normalization, the
vacuum expectation value v of the sigma field is identical
to the parameter F, which can be identified as the pion
decay constant once an external axial-vector field has been
coupled to the theory. Technically F is the chiral limit
value of the pion decay constant, and has the approximate
numerical value F ¼ 93 MeV. We assume that the sigma
field corresponds to the lightest resonance in QCD.

The mass of this sigma resonance has been determined
from a detailed analysis of high-precision �� scattering
data [25]. From the extracted mass of the sigma, m� ¼
440 MeV, we find the parameter � has the value � ¼ 2:8.
In our model, the sigma meson is a particle not a resonance,
and consequently the usual caveats about meson models
apply. The chiral condensate can be used to fix the value of
the parameter �, which itself is the chiral limit value of the
condensate up to sign. This quantity, however, is QCD
renormalization scale and scheme dependent, and we sim-
ply choose to quote results in terms of ratios to the infinite
volume condensate, for which the scale and scheme
dependence exactly cancels.5

III. DIRICHLET BOUNDARY

Above we describe the symmetry breaking in the sigma
model in infinite volume. To minimize the action as a
functional of the meson fields, we eliminated the kinetic
terms by restricting our attention to uniform field configu-
rations. These uniform field configurations are energeti-
cally preferred because the kinetic energy contributes
positively to the action density. With a homogeneous
Dirichlet boundary condition, however, there are no non-
trivial field configurations that are uniform. On the other
hand, the potential energy terms in the action drive the �
field to a nonvanishing vacuum expectation value. In gen-
eral, the Dirichlet boundary now allows for competition
between the kinetic and potential terms, and the symmetry
breaking pattern of the model must be scrutinized.

4In the chiral limit, one has two possibilities for the vacuum
expectation value of the sigma field, �0 ¼ 	v. Inclusion of a
small quark-mass term, and the subsequent chiral limit, m ! 0,
will lead to the selection of �0 ¼ þv.

5It is efficacious to spell out a procedure to investigate the
effects of Dirichlet boundary conditions on the chiral condensate
using the lattice as a regulator. In this case, the condensate is
both multiplicatively and additively renormalized at finite values
of the quark mass. We can define a subtracted chiral condensate
for the case of Dirichlet boundary conditions in a way that is
analogous to the temperature dependent case, see, for example,
[26]. Consider two values of the quark mass, m1, and m2 for a
given lattice action. Using this ultraviolet regulator, one
computes four quantities: the chiral condensate with periodic
boundary conditions for each quark mass, h �c c im1

and h �c c im2
,

and the local chiral condensate with Dirichlet boundary con-
ditions for each quark mass, h �c c ðxÞim1

and h �c c ðxÞim2
. The

subtracted condensates, h �c c isub ¼ h �c c im1
� m1

m2
h �c c im2

and

h �c c ðxÞisub ¼ h �c c ðxÞim1
� m1

m2
h �c c ðxÞim2

, are free of power-

law divergences, which are proportional to ma�2. In the latter
case, the subtraction cancels a quark-mass independent function
that depends on x. The ratio of subtracted condensates,
h �c c ðxÞisub=h �c c isub, can then be used to study the behavior
of the chiral condensate in the infrared. Because the chiral
condensate calculated with periodic boundary conditions suffers
from finite-size effects, one should first take the infinite volume
limit of h �c c isub in order to isolate the finite-size effects arising
solely from Dirichlet boundary conditions when forming the
ratio. Finally the local chiral condensates can be averaged over
the compact direction to investigate the behavior of the volume-
averaged condensate. Such quantities are more likely to be
computed using the lattice in order to reduce statistical noise.
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For simplicity, we choose to impose a homogeneous
Dirichlet boundary condition in just one of the space-time
directions. Because we work in Euclidean space, we need
not specify whether it is a spatial or temporal direction that
has a boundary. The remaining three directions are kept
infinite. We thus consider the quark field c ðxÞ to satisfy
the boundary conditions c ðx ¼ 0Þ ¼ 0, and c ðx¼LÞ¼0,
where L is the length of the x direction.6 The other space-
time directions are treated implicitly in our notation.

The imposition of quark boundary conditions translates
into boundary conditions on the� and ~� fields of the sigma
model. We assume these meson fields have the same
quantum numbers of certain quark-level interpolating
operators.7 In particular, we take �ðxÞ 
 �c ðxÞc ðxÞ and
~�ðxÞ 
 �c ðxÞ�5 ~�c ðxÞ. As a result of these identifications,
we have the boundary conditions

�ðx¼ 0Þ ¼�ðx¼ LÞ ¼ 0; Uðx¼ 0Þ ¼Uðx¼ LÞ ¼ 1:

(6)

These boundary conditions can be directly obtained if one
derives the sigma model from a model with quarks, namely
from the Nambu–Jona-Lasinio model [30].
To find the vacuum of the theory with Dirichlet bound-

ary, we minimize the action density. For the directions of
infinite extent, the fields are frozen into their corresponding
zero-momentum modes. On account of Eq. (6), the unitary
field U can take on a uniform value U0 ¼ 1 for all space-
time. The quark-mass term will consequently be mini-
mized as a function of U0 for U0 ¼ 1 provided the vacuum
value of the field � is positive. As the quark-mass depen-
dent case is more complicated, we will work in the chiral
limit, m ¼ 0, for which the vacuum minimization requires
U0 ¼ 1. It is important to note that adding a small quark-
mass term to the action leads to an energetic preference for
positive values of �.
The vacuum value of the field � depends on the x

coordinate, namely � ¼ �0ðxÞ þ � � � . In the chiral limit,
this vacuum expectation value will minimize the action
density

S½�0� ¼ 1

L

Z L

0

�
1

2

�
d�0

dx

�
2 þ�ð�2

0 � v2Þ2
�
dx; (7)

which is a functional of �0ðxÞ. The functional minimiza-
tion, �S=��0ðxÞ ¼ 0, can be achieved through solving the
Euler-Lagrange equation. Once this solution is known, the
value of the chiral condensate follows immediately

h �c c ðxÞi ¼ � �

F
�0ðxÞ: (8)

Accordingly the chiral condensate will vanish at the
boundary, but could develop a nonzero value in the bulk.
It remains to solve the Euler-Lagrange equation to
determine �0ðxÞ.
The problem of minimizing the action density is equiva-

lent to a problem in analytical mechanics. The mechanical
analogue of energy is given by

E ¼ 1

2

�
d�0

dx

�
2 ��ð�2

0 � v2Þ2; (9)

and is a constant of the motion. Because of the Dirichlet
boundary at x ¼ 0 and x ¼ L, any nontrivial solution for
�0ðxÞ must have at least one turning point. The turning
points xj are determined by the condition d�0=dxjx¼xj ¼0.

Labeling the corresponding values of the field at the turn-

ing points,�ðjÞ
0 ¼ �0ðxjÞ, we see that the latter are given by

�ð1Þ
0 ¼ þv

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
; �ð2Þ

0 ¼ �v
ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
;

�ð3Þ
0 ¼ �v

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
; �ð4Þ

0 ¼ þv
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
;

(10)

with � ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
� E

�v2

q
. In order for there to be any turning

points at all, it must be the case that E < 0. For the first
two turning points to exist, one additionally requires � < 1.

6In the Schödinger functional representation of QCD [7], one
imposes inhomogeneous Dirichlet boundary conditions in the
temporal direction having the form, Pþc ðx4 ¼ 0Þ ¼ �c ðx4 ¼
0ÞP� ¼ 0, and P�c ðx4 ¼ TÞ ¼ �c ðx4 ¼ TÞPþ ¼ 0, where
P	 ¼ 1

2 ð1	 �4Þ are parity projection matrices, and the remain-
ing components of the fermion field are nonvanishing at the
boundaries. From a renormalization group argument, such
boundary conditions are natural in the continuum limit [27].
The chiral condensate can be written trivially as the sum,
h �c c ðxÞi ¼ h �cPþc ðxÞi þ h �cP�c ðxÞi, which consequently
vanishes at the boundaries x4 ¼ 0, and T. The Schrödinger
functional is largely employed as a renormalization scheme;
and, as a massless scheme, the massless fermions cannot scatter
off the chiral condensate. Restoration of chiral symmetry due to
the boundary is then irrelevant for determining the renormaliza-
tion of operators in this scheme. The same is not true for the
calculation of hadron properties at nonvanishing quark masses
within the Schrödinger functional formulation. While the uti-
lization of small temporal lattices becomes possible to compute
hadron properties, see, for example, [28], one must be careful to
account for possible nonperturbative finite-size effects resulting
from the temporal dependence of the chiral condensate.

7While such an interpolating operator for the � field is
perfectly reasonable in the context of this model, it must be
mentioned that the isoscalar scalar resonances in QCD exhibit an
unusual spectroscopy. In particular the inverted level ordering of
the states is suggestive of a two-quark, two-antiquark structure,
as first pointed out in [29]. An admixture of such states in the
physical sigma resonance should not pose a problem for our
results because local two-quark, two-antiquark interpolating
operators also vanish at a Dirichlet boundary. Mixing with a
scalar glueball, however, would complicate things. For quark-
antiquark scalars, such mixing is not possible in the chiral limit,
while mixing becomes possible for certain two-quark, two-
antiquark scalars. If our field � were to contain a small scalar
glueball component; then, by virtue of the gauge field periodic-
ity, the chiral condensate would not vanish at the boundary, see
Eq. (8), which would contradict the quark boundary conditions.
In this case, the glueball component of the � field would need to
be removed in order to be consistent. Such issues are important
to incorporate in a more realistic model of spontaneous chiral
symmetry breaking.
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The concavity of the function �0ðxÞ follows from the
analogue of Newton’s second law. The force is given by
F ¼ �dV=d�0, with V ¼ ��ð�2

0 � v2Þ2, and implies

that the values of the field at the turning points, �ðjÞ
0 , are

local minima for j even, and local maxima for j odd. As a

result, we need not consider the turning points�ð3Þ
0 and�ð4Þ

0

in determining the solution �0ðxÞ. For example, consider a
solution which rises from �0 ¼ 0 at x ¼ 0. For this solu-
tion to turn over, we need a positive turning point corre-
sponding to a maximum. The only possibility is the value

�ð1Þ
0 . The solution �0ðxÞ could then decrease from the

maximum down to a minimum before rising again, but
the only possible turning point that corresponds to a mini-

mum with value less than�ð1Þ
0 is�ð2Þ

0 . The solution�0ðxÞ is
necessarily bounded by �ð1Þ

0 from above and �ð2Þ
0 from

below. There are an infinite number of solutions which
minimize the action. They are characterized by the number

of oscillations between the extrema �ð1Þ
0 and �ð2Þ

0 . Because

the latter is negative, the inclusion of a small quark-mass
term will lead to an energetic disadvantage for all solutions
having any turning points for which �0ðxÞ attains the

value �ð2Þ
0 .

The solution �0ðxÞ we seek can thus be characterized as
monotonically increasing from zero up to the maximum

value �ð1Þ
0 , and then monotonically decreasing back

down to zero. The motion of �0 is symmetric about the
turning point; consequently, we must have x1 ¼ L=2.
Integrating the equation of motion from the boundary to
the turning point (or vice versa), we arrive at the equation

K

�
1� �

1þ �

�
¼ ‘

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
; (11)

where KðmÞ is the complete elliptic integral of the first
kind. This is a special case of the incomplete elliptic
integral of the first kind, Fð	jmÞ, defined by

Fð	jmÞ ¼
Z 	

0

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�msin 2


p ; (12)

namely KðmÞ ¼ Fð�2 jmÞ. Above, we have employed the

abbreviation

‘ ¼ vL
ffiffiffiffiffiffiffi
2�

p
¼ 1

2
m�L: (13)

The relation expressed in Eq. (11) implicitly defines the
analogue of the mechanical energy E as a function of the
sigma model parameters and the extent of the x direction,
i.e. E ¼ Eðv;�; LÞ. In practice, it is simpler to work with
the dimensionless variable � ¼ �ðv;�; LÞ. In Fig. 1, we
plot the value of � that satisfies Eq. (11) as a function of the
extent of the compact direction, L. For

L <
�

2v
ffiffiffiffi
�

p ¼
ffiffiffi
2

p
�

m�

� 2:0 fm; (14)

the solution requires � � 1 for which the turning point�ð1Þ
0

does not exist, and consequently chiral symmetry is com-
pletely restored in the model.
With the value of � determined from Eq. (11), we can

implicitly specify the solution �0ðxÞ by integrating the
equation of motion to an arbitrary point x. We find the
solution must satisfy

F

�
sin�1 �0

�ð1Þ
0

��������
1� �

1þ �

�

¼ ‘
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p 

8<
:

x
L ; for 0 � x � L

2

1� x
L ; for L

2 � x � L;
(15)

with Fð	jmÞ the incomplete elliptic integral defined above.
Notice the full solution agrees with Eq. (11) at the turning
point.
From this solution, we can determine the chiral conden-

sate as a function of the x coordinate. It is simplest to
consider the ratio of the condensate with Dirichlet bound-
ary conditions with that of the condensate in infinite
volume, namely h �c c ðxÞi=h �c c i. This ratio is plotted in
Fig. 2 for several values of the extent L. For L < 2:0 fm,
the chiral condensate identically vanishes for all x. Above
this size, a nonvanishing condensate forms, however, the
condensate is significantly altered from its infinite volume
value for sizes less that about 4 fm. When L ¼ 3:5 fm, for
example, the condensate is reduced by more than 25% over
half of the length of the x direction. The condensate,
moreover, reaches a maximum value that is 15% smaller
than the infinite volume value. For sizes greater than about
4 fm, an approximately uniform chiral condensate is
formed. The support of the condensate, however, is over
roughly 50% of the extent of the x direction, and is
naturally centered about the midpoint x ¼ L=2.
While the chiral condensate must vanish at the boundary

for all L, chiral symmetry is spontaneously broken in the
bulk of the lattice in the limit of large L. The maximum
value of the chiral condensate approaches the infinite

1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

L fm

FIG. 1 (color online). The solution � as a function of the finite
extent L of the x direction. Values of L for which � � 1 lead to
the vacuum expectation value �0ðxÞ ¼ 0, and hence correspond
to a complete restoration of chiral symmetry in the sigma model.
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volume value, because the sigma field at the turning point

has the behavior, �ð1Þ
0 ! v as L goes to infinity. This

behavior arises due to � approaching zero, see Fig. 1.
From Eq. (11), we can analytically derive the large L limit
of the maximum value of the condensate. Using the
expansion of the complete elliptic integral about unity,
we find the midpoint value is given by

h �c c ðL=2Þi ¼ h �c c i
�
1 – 4 exp

�
�m�L

2

�
þ � � �

�
; (16)

which shows that the asymptotic behavior is controlled by
the Compton wavelength of the sigma meson.

The value of the chiral condensate at the midpoint does
not completely characterize the fate of chiral symmetry
because there is also the issue of support over the bulk of
the lattice. In addressing the extent to which chiral sym-
metry is restored, one can also study the chiral condensate
averaged over the compact direction. This average is
simply defined by

h �c c i ¼ 1

L

Z L

0
dxh �c c ðxÞi: (17)

In the limit of an asymptotically large extent L, the
volume-averaged chiral condensate tends to the infinite
volume value, however, the approach to asymptopia is
slow. In the asymptotic limit, we expand the second argu-
ment of the incomplete elliptic integral in Eq. (15) about
unity. The asymptotic condensate can be determined in
closed form, and averaged over the x direction to produce

h �c c i ¼ h �c c i
�
1� 4 log 2

m�L
þ � � �

�
: (18)

This power-law behavior is confirmed in Fig. 3, where we
compare the volume-averaged condensate determined
from the full solution, Eq. (15), to the asymptotic form
given in Eq. (18). While the asymptotic form works very
well for L > 3 fm, the volume-averaged condensate only
slowly approaches the infinite volume value.

As a final remark in our discussion, we note that the
volume-averaged condensate exhibits a cusp at the point
where chiral symmetry breaking can occur. This sharp
behavior is likely an artifact of the simplicity of the sigma
model we employ. Because chiral dynamics of pions is
insufficient to describe chiral symmetry breaking in the
presence of a Dirichlet boundary, we include the lowest-
lying state with the requisite quantum numbers to address
the problem. Due to confinement, however, there are a
tower of such states, and vacuum expectation values of
these fields will become relevant at short distances.
Inclusion of a higher-lying scalar state �0 in the model
will presumably smooth out the cusp seen around
L ¼ 2 fm, and introduce a milder cusp at a smaller length

scale, L0 ¼ ffiffiffi
2

p
�=m�0 . We leave the inclusion of such

states required in more realistic models of chiral symmetry
breaking to future work.

IV. SUMMARY

Above we investigate the effect of homogeneous
Dirichlet boundary conditions on the chiral condensate.
This effect cannot be ascertained within chiral perturbation
theory, because the chiral condensate is determined by the
expression

h �c c ðxÞi ¼ ��

4
hUðxÞ þUyðxÞi þ � � � : (19)

The right-hand side of this relation does not vanish at the
boundary in contradiction with the quark boundary con-
ditions satisfied on the left-hand side. A consistent treat-
ment of the chiral condensate in the presence of a Dirichlet
boundary necessitates including the dynamics of isoscalar
scalar mesons. For this reason, we employ the sigma model
which shares the same symmetry breaking pattern as
QCD with two light quark flavors, and provides the sim-
plest model of spontaneous chiral symmetry breaking.
Identifying the sigma field with the sigma resonance
of QCD, model parameters are chosen to reproduce
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FIG. 2 (color online). Ratio of the chiral condensate with
homogeneous Dirichlet boundary conditions to the infinite
volume chiral condensate plotted as a function of the x coor-
dinate scaled by L. For L < 2:0 fm, the condensate vanishes
everywhere, h �c c ðxÞi ¼ 0.
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FIG. 3 (color online). Ratio of the volume-averaged conden-

sate in the sigma model h �c c i to the infinite volume condensate
h �c c i plotted as a function of the finite extent L. The dotted
curve shows the asymptotic formula given in Eq. (18).
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phenomenology. We then subject the model to homoge-
neous Dirichlet boundary conditions in one of the space-
time directions. The chiral condensate is determined by
minimizing the action to find the vacuum configuration,
and this is achieved in the sigma model using well-known
functions.

Chiral symmetry is shown to be restored in the sigma
model for sizes less than 2.0 fm. For sizes greater than
about 4 fm, an approximately uniform condensate forms
centered about the midpoint of the compact direction and
having support over roughly half of the compact direction.
The volume-averaged condensate suffers from finite-size
effects that are power law rather than exponential. As our
estimation is necessarily model dependent, it would be
useful to compare the behavior of the chiral condensate
in quark models with spontaneous chiral symmetry break-
ing, and realistic meson models with resonances. Indeed, it
is well recognized that the sigma meson and other isoscalar
scalar resonances play a crucial role in the mechanism of
spontaneous chiral symmetry breaking. To understand the
behavior of the chiral condensate with decreasing size L, a
two-flavor model is insufficient, and higher-lying scalar
resonances should be included. The unusual spectroscopy
of such states suggests that a nonet of two-quark, two-
antiquark states may be needed in addition to a nonet of
quark-antiquark states, see, for example, [21,22]. Inclusion
of such states should not be problematic in our framework,
however, further mixing with scalar glueballs would
require a more careful treatment.

Nonetheless, we believe one should be cautious in
interpreting results from lattice computations employing

homogeneous Dirichlet boundary conditions on lattices
less than about 4 fm in extent. As our estimate, moreover,
comes from treating only one space-time direction as
compact, it would be interesting to consider the case of
two directions subject to Dirichlet boundaries. Such a
scenario is encountered in some lattice computations
with external electromagnetic fields [31,32]. This setup
would additionally allow for an exploration of the
Casimir effect. The three-dimensional case is also of
interest to confront phenomenology of the bag model
[33,34], and the proposal of in-hadron condensates
[35,36]. Finally to establish the credibility of lattice com-
putations with homogeneous Dirichlet boundaries, one
requires a lattice computation of the chiral condensate,
either locally or volume averaged, which will ultimately
reveal the extent to which chiral symmetry is restored in
the presence of a boundary. In turn, frustration of the chiral
condensate via Dirichlet boundaries may enable us to learn
more about the mechanism that underlies spontaneous
chiral symmetry breaking.
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