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The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling

�s and other QCD parameters from the hadronic decays of the � lepton. Motivated by the recent analyses

of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we

consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation

theory, defined by the technique of series acceleration by conformal mappings, which simultaneously

implements renormalization-group summation and has a tame large-order behavior. Two recently

proposed models of the Adler function are employed to generate the higher-order coefficients of the

perturbation series and to predict the exact values of the moments, required for testing the properties of

the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the

renormalization-group-summed nonpower perturbation theories have very good convergence properties

for a large class of moments of the so-called ‘‘reference model,’’ including moments that are poorly

described by the standard expansions. The results provide additional support for the plausibility of the

description of the Adler function in terms of a small number of dominant renormalons.
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I. INTRODUCTION

The strong coupling �s is a fundamental parameter
whose determination is crucial for the low- and high-
energy precision predictions of the standard model. A
variety of sources exist for an accurate determination of
this quantity at different scales [1–3]. The hadronic decays
of the � lepton allow for one of the most precise determi-
nations of the strong coupling and also provide a beautiful
experimental test of the predicted QCD running [1,3].
Indeed, the recent calculation of the QCD Adler function
to five loops in massless QCD [4] motivated a large number
of new determinations of�s from these processes [5–20]. It
may however be noted that � decays involve the strong
coupling at a rather low scale, where the theoretical ambi-
guities inherent to perturbative QCD are expected to be
large. An important ambiguity is related to the prescription
chosen for implementing renormalization-group invari-
ance [7,9,21–23]. Another serious problem is related to
the fact that the coefficients of the perturbative series of the
Adler function in QCD display a factorial growth, i.e. the
series has a vanishing radius of convergence [24–28].
These two problems are in fact related; in particular, the
inclusion of additional terms in the expansion does not
reduce, but on the contrary increases the dependence of the
results on the renormalization-group prescription. The
nonperturbative power corrections and the effects of what
is known as quark-hadron duality violation (DV), i.e. the
breakdown of the operator product expansion near
the timelike axis in the complex energy plane, generate

additional uncertainties. The effects of these ambiguities
are important especially at the low scale M�, where the
coupling is relatively large. The differences between the
specific ways of treating them represent the main source of
theoretical error in the extraction of �sðM2

�Þ.
The � hadronic width is a good observable for the

determination of the strong coupling, since it receives small
contributions from the power corrections and DV. Various
other moments have been also used in the past for the
extraction of the strong coupling. Depending on the struc-
ture of the relevant weight, some moments may receive
larger contributions from the nonperturbative condensates
and terms involving DV, allowing the simultaneous extrac-
tion from data of these quantities and the strong coupling.
The most comprehensive analysis to date, reported in [18],
attempted to include DV in a combined fit of several
moments, which in particular lead to a substantial increase
in the error of the nonperturbative contributions. To improve
such analyses, however, also the properties of the perturba-
tive expansions of the moments must be carefully examined.
Recently, the perturbative expansions of a large class of

spectral function moments have been discussed, under dif-
ferent assumptions for the large-order behavior of the Adler
function [29]. This work extends the investigation of the
hadronic width within two standard QCD perturbative ex-
pansions, the fixed-order and the contour-improved pertur-
bation theories (FOPT and CIPT), to moments defined by
more general weights. One of the important conclusions of
[29] (and of the further study reported in [30]) is that some
moments that are commonly employed in�s determinations
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from � decays should be avoided because of their perturba-
tive instability. We emphasize however that this refers to the
standard expansions, FOPT and CIPT. As we shall show in
this paper, improved expansions with no perturbative insta-
bility can be defined.

It has been recently pointed out [15,16,19,20] that an
alternative to FOPT and CIPT, which is placed somewhat
between the two, but in practice is closer to CIPT, is one
that sums the leading logarithms thereby accounting for the
renormalization group invariance. In Refs. [16,19,20]
we called this approach ‘‘renormalization-group-summed
perturbation theory’’ (RGSPT). In the present work, we
investigate the moments considered in [29] also in the
frame of RGSPT. More significantly, in the present paper
we investigate the moments also in the frame of a novel
formulation of QCD perturbation theory, defined some
time ago in [31–33] starting from the divergent character
of the standard series. The method uses the idea of series
acceleration by means of a conformal mapping [34],
applied to the Borel plane of QCD correlators. In the
new formulation, the standard powers of the coupling are
replaced by new expansion functions which are singular at
the origin of the coupling plane and have divergent pertur-
bative expansions, resembling thereby the expanded func-
tion itself. To emphasize this essential feature, we named
the new perturbation framework as ‘‘nonpower perturbation
theory’’ (NPPT) [14,19,20].1 Detailed studies of the Adler
function in the frame of NPPT [11–16] show that the best
version is obtained by simultaneously implementing
renormalization-group invariance and the available knowl-
edge about the divergent pattern of the series at large orders.
These optimized expansions were denoted as ‘‘contour-
improved nonpower perturbation theory’’ (CINPPT) and
‘‘renormalization-group-summed nonpower perturbation
theory’’ (RGSNPPT), respectively [19,20].

Previous studies of the new expansions were focused on
the extraction of �s from the total hadronic width, which
involves a particular moment of the spectral function. We
now generalize the investigation to the class of moments
considered in [29]. The main aim of the work is to check
whether the good convergence properties of CINPPT and
RGSNPPT, demonstrated in the case of the hadronic width,
remain valid also for the more general class of weights
discussed in [29].

The scheme of this article is as follows: In Sec. II we
recall the definition of the spectral function moments, and
specify the class of moments investigated in [29], that we
consider also here. We then briefly review in Sec. III the
standard perturbative expansions of the Adler function in
massless QCD. In Sec. IV we discuss the large-order

behavior encoded in the singularities of the Borel transform.
Here we point out the essential features of the Borel trans-
form in the three schemes, namely FOPT, CIPT, and
RGSPT. In Sec. V, using the technique of ‘‘optimal confor-
mal mapping’’ (OCM) and ‘‘singularity softening’’ for con-
vergence acceleration, we define, for each RG prescription,
a class of new, nonpower expansions, where the powers of
the coupling are replaced by more general functions. The
models proposed in [7,29] for the physical Adler function,
denoted as the reference model (RM) and the alternative
model (AM), are briefly reviewed in Sec. VI. These models
are used to compute the higher-order perturbative coeffi-
cients, as well as the exact value and the ambiguity of
the moments. Our results on the perturbative expansions
of the moments are presented in Sec. VII, which we split
into several subsections to facilitate the discussion: we first
consider moments defined by integrals up to s0 ¼ M2

�,
expanded in the frame of CINPPT and RGSNPPT based
on the OCM. In the next subsection we explore a larger class
of expansions based on different softening factors and dif-
ferent conformal mappings, and in the last subsection we
consider moments defined by integrals up to an s0 lower
thanM2

�. Section VIII contains discussions and conclusions.

II. MOMENTS OF THE SPECTRAL FUNCTIONS

We consider the moments of the spectral function

Im�ð0þ1ÞðsÞ defined as [29]

Mwi
ðs0Þ ¼ 2

�

Z s0

0
wiðs=s0Þ Im�ð0þ1ÞðsÞds; (1)

where s0 � M2
� and wiðxÞ are arbitrary nonnegative

weights. We are interested in the perturbative contribution

to Mwi
dependent on �s, denoted as �ð0Þ

wi
, obtained by

subtracting from (1) the perturbative tree values �tree
wi

ðs0Þ.
We adopt the set of weightswiðxÞ, i ¼ 1, 17 investigated in
[29]. For the purposes to follow, we need to define in terms
of the wi, the corresponding

WiðxÞ ¼ 2
Z 1

x
dzwiðzÞ: (2)

For completeness, we list in Table I the functionsWiðxÞ for
the weights wiðxÞ adopted in [29]. We recall that i ¼ 12
gives the kinematical weight w� relevant for the hadronic
decay width. According to the terminology of [29], the first
class in Table I contains functions WiðxÞ generated from
weightswiðxÞ equal to the monomials xi�1, the second class
contains moments generated by ‘‘pinched’’ weights (i.e.
weights that vanish at x ¼ 1) and include a ‘‘1’’ term, and
the third class contains ‘‘pinched’’ weights without a ‘‘1’’
term, respectively. Some of the moments listed in Table I of
the first and second classes were investigated in Ref. [14].
The analytic properties of the polarization function and

the Cauchy theorem allow one towrite equivalently (1) as an
integral along a contour in the complex s plane, chosen for

1We mention here that a different type of nonpower expansion,
called ‘‘Analytic perturbation theory,’’ which is not based on the
idea of optimal conformal mapping but exploits the dispersion
relations satisfied by the QCD correlators, has been proposed
in [35].
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convenience to be the circle jsj ¼ s0. After an integration by

parts, the perturbative contribution �ð0Þ
wi

can be written as

�ð0Þ
wi
ðs0Þ ¼ 1

2�i

I
jsj¼s0

ds

s
Wiðs=s0ÞD̂pertðsÞ; (3)

where the weights WiðxÞ are defined in (2) and D̂pert is the

perturbative part of the reduced Adler function

D̂ðsÞ � �sd�ð1þ0ÞðsÞ=ds� 1: (4)

This sets the stage for the computation of the moments of
interest in this work.

III. RENORMALIZATION-GROUP SUMMATION:
FOPT, CIPT, AND RGSPT

In our notation the standard perturbative expansion of
the Adler function in a definite renormalization scheme,
denoted usually as FOPT [7], is written as

D̂FOPTðsÞ ¼
X
n�1

ðasð�2ÞÞn
�
cn;1 þ

Xn
k¼2

kcn;k

�
ln
�s

�2

�
k�1

�
;

(5)

where asð�2Þ ¼ �sð�2Þ=�. In (5) the renormalization
scale �2 is chosen close to s0, the leading coefficients
cn;1 are computed from Feynman diagrams, and cn;k for

2 � k � n depend on cn;1 and the perturbative coefficients
�k of the renormalization-group (RG) � function, which

are known at present to four loops [36,37]. In the MS
scheme for nf ¼ 3 flavors the coefficients cn;1 calculated

up to fourth order (cf. [4] and references therein) are

c1;1 ¼ 1; c2;1 ¼ 1:64; c3;1 ¼ 6:371; c4;1 ¼ 49:079:

(6)

By setting �2 ¼ �s in the expansion (5), one obtains
the CIPT expansion of the Adler function [9,21–23]:

D̂CIPTðsÞ ¼
X
n�1

cn;1ðasð�sÞÞn; (7)

where the running coupling asð�sÞ is determined by
solving the RG equation

s
dasð�sÞ

ds
¼ �ðasÞ: (8)

For the evaluation of the integral (3), this equation is solved
numerically in an iterative way along the contour jsj ¼ s0,
starting with the input value asðM2

�Þ at s ¼ �M2
�.

The properties of the above expansions, in particular
their convergence and the behavior in the complex energy
plane, have been examined critically in several recent
papers [5,7,9,10,29], where arguments in favor of one or
another expansion have been given.
We mention also another prescription, proposed in

[38,39] for timelike observables and applied in [15,16] to
the Adler function in the complex energy plane. It general-
izes the summation of leading logarithms to nonleading
logs, by summing all the terms available from RG invari-
ance. We refer to it as RGSPT. It can be shown [16] that the
perturbative expansion (5) can be written as

D̂RGSPTðsÞ ¼
X
n�1

ð~asð�sÞÞn
�
cn;1 þ

Xn�1

j¼1

cj;1dn;jðyÞ
�
; (9)

where

~asð�sÞ ¼ asð�2Þ
1þ �0asð�2Þ ln ð�s=�2Þ (10)

is the solution of the RG equation (8) to one loop, and
dn;jðyÞ are calculable functions depending on the variable

y � 1þ �0asð�2Þ ln ð�s=�2Þ and the coefficients �j.

These functions are shown to vanish for y ¼ 1 or in the
limit �j ¼ 0, j � 1. They have analytically closed, but

quite lengthy expressions, given in [16]. As an effective
series in powers of the one-loop running coupling, with
coefficients that depend still on the coupling at a fixed scale,
and also on the nonleading �j, the expansion (9) appears to

be placed ‘‘in-between’’ FOPT and CIPT: it resembles
FOPT as it contains only analytical closed expressions,
but makes a summation of higher terms known from renor-
malization group invariance, like CIPT. In practice, since
the running of �s in QCD is largely dominated by �0, the
RGS expansion and CIPT are very similar. This feature is
confirmed numerically, as discussed in detail in [15].

TABLE I. Functions WiðxÞ defined in (2) for the weights
wiðxÞ listed in Table 2 of [29].

i WiðxÞ
1 2ð1� xÞ
2 1� x2

3 2
3 ð1� x3Þ

4 1
2 ð1� x4Þ

5 2
5 ð1� x5Þ

6 ð1� xÞ2
7 2

3 ð1� xÞ2ð2þ xÞ
8 1

2 ð3� 4xþ x4Þ
9 1

4 ð1� xÞ3ð3þ xÞ
10 2

3 ð1� xÞ3
11 1

2 ð1� xÞ4
12 ð1� xÞ3ð1þ xÞ
13 1

10 ð1� xÞ4ð7þ 8xÞ
14 1

6 ð1� xÞ3ð1þ 3xÞ
15 1

6 ð1� xÞ4ð1þ 2xÞ2
16 1

210 ð1� xÞ4ð13þ 52xþ 130x2 þ 120x3Þ
17 1

70 ð1� xÞ4ð2þ 8xþ 20x2 þ 40x3 þ 35x4Þ
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IV. LARGE-ORDER BEHAVIOR
AND THE BOREL TRANSFORM

From special classes of Feynman diagrams it is known
that the perturbative coefficients cn;1 display a factorial

increase, cn;1 � n!, so the perturbative expansions written

above are divergent series [25–28]. This property follows
also indirectly from the arguments given in [24], which
infer that the expanded amplitude, viewed as a function
of the coupling �s, is singular at �s ¼ 0. The divergent
series in field theory are often interpreted as asymptotic
series [25,28,40].

The large-order behavior of the CIPT series (7) is
encoded in the properties of the Borel transform BðuÞ,
defined by the expansion2

BðuÞ ¼ X1
n¼0

cnþ1;1

un

�n
0n!

: (11)

The original function D̂CIPTðsÞ is recovered from BðuÞ by a
Laplace-Borel integral. Actually, in the present case BðuÞ is
known to have singularities on the real axis of the u plane,
more precisely along the lines u � 2 (infrared renorma-
lons) and u � �1 (ultraviolet renormalons) [28], so the
integral requires a prescription. We adopt the principal
value (PV) prescription [7,25,28]

D̂CIPTðsÞ ¼ 1

�0

PV
Z 1

0
exp

� �u

�0asð�sÞ
�
BðuÞdu; (12)

which is preferred from the point of view of momentum-
plane analyticity [41].

Similarly, one defines the Borel transforms BFOðu; sÞ and
BRGSðu; yÞ of the FOPTand RGSPTexpansions, (5) and (9)
respectively, which can be written as [16]

BFOðu;sÞ¼BðuÞþX1
n¼0

un

�n
0n!

Xnþ1

k¼2

kcnþ1;k

�
ln
�s

M2
�

�
k�1

; (13)

BRGSðu; yÞ ¼ BðuÞ þ X1
n¼0

un

�n
0n!

Xn
j¼1

cj;1dnþ1;jðyÞ: (14)

The functions D̂FOPTðsÞ and D̂RGSðsÞ are recovered from
their Borel transforms by Laplace-Borel integrals similar
to (12):

D̂FOPTðsÞ ¼ 1

�0

PV
Z 1

0
exp

� �u

�0asðs0Þ
�
BFOðu; sÞdu; (15)

D̂RGSPTðsÞ ¼ 1

�0

PV
Z 1

0
exp

� �u

�0~asð�sÞ
�
BRGSðu; yÞdu:

(16)

It is important to recall that not only the location, but
also the nature of the leading singularities of BðuÞ is
known. Namely, near the points u ¼ �1 and u ¼ 2 BðuÞ
behaves as

BðuÞ � ð1þ uÞ��1 ; BðuÞ � ð1� u=2Þ��2 ; (17)

where �1 ¼ 1:21 and �2 ¼ 2:58 [7,25,28,29,42]. As
argued in [16,25], the leading singularities in the u plane
of the Borel transforms BFOðu; sÞ and BRGSðu; yÞ have the
same positions and nature as those of BðuÞ.
Starting from the divergent character of the standard

perturbative series in QCD, the need of a new perturbation
theory was advocated in [31]. Since the powers of as are

holomorphic, while the function D̂pert is expected to be

singular at the expansion point as ¼ 0, no finite-order
standard perturbative approximant can share this singularity
with the expanded function: singularities can emerge only
from the infinite series as a whole, which is not defined
unambiguously since the perturbation series is divergent.
As discussed in [14,19], a perturbation series would be

more instructive if the finite-order approximants could
retain some information about the known singularities of
the expanded function. Such approximants would tell us
more about the function also from the numerical point of
view. In the next section we shall review, following
[14,16,19,31], the properties of these improved expansions
based on the technique of series acceleration by the con-
formal mappings of the complex plane.

V. NONPOWER PERTURBATIVE EXPANSIONS

As discussed in Ref. [14], the method of conformal
mappings is not applicable to the (formal) perturbative
series in powers of as, because the expanded correlators
are singular at the point of expansion, as ¼ 0. However, the
method can be applied in the Borel plane, where a holo-
morphy domain around the origin u ¼ 0 is known to exist.
The starting point in the derivation is the remark that the

expansion (11) converges only in the disk juj< 1, whose
boundary passes through the singularity of BðuÞ closest to
u ¼ 0. However, the function BðuÞ is holomorphic in a
larger domain, assumed in general to be the whole complex
u plane cut along the lines u � 2 and u � �1. It would be
useful to insert in (12) an expansion of BðuÞ that is con-
vergent also outside the disk juj< 1. Such an expansion is
easily obtained: since the disk is the natural domain of
convergence for power series, it suffices to expand the
function in powers of variables that perform the conformal
mapping of a larger part of its holomorphy domain onto a
disk. Intuitively, one expects that a larger domain of con-
vergence is related also to a better convergence rate. This
expectation turns out to be correct: as shown a long time
ago in [34], the variable that maps the entire holomorphy
domain of the expanded function onto a disk has the
remarkable property that the expansion in powers of this
variable has the fastest large-order convergence rate at all

2For consistency with our subsequent notations, this Borel
transform should have the index CI. However, we prefer the
standard notation BðuÞ, which is used by most authors.
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points inside the holomorphy domain (we assume here that
the holomorphy domain is simply connected). This map-
ping was called ‘‘optimal conformal mapping’’ for series
expansions [34]. More detailed arguments are given in two
lemmas formulated and proved in [13,14]. For the Adler
function in QCD, the optimal mapping ~wðuÞ and the
corresponding perturbative expansion were defined and
investigated in [31–33].

An additional improvement is obtained by exploiting the
known behavior (17) of BðuÞ near the first singularities. If
one multiplies BðuÞ with a suitable factor SðuÞ, which fully
compensates, or at least ‘‘softens’’ the dominant singular-
ities, the expansions will have a more rapid convergence
even at low orders [43]. In fact, a mild branch point, where
the function vanishes instead of becoming infinite, is ex-
pected to influence the power expansions of the function
only at larger orders. Hence, one can expand the product
SðuÞBðuÞ in powers of conformal mappings that account
only for the nonleading, i.e. the more distant, singularities,
and contain a residual ‘‘mild’’ cut inside the convergence
disks. In view of these remarks, it was useful to consider
the general class of conformal mappings [12–14,31]:

wjk � ~wjkðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u=j

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u=k

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u=j

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u=k

p ; (18)

where j, k are positive integers satisfying j � 1 and k � 2.
The function ~wjkðuÞ maps the u plane cut along u � �j

and u � k onto the disk jwjkj< 1 in the plane wjk �
~wjkðuÞ, such that ~wjkð0Þ ¼ 0, ~wjkð�jÞ ¼ �1, and

~wjkðkÞ ¼ 1. The OCM defined above is ~wðuÞ � ~w12ðuÞ,
for which the entire holomorphy domain of the Borel
transform, i.e. the u plane cut along u � 2 and u � �1,
is mapped onto the interior of the unit circle in the plane
w12 � ~w12ðuÞ.

Using the above ideas, we consider the following
expansion [12–14,31]:

SðuÞBðuÞ ¼ X
n�0

cðjkÞn;CIð ~wjkðuÞÞn: (19)

In practice, this series is obtained by inserting in the
product SðuÞBðuÞ the series (11) truncated at the order N,
with u replaced by the inverse ~ujk of (18). Then we expand

the product in powers of ~wjkðuÞ and keep N terms in the

series.
As discussed in [11,14], unlike the OCM which is

unique, the choice of the softening factor SðuÞ, i.e. the
implementation of the known nature of the first branch
points, is to a large extent arbitrary. For a large number of
terms in the expansion (19), the form of this factor should
be irrelevant, but at low orders one prescription may be
better than another.

In Refs. [14,16] the factor SðuÞ was chosen as a simple
expression of the expansion variable ~wjkðuÞ itself

SðuÞ � SjkðuÞ ¼
�
1� ~wjkðuÞ

~wjkð�1Þ
�
�0
1

�
1� ~wjkðuÞ

~wjkð2Þ
�
�0
2
; (20)

where �0
j, j ¼ 1, 2, are suitable exponents, given in [14],

defined such as to preserve the behavior (17) of BðuÞ. This
choice ensures a good convergence of the expansion (19),
as noted by extensive numerical calculations [14]. Of
course, other choices are possible, for instance the simple
expression

SðuÞ ¼ ð1þ uÞ�1ð1� u=2Þ�2 : (21)

The expansions (19) converge in a domain larger than
the convergence disk juj< 1 of the original series (11),
and according to the lemmas proven in [14], have a better
convergence rate, in particular at points u close to the
origin, which are dominant in the Laplace-Borel integral
(12). The use of several conformal mappings and different
softening factors reduces the bias related to the implemen-
tation of the threshold behavior (17), which is not unique,
as we mentioned above. As discussed in [14], useful
choices of the expansion variables are, besides the OCM
~w12ðuÞ, the conformal mappings ~w13ðuÞ, ~w11ðuÞ and
~w23ðuÞ.
From (12) and (19) one obtains the CINPPT [14]

D̂CINPPTðsÞ ¼
X
n�0

cðjkÞn;CIW
jk
n;CINPPTðsÞ; (22)

where the expansion functions are defined as

W jk
n;CINPPTðsÞ ¼

1

�0

PV
Z 1

0
e�u=ð�0asð�sÞÞ ð ~wjkðuÞÞn

SðuÞ du:

(23)

Similarly, the ‘‘fixed-order nonpower perturbation theory’’
(FONPPT) and the renormalization-group-summed non-
power perturbation theory are defined as [14,16]

D̂FONPPTðsÞ ¼
X
n�0

cðjkÞn;FOðsÞW jk
n;FONPPTðs0Þ; (24)

D̂RGSNPPTðsÞ ¼
X
n�0

cðjkÞn;RGSðyÞW jk
n;RGSNPPTðsÞ; (25)

where the coefficients are obtained from expansions
similar to (19) of the Borel transforms BFOðu; sÞ and

BRGSðu; yÞ, and the expansion functions W jk
n;FONPPTðs0Þ

and W jk
n;RGSNPPTðsÞ are obtained from (23) by replacing

the running coupling asð�sÞ in the exponent through the
fixed-scale coupling asðs0Þ and the one-loop running cou-
pling ~asð�sÞ defined in (10), respectively.
The properties of the expansions (22)–(25) have been

discussed in [14,31,33]. When reexpanded in powers of
as, they reproduce order by order the known perturbative
coefficients calculated from Feynman diagrams. On the
other hand, the expansion functions resemble the expanded
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function, being singular at as ¼ 0 and having divergent
series in powers of as. Therefore, the divergent pattern of
the expansion of the QCD correlators in terms of these new
functions is expected to be tamer. This expectation is fully
confirmed for the expansions that implement also RG sum-
mation, i.e. CINPPTand RGSNPPT, which give a very good
description of suitable models of the Adler function in the
complex s plane [14,16]. By contrast, FONPPT gives a very
good description near the spacelike axis, which gradually
deteriorates for points closer to the timelike axis. As dis-
cussed in [11,14], this behavior is due to the large imaginary

parts of the logarithms in the coefficients cðjkÞn;FOðsÞ near the
timelike axis, which follow from (5) and (13). Therefore,
FONPPT describes well ‘‘pinched’’ moments for which the
weight function suppresses this region, but the description is
not so good for other moments. For this reason we shall
concentrate in this paper mainly on the CINPPT and
RGSNPPT frameworks, which simultaneously sum the
large logarithms by RG invariance and tame the large-order
behavior, by accelerating the convergence through confor-
mal mappings. We shall present some results obtained with
FONPPT only to illustrate the statement made above.

VI. MODELS FOR THE ADLER FUNCTIONS

In order to test numerically the convergence properties
of the perturbative expansions, a model for the higher-
order coefficients of the Adler function, cn;1 for n > 4, is
necessary. We follow the approach adopted recently in the
literature [7,11,14,29,44], in which the physical function
is expressed in terms of a few dominant singularities in
the Borel plane. Unfortunately, even in this rather limited
class of models, considerable freedom still exists: while
the nature of the leading singularities is known, the
residues cannot be determined from theory and an ansatz
must be adopted. As discussed in [9,29,44], depending on
the assumed strength pattern of the dominant singular-
ities, either FOPT or CIPT turns out to be the preferred
scheme.

In the RM proposed in [7,29], the Adler function D̂ðsÞ is
defined as the PV-regulated Laplace-Borel integral

D̂ðsÞ ¼ 1

�0

PV
Z 1

0
exp

� �u

�0asð�sÞ
�
BðuÞdu; (26)

where the Borel transform BðuÞ � BRMðuÞ is parametrized
in terms of a few ultraviolet (UV) and infrared (IR) renor-
malons, and a regular, polynomial part. In our notations, it
reads

BRMðuÞ
�

¼ BUV
1 ðuÞ þ BIR

2 ðuÞ þ BIR
3 ðuÞ þ dPO0 þ dPO1 u;

(27)

with the renormalons parametrized as [7,29]

BIR
p ðuÞ ¼ dIRp

ðp� uÞ�p
½1þ ~b1ðp� uÞ þ � � ��;

BUV
p ðuÞ ¼ dUVp

ðpþ uÞ ��p
½1þ �b1ðpþ uÞ þ � � ��:

(28)

The free parameters of the model, namely the residues dUV1 ,

dIR2 , and dIR3 of the first renormalons and the coefficients

dPO0 , dPO1 of the polynomial in (27), were determined by the

requirement of reproducing the perturbative coefficients
cn;1 for n � 4 from (6) and the estimate c5;1 ¼ 283.
Their numerical values are [7,29]

dPO0 ¼ 0:781; dPO1 ¼ 7:66� 10�3; dIR2 ¼ 3:16;

dIR3 ¼ �13:5; dUV1 ¼ �1:56� 10�2: (29)

Then all the higher-order coefficients cn;1 are fixed and

exhibit a factorial increase. Their numerical values up to
n ¼ 18 are listed in [7,11].
This model is considered in [7,29] as most natural from

the point of view of the strengths of the leading singular-
ities, as no residue is fixed a priori by hand. If this model
is adopted, FOPT provides the preferred framework for
implementing RG invariance of the spectral function
moments [29].
On the other hand, models with a smaller residue dIR2 of

the first IR renormalon are described better by CIPT
[14,29,44]. As an extreme case, in the AM considered in
[29] the first IR renormalon at u ¼ 2was removed by hand.
Thus, the ‘‘extreme’’ AM proposed in [29] is defined by a
Borel transform BðuÞ � BAMðuÞ containing no singularity
at u ¼ 2 and an additional singularity at u ¼ 4:

BAMðuÞ
�

¼ BUV
1 ðuÞ þ BIR

3 ðuÞ þ BIR
4 ðuÞ þ dPO0 þ dPO1 u:

(30)

The five parameters found by matching the coefficients cn;1
for n � 5 are

dPO0 ¼ 2:15; dPO1 ¼ 4:01� 10�1; dIR3 ¼ 66:18;

dIR4 ¼ �289:71; dUV1 ¼ �5:21� 10�3: (31)

Intermediate models, where the IR renormalon at u ¼ 2 is
present, but has a prescribed residue smaller (or larger)
than the value in (29), were discussed in [8,14,44].
The properties of the perturbative expansions of the

quantities �ð0Þ
wi

in the standard FOPT and CIPT, using the
models described above, were discussed in detail in
[29,30]. The parameter s0 was set equal to M2

� in [29],
while lower values of s0 were investigated in [30]. For each
class of weights defined in Table I, specific features of the
perturbative expansions were identified. A bad perturbative
behavior was found for some moments, in particular from
the last class in Table I and for weights wiðxÞ having a
linear term in x.
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VII. RESULTS

In the present analysis we consider, in addition to the
standard FOPT and CIPT series, the standard RGSPT
and the nonpower expansions, CINPPT and RGSNPPT,
defined in Sec. V. For illustration we selected several
moments representative for each family of weights listed
in Table I. The expressions given in the previous section
for RM and AM were used to compute the exact values
of the moments and their theoretical uncertainties, ob-
tained from the imaginary part of the Laplace-Borel
integral (26) using Eq. (A.8) of [7]. The results are
presented in Figs. 1–4, where we compare the perturba-
tive expansions with the exact values and their theoreti-
cal uncertainties, represented as bands. To facilitate the
comparison with Refs. [29,30], we have used in the
calculations �sðM2

�Þ ¼ 0:3186.

A. Results obtained with the OCM for s0 ¼M2
�

We investigate first the nonpower expansions obtained
from (22) and (25) with the choice j ¼ 1 and k ¼ 2, which
corresponds to the OCM defined in Sec. V. For the soften-
ing factor SðuÞ we adopt the expression given in (20) for
the same values of j and k. In Fig. 1 we show the pertur-
bative behavior of the chosen sample of moments in the
case of RM. For each moment we show the behavior of the
standard expansions FOPT, CIPT, and RGSPT, together
with the optimal nonpower version of each expansion.

As noted already from studies of the hadronic width
[15,20], RGSPT gives results very close to CIPT, and this
is confirmed for all the moments shown in Fig. 1. As
concerns the FO nonpower expansions, the previous stud-
ies [11,14,19] showed that they achieve a good approxi-
mation of the Adler function near the spacelike axis,
taming the large-order increase of the leading coefficients
cn;1, but have a bad behavior near the timelike axis, where

the unsummed s-dependent logarithms present in the
coefficients are large. Therefore, we expect good perturba-
tive results only for ‘‘pinched’’ moments, like the 6th or the
12th, where the weight suppresses the region near the
timelike axis. The results presented in Fig. 1 confirm this
expectation. Incidentally, the improvement of the large-
order behavior may destroy some suitable compensations
of terms that take place in the standard FOPT and explain
the good perturbative behavior of this scheme for some
moments. Therefore, as already concluded in [11,14], the
FO nonpower perturbative scheme is not suitable, because
it cures only one facet of the problem, i.e. the large-order
behavior, leaving the renormalization-group coefficients
unsummed. To optimize the perturbative expansion, we
must improve both aspects, as done within the CI and
RGS nonpower frameworks.

The remaining two curves in each figure, denoted as
CINPPT and RGSNPPT, prove in an impressive way the
excellent approximation achieved with the CI and RGS
nonpower expansions based on the OCM ~w12ðuÞ, even for

moments for which the standard CI, FO, and RGS expan-
sions fail badly. The only moment for which the perturba-
tive description is less impressive at low and moderate
orders is the one obtained with the weight W16. However,
this moment is very small and has a large uncertainty, so
the description may be considered good in this case as well.
In all the cases, one may note a slightly better description
achieved by CINPPT compared to RGSNPPT. The other
moments defined in Table I, for which we do not explicitly
exhibit the results, have a behavior similar to that of the
representative moment of their class.
The good convergence of CINPPT and RGSNPPT for

the moments shown in Fig. 1 can be understood from
previous studies [14,16,19], which demonstrated that these
expansions provide a very good approximation of the exact
Adler function itself in the complex plane along the whole
circle jsj ¼ M2

�. The good pointwise convergence of these
expansions implies a good convergence to the true values
also for contour integrals defined in (3), for all types of
weights WiðxÞ.
We consider now the AM discussed in [29], specified

above in Eqs. (30) and (31). We recall that in this extreme
model the first singularity of the Borel transform at u ¼ 2
is completely removed. On the other hand, the nonpower
expansions defined in Sec. Vexplicitly implement both the
position and the nature of this singularity, known theoreti-
cally. In particular, the expansion functions (23) explicitly
contain the singularity at u ¼ 2 in the Borel plane (known
actually to be present in the true, physical Adler function),
while the function that we want to approximate does not
have such a singularity. This means that the expansion
functions defined in Sec. Vare not mathematically optimal
for this extreme model. We expect therefore a slower
convergence and a poorer description of the true values
at low orders.
On the other hand, after the conformal mapping of the

cut u plane onto the unit disk, the expansion (19) of the
Borel function converges in a larger domain. This leads
also to a better convergence at large orders for points u
on the real axis near the origin, which dominate the
Laplace-Borel integral. Therefore, we expect the nonpower
expansions defined in Sec. V to exhibit a tame behavior at
large orders also in the case of the AM.
These expectations are confirmed by the results shown

in Fig. 2, where we present the moments considered in
Fig. 1 for the AM: at high orders the nonpower expansions
tend to the exact value, illustrating the series acceleration
by the OCM [14,34]. The description is relatively good
even at low orders for weights like W2 and W6, for which
the exact values of the moments in RM and AM are rather
close (however the uncertainty of these moments in AM
is much smaller, requiring a better precision). For other
moments, for which the true values in AM are quite differ-
ent from those in RM, the approximation at low orders is
worse in AM compared to RM.
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In order to gain further insight, we have also carried out

a study of the CINPPT series for the Adler function in the

complex plane, along the contour jsj ¼ s0. Note that

the true Adler function defined by the AM has a more

oscillating behavior along the circle compared to the RM

(this was noted also for other models in Ref. [29]). For

large perturbative orders N, the series approaches the true

values for both the real and imaginary parts of D̂ðsÞ quite
uniformly along the circle. On the other hand, at low

orders, the expansions (which are the same for all models

up to N ¼ 5) stay quite close to the true function defined

by the RM, departing therefore from the AM. In particular,

FIG. 1 (color online). �ð0Þ
wi

defined in (3) for the weightsW1,W2,W6,W12,W13, andW16, calculated for the RM defined in [7,29] with
the standard and nonpower versions of FO, CI, and RGS expansions, as functions of the perturbative order up to which the series was
summed. The horizontal bands give the uncertainties of the exact values. As in [29], we use �sðM2

�Þ ¼ 0:3186. (a) W1, reference
model. (b) W2, reference model. (c) W6, reference model. (d) W12, reference model. (e) W13, reference model. (f) W16, reference
model.
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they are not able to reproduce the oscillations of the model
along the circle. This shows that the CINPPT expansions
approximate better the exact Adler function defined by the
RM than the function defined by the AM.

As we mentioned above, the expansion that we used is
not optimal for the AM. One can actually define an optimal
expansion for this model, using the fact that its first singu-
larities are situated at u ¼ �1 and u ¼ 3, and have a
known nature [7,29]. The optimal mapping is obtained

by setting j ¼ 1 and k ¼ 3 in (18). Moreover, the softening
factor SðuÞ must vanish at u ¼ �1 and u ¼ 3. Adopting
for SðuÞ the expression (20), we obtain the proper factor by
replacing ~w12ð2Þ and �0

2 by ~w13ð3Þ and the value of �0
3

derived from the parameter �3 given in [7,29]. It is in-
structive to show also the results obtained with this optimal
perturbative expansion suitable for the AM. It is denoted
as ‘‘Alt. CINPPT’’ in Fig. 2, and exhibits a very rapid
convergence to the true values of all the moments.
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FIG. 2 (color online). Perturbative expansions of the moments of the AM adopted in [29]. ‘‘Alt. CINPPT’’ denotes the specific
optimal expansion devised for the AM, as explained in the text. (a)W1, alternative model. (b)W2, alternative model. (c)W6, alternative
model. (d) W12, alternative model. (e) W13, alternative model. (f) W16, alternative model.
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This exercise demonstrates the mathematical power of
the technique of the singularity softening and conformal
mappings for series acceleration when the position and the
nature of the leading singularities is known. Of course, for
the physical Adler function, where the first IR renormalon
is known to be present, the softening factor SðuÞ must
vanish at the dominant branch points u ¼ �1 and u ¼ 2,
and the optimal expansion variable must map onto a disk
the u plane cut along u � �1 and u � 2.

The results presented in Fig. 2 and the numerical studies
performed in the previous works show nevertheless that the
optimal CINPPT and RGSNPPT may have a slower con-
vergence for models of the Adler functions with a residue
of the first IR singularity significantly smaller than the
value it has in the RM. It turns out that the description is
less precise at low orders also for models where this
residue is larger than the RM value (for such models the
standard FOPT and CIPT are both quite poor). Indeed, the
perturbative curves are the same for N � 5 for all models,
while by adjusting the residues of the leading singularities
one can shift up or down, by a certain amount, the exact
values of the moments.

The good convergence of the expansions based on the
OCM for the RM starting from relatively low orders may
suggest that this model has a preferred place among mod-
els. Indeed, CINPPT and RGSNPPT have a solid theoreti-
cal basis, exploiting simultaneously RG invariance and the
known large-order behavior of the expanded function.
However, as mentioned above, there is still a certain arbi-
trariness in defining these expansions, since the implemen-
tation of the singular behavior at the leading branch points
is not unique. The preference for the RM might well be
a consequence of the specific choice of the softening
factor SðuÞ given by (20), for the OCM defined by
j ¼ �1 and k ¼ 2. In order to reduce the possible bias,
we must investigate also other expansions, with a different
implementation of the threshold behavior. Moreover, as
discussed in Sec. V, for mild singularities the expansions
based on different conformal mappings are expected to
have properties similar to those based on the optimal
mapping. The investigation of a more general class of
expansions is the subject of the next subsection.

B. Results obtained with various softening factors
and other conformal mappings

An investigation of CINPPTwith different choices of the
softening factor SðuÞ was performed already in [12] for the
RM and the particular moment relevant for the � hadronic
width. For instance, the dominant behavior (17) was im-
plemented by singular factors expressed in terms of the u
variable, like in (21), and the leading factors were multi-
plied by other functions analytic in the u-complex plane
cut along the real axis for u � 2 and u � 1. In particular,
singularities on an unphysical Riemann sheet, or placed at
u ¼ 3 and u ¼ 2, were included, the additional factors

being expressed either in the variable u or in the variable
~wðuÞ. As reported in [12], the results for the � hadronic
width are very stable and reproduce well the exact value of
the RM for relatively low perturbative orders, of interest
for the extraction of �sðM2

�Þ from the perturbative calcu-
lations available so far.
In the present work we consider the class of expansions

defined in Sec. V. As in [13,14,16,19], where we inves-
tigated the � hadronic width, we adopt besides the OCM
~w12ðuÞ also the variables ~w13ðuÞ, ~w11ðuÞ, and ~w23ðuÞ
(some of these conformal mappings have been used also
by other authors; see [14] for earlier references). For each
expansion variable ~wjkðuÞ we chose also a different form

of the singularity softening factors SðuÞ, as the simple
expression of ~wjkðuÞ given in (20). The only requirement

is to reproduce the branch-point behavior (17). To further
enlarge the class, we consider also the softening factor
SðuÞ given by (21).
In Fig. 3 we show the results obtained with this general

class of perturbative expansions. We consider the same
moments of the RM as in the previous subsection. For
simplicity, we give only the results obtained in the frame
of CINPPT. The RGSNPPT expansions exhibit a similar
behavior. For comparison we show also the standard CIPT
and FOPT.
The results show that at very low perturbative orders the

various nonpower expansions are different, but starting
from an order N around 5 they give very similar predic-
tions, which agree also quite well with the exact values of
the RM moments. One can see that the expansion based on
the softening factor (21) gives slightly poorer results for
some moments (for instance the 1st and the 16th), com-
pared to the expansions based on the softening factors (20).
We mention that the softening factor (21) leads to a worse
approximation compared to the choice (20) also in the case
of the AM. From these results and other numerical tests
[11,14] it follows that the choice of the softening factor as a
simple expression (20) of the variable used in the expan-
sion (19) ensures a good convergence.
At larger orders the description is very precise, and this

feature remains stable up to the large order, N ¼ 18, shown
in the figure, and even to larger orders investigated numeri-
cally. Only the expansion based on the choice j ¼ 2, k ¼ 3
starts to exhibit oscillations at large orders (especially for
the 16th moment). As explained in detail in [14], this
behavior is due to the effect of the mild (after singularity
softening) singularity at u ¼ �1, which is still present
inside the unit disk j ~w23ðuÞj< 1. This singularity affects
the convergence of the corresponding power series at points
u larger than unity, but still small enough such as to bring a
non-negligible contribution to the Laplace-Borel integral.
We conclude that the moments of the RM have very

stable perturbative expansions in the frame of CINPPT and
RGSNPPT, for various prescriptions of singularity soften-
ing and various conformal mappings. These expansions
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reproduce the exact moments of RM starting from rather
low perturbative orders. We emphasize that no assumption
about the magnitude of the residues of the singularities is
made in defining these expansions.

C. Results for s0 <M2
�

In several moment analyses for the extraction of
the strong coupling and other fundamental parameters of
QCD, values of s0 less than M2

�, but sufficiently large so as

to ensure the validity of the perturbation theory, have been

also employed. For lower values of s0 the convergence of

the standard perturbative expansions along the circle jsj ¼
s0 is expected to be slower due to the fact that the coupling is
larger. The study of the standard expansions FOPTand CIPT

performed in [29] was extended to lower values of s0 in [30],
where it was shown that the conclusions of [29] about the

bad perturbative behavior of some moments and the prefer-

ence for FOPT are still valid for s0 <M2
�.
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FIG. 3 (color online). Several CINPPT expansions of the moments shown in Fig. 1, compared with the standard FOPT and CIPT.
The first four nonpower expansions are obtained with the choice (20) of the softening factors and several conformal mappings. The last
expansion is obtained using in (19) the softening factor SðuÞ from (21) and the OCM ~w12ðuÞ. (a)W1, reference model. (b)W2, reference
model. (c) W6, reference model. (d) W12, reference model. (e) W13, reference model. (f) W16, reference model.
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Here we present the results of our analysis for the
optimal CINPPT expansions at lower s0. As in [30], in
order to compare the results for various s0 we normalize
the expansions to the exact value of the moment given by
the model. In Fig. 4 we present the CINPPT expansions
for the representative moments chosen in this work.
To keep the figures simple, we do not show now the
standard expansions (for some of them see [30]). As ex-
pected, the perturbative behavior becomes poorer at lower

s0, but the extent to which this happens depends very
much on the moment. On the other hand, the ambiguity
of the exact value also increases for smaller s0, due to the
larger value of �sðs0Þ [we use as before, �sðM2

�Þ ¼ 0:3186,
which corresponds to �sð2:5 GeV2Þ ¼ 0:3415 and
�sð1:5 GeV2Þ ¼ 0:4078].
For the 2nd, 6th, and 13th moments the perturbative

behavior is very stable with s0 and within the chosen
uncertainty starting from low perturbative orders, N � 4.
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defined in (3) for the RM, for s0 ¼ 1:5 GeV2, 2:5 GeV2, and M2
�, expanded in the optimal CINPPT

normalized to the exact value. The horizontal bands show the uncertainties of the exact values. (a) W1, reference model. (b) W2,
reference model. (c) W6, reference model. (d) W12, reference model. (e) W13, reference model. (f) W16, reference model.
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Therefore, these moments are good candidates for moment
analyses with lower s0 in the framework of CINPPT. The
1st and the 12th moment show stability for s0 down to
2:5 GeV2, while at lower s0 the agreement with the true
value is reached only at higher orders. In fact, for these
moments the ambiguity of the Borel integral is rather small
for the RM. Therefore, if we take this uncertainty seriously,
the perturbative expansions require slightly higher orders,
N � 6, for all s0, to become acceptable. Finally, for the
16th moment the CINPPT expansion is quite poor at low
orders for s0 ¼ 1:5 GeV2, but in this case the ambiguity of
the exact value is also very large. At higher orders the
convergence is good in all the cases.

VIII. DISCUSSION AND CONCLUSIONS

In this work we have investigated several spectral func-
tion moments of the massless Adler function in the frame
of a new class of ‘‘nonpower’’ perturbative expansions in
QCD, where the powers of the coupling are replaced by
more adequate functions [11,14,16,31–33]. The new ex-
pansions simultaneously implement RG summation, either
in the ‘‘contour-improved’’ or in the ‘‘renormalization-
group-summed’’ form, and the known location and nature
of the first singularities of the expanded function in the
Borel plane. Mathematically, the definition is based on the
acceleration of series convergence by the technique of
conformal mappings [34] applied in the Borel plane
[31–33]. When reexpanded in powers of as, the new series
reproduce order by order the perturbative coefficients
known from Feynman diagrams. On the other hand, they
exhibit a much tamer behavior at larger orders, allowing a
more reasonable estimate of the truncation error, which
accounts for the unknown higher terms in the expansions.

In our earlier works [11–16], the new expansions were
used mainly for the extraction of the strong coupling from
the � hadronic width. In this work we go further by
employing them in a study of other spectral function
moments that are relevant for the extraction of the strong
coupling and other QCD parameters from � decays. Our
work is motivated by the recent papers [29,30], which
performed a detailed analysis of the moments in the frame-
work of standard CIPT and FOPT. The main aim of our
research was to see whether the good behavior of CINPPT
and RGSNPPT, already established in the case of � had-
ronic width, remains valid also for other moments.

In order to assess the quality of various perturbative
frameworks, the larger-order pattern of the perturbative
coefficients of the Adler function must be known. Of
course, this knowledge is not available and an ansatz
must be adopted. The description of the function in terms
of its dominant singularities in the Borel plane is a natural
choice, consistent with the general principles of analyticity.
However, a considerable ambiguity still remains because,
while the position and nature of the leading singularities are
known theoretically [7,25,28,42], nothing can be said from

theory about their strengths. The recent claims in favor of
either CIPTor FOPT are based on different views about the
magnitude of the residues of the leading singularities
(the IR renormalon at u ¼ 2 and the UV renormalon at
u ¼ �1). The situation was analyzed in detail in [29],
where some arguments in favor of a ‘‘reference model,’’
defined in [7], were put forth. Moreover, as discussed in
[29], the reference model favors FOPT compared to CIPT.
Our analysis confirms first the similarity of the contour-

improved and renormalization-group-summed prescrip-
tions, both in the standard form (CIPT and RGSPT) and
the nonpower frameworks (CINPPT and RGSNPPT), for
all the moments investigated. The essential feature of these
prescriptions is that they sum the large logarithms present
in the coefficients into the running coupling, calculated
either numerically (in CIPT) or by explicit expressions
(in RGSPT). In the CINPPT and RGSNPPT frameworks
the series is further optimized in order to tame the large-
order behavior.
The results reported in Sec. VII show that CINPPT and

RGSNPPT describe very well the spectral function mo-
ments of the RM considered in [29], including those that
are poorly described by the standard expansions, FOPT,
CIPT, and RGSPT. We have demonstrated a good conver-
gence of CINPPT for various conformal mappings used as
expansion variables after softening the leading singular-
ities. The description continues to remain good also at
lower values of s0, within the uncertainties adopted for
the true values.
For the extreme AM defined in [29], where the first IR

renormalon is removed by hand, the approximation
achieved with the nonpower expansions defined in Sec. V
is less precise for some moments at low orders. This is due
to the fact that the expansions are optimally devised for the
physical Adler function, exploiting in a manifest way its
first singularities. However, they are not optimal for the
alternative model, where one of the dominant singularities
is absent. On the other hand, at higher orders the nonpower
expansions have a tame behavior tending to the true values
for both models, nicely illustrating the theorem of series
acceleration by conformal mappings [14,34].
Our analysis shows that the class of nonpower expan-

sions (22) and (25), based on different softening factors
and different conformal mappings, agree among them and
with the exact moments of the RM of the Adler function
defined in [7,29] starting from rather low perturbative
orders, N ¼ 4 or 5. This may be a coincidence, but may
also signal a special place of this model among other
models of the Adler function. Of course, such a conclusion
is not fully rigorous, because the nonpower expansions
contain some arbitrariness in the implementation of the
dominant singular behavior. However, we have investi-
gated several reasonable expansions to reduce the bias,
and the results are quite stable. Thus, the rapid convergence
and the stability of CINPPT and RGSNPPT for all the
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moments of the RM might be an argument in favor of the
naturalness of this model.

In conclusion, the contour-improved nonpower perturba-
tion theory (CINPPT) and the renormalization-group-
summed nonpower perturbation theory (RGSNPPT) provide
a good perturbative description of a large class of � hadronic
spectral function moments, including some for which all the
standard expansions fail. In contrast to standard perturbation
theory, we do not use series in powers of the strong coupling,
which are mostly chosen for their ‘‘simplicity.’’ A funda-
mental merit of our approach is the fact that, to expand a
singular (Adler, e.g.) function, we make use of a set of
expansion functions possessing singularities that resemble
those of the expanded function itself. These expansions also
give confidence in a more realistic estimate of the truncation

error. As a consequence, our perturbation expansions
CINPPT and RGSNPPT provide solid theoretical frame-
works for the perturbative part in moment analyses. A
program that employs these expansions for the simultaneous
determination of the strong coupling and other parameters of
QCD from hadronic � decays is of interest for future
investigations.
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