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We present an improved light-cone sum rule analysis of the decay form factors of D and Ds into � and

�0 and argue that these decays offer a very promising possibility to determine the leading Fock-state

gluonic contribution of the �0 at future experimental facilities such as FAIR or Super-KEKB. We also give

the corresponding branching ratios for B decays.
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I. INTRODUCTION

With the advent of high luminosity accelerators, weak
decays of hadrons containing valence charm or bottom
quarks can be measured with very high precision. In fact,
such decays might even offer one of the best chances for
the discovery of beyond the standard model physics (see
the recent reviews [1–3] and the citations given there).
So, there is strong motivation to improve on the theoretical
description of the QCD input needed for such searches.
One of the most important quantities for such exclusive
channels are the hadron distribution amplitudes (DAs),
often also called wave functions, and form factors. For
each hadron, DAs are characteristic nonperturbative quan-
tities, just like parton distribution functions. As for the
latter, moments of DAs can be calculated on the lattice,
see e.g. [4,5], and rapid progress can be expected along
these lines. Nevertheless, in the long run input from many
sides will be needed to understand the basic systematics of
hadron DAs, even for the most important standard hadrons.
The controversial theoretical discussion spawned by the
surprising BABAR data for the photon-pion transition form
factor [6–9] has illustrated that this field is still in a
pioneering phase. Another nonperturbative approach, be-
sides lattice QCD, to DAs and form factors are light-cone
sum rules (LCSR) [10]. As both approaches are concep-
tually completely different, the ideal situation is reached if
both give the same results. We will show that this is what
happens, e.g., for the decays Ds ! �=�0 þ ‘þ �‘ we are
analyzing in this contribution. This case is especially in-
teresting because the singlet-octet mixing of the � and �0
should be reflected by the respective form factors, e.g., by
a substantially different size of the gluonic contribution
(see e.g. [11,12] for a recent review). Since this debate has
been ongoing for many years, it would be great news
if the gluonic leading Fock-state contribution for the �0
could be experimentally determined. (There always exist
gluonic higher Fock-state components.) We will specify
observables that are sensitive to this component and thus
offer this opportunity.

From a theoretical point of view, B mesons would be
better suited for our purpose. There, the light-cone expan-
sion exhibits a stronger hierarchy due to the larger mass of

the b quark, which in turn reduces the uncertainty coming
from the truncation of this expansion. However, in practice,
this uncertainty is not the dominant one.
As for all three cases (D, Ds and B decays), the required

increase in experimental accuracy looks very feasible
for next-generation experiments, and we hope that in a
few years, data for this complete set of meson decays
will provide undisputable experimental evidence for the
gluonic component of the �0.
The decays Ds ! �=�0 þ ‘þ �‘ have been analyzed

before, both phenomenologically, e.g., [13,14], and using
leading-order LCSRs with chiral currents including meson
mass corrections [15]. We improved the LO twist-2 analy-
sis by taking into account all two-particle twist-2 and twist-
3 next to leading order (NLO) quark contributions and, in
addition, the NLO twist-2 gluon contribution. The latter
allows us to extract information on the leading gluon DA of
the �0. To achieve this goal, we made heavy use of NLO
results existing in the literature [16,17]. Our results for the
decay form factors agree, within uncertainties, with those
of [15]. While this is encouraging, we also feel that it is
somewhat fortuitous, because we have some doubts con-
cerning the benefits of the chiral currents used in that work,
since they eliminate important nonperturbative informa-
tion and do not couple only to the pseudoscalar mesons in
the hadronic sum.
The decays B ! �=�0 þ ‘þ �‘ were analyzed in [18]

at leading order and in [16] at the same level of accuracy
as in this note. We improve on the latter calculation by
making an analysis of both the branching fractions and
their ratios.
The paper is organized as follows: In Sec. II we discuss

the �� �0 mixing scheme. In Sec. III we outline the
derivation of the LCSRs for the different form factors. In
Sec. IV we present our numerical results, and in Sec. V we
summarize and conclude.

II. MIXING SCHEMES

Two different schemes for describing the �� �0 mixing
are commonly used: the singlet-octet (SO) [19] and the
quark-flavor (QF) schemes [20–24]. See also [25] for a
mixing scheme independent sum rule determination of the
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couplings of the �ð0Þ to the axial currents. The SO scheme
defines two hypothetical pure singlet and octet states j�1;8i
and two mixing angles �1;8 to describe the four decay

constants,

f8� f1�

f8
�0 f1�0

0
@

1
A ¼ cos �8 � sin�1

sin�8 cos �1

 !
f8 0

0 f1

 !
; (1)

defined as

h0jJi�5jPðpÞi ¼ ifiPp�; ði ¼ 1; 8; P ¼ �;�0Þ: (2)

In this scheme, f1 describes the contribution of the
Uð1ÞA anomaly via the divergence of the singlet current
J1�5, and the difference �i � 0 and f8 � f� is given by

SUð3ÞF-violating effects. f8 and �i are scale independent
and f1 renormalizes multiplicatively.

In the QF scheme, the basic currents and couplings are
given by

h0jJa�5j�ðpÞi ¼: ifa�p�;

h0jJa�5j�0ðpÞi ¼: ifa�0p�;

Ja�5 ¼
8<
:

1ffiffi
2

p ð �u���5uþ �d���5dÞ; a ¼ q

�s���5s; a ¼ s:

(3)

Here the angles are scale dependent and their difference
is given by Okubo-Zweig-Iizuka (OZI) rule–violating con-
tributions. Phenomenologically, this difference is very
small. Thus, the authors of [20] proposed to use, within
the QF scheme, the approximation

� � �q;s; �q ��s ¼ 0; (4)

which has only three parameters with the phenomenologi-
cal values

fq ¼ ð1:07� 0:02Þf�;
fs ¼ ð1:34� 0:06Þf�;
� ¼ 39:3� � 1:0�;

(5)

and where the mixing of the states follows the same pattern
as for the decay constants,

j�ðpÞi
j�0ðpÞi

 !
¼ cos� � sin�

sin� cos�

 ! j�qðpÞi
j�sðpÞi

 !
: (6)

The masses of the states, to the order in which we perform
our calculations, are given by [20]

m2
qq ¼ m2

�; m2
ss ¼ 2m2

K �m2
�: (7)

One important point to note is that in this version of the QF
scheme, there is no scale dependence left in the parame-
ters. Since the mixing of the two different flavor states is
given by OZI rule–violating contributions,

j�qðpÞi / �q
2ðuÞjq �qi þ�OZI

2 ðuÞjs�si þ � � �; (8)

j�sðpÞi / �OZI
2 ðuÞjq �qi þ�s

2ðuÞjs�si þ � � �; (9)

where

�q
2 ¼

1

3
ð�8

2 þ 2�1
2Þ;

�s
2 ¼

1

3
ð2�8

2 þ�1
2Þ;

�OZI
2 ¼

ffiffiffi
2

p
3

ð�1
2 ��8

2Þ

(10)

are leading twist distribution amplitudes, a consistent
implementation requires us to set

�OZI
2 ¼

ffiffiffi
2

p
3

ð�1
2 ��8

2Þ ¼ 0:

This implies that one has to ignore the different scale
dependence of the singlet and octet distribution ampli-
tudes, because otherwise their evolution would generate a
nonzero �OZI

2 . We followed [16] and set �1
2 ¼ �8

2 and
evolved their lowest moment a2, according to the octet
scaling law. We confirm that the induced difference due to
different renormalization behavior is very small. We also
confirm their finding that the mixing of the leading
Gegenbauer moment in the conformal expansion of the
twist-2 quark and gluon distribution amplitudes

�1
2;�ðu;�Þ ¼ 6u �u

�
1þ X1

n¼1

a�;12n ð�ÞC3=2
2n ð2u� 1Þ

�
;

c g
2;�ðu;�Þ ¼ u2 �u2

X1
n¼1

B
�;g
2n ð�ÞC5=2

2n�1ð2u� 1Þ;
(11)

given by [26],

�
d

d�

a
�;1
2

B�;g
2

 !
¼

100
9 � 10

81

�36 22

 !
a
�;1
2

B�;g
2

 !
;

has only small numerical influence. This led us to neglect
this effect in accordance with the remarks made above.
Higher Gegenbauer moments turned out to give only neg-
ligible contributions as well, and therefore we restrict our
analysis to the lowest moments. On the whole, these effects
are smaller than 3%. The main difference with respect

to [16], besides using the MS mass for mc, is that for the

Ds ! �ð0Þ decays we probe the �ss content of the �ð0Þ, which
leads to a different dependence on the mixing angle [see

Eq. (20)], while for the D ! �ð0Þ the only difference is the
change of Borel parameter, continuum threshold and
masses mc $ mb, mD $ mB.

III. OUTLINE OF THE LCSR METHOD

The idea behind LCSR calculations for decay matrix
elements from heavy into light quark hadrons is illustrated
in Fig. 1. For a detailed discussion of the original two-point
sum rules and their extension, consult, e.g., [27–32].
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In short, one uses the twofold nature of the correlation
function to equate two different representations: First, one
inserts a complete set of hadronic states, separates the
ground state and expresses the rest via a dispersion integral
over the hadronic spectral density. Second, one uses that
for large negative virtualities the correlation function is
dominated by lightlike distances and makes an expansion
around the light cone, leading to a convolution of
perturbatively calculable hard-scattering amplitudes and
universal soft-distribution amplitudes. After an analytic
continuation of the light-cone expansion to physical mo-
menta using a dispersion relation, one equates these two
representations by the assumption of quark-hadron duality.
Finally, it is customary to use a Borel transformation to
suppress higher states in the hadronic sum and to get rid of
subtraction terms that are necessary if the dispersion rela-
tion is divergent. We will illustrate these steps below. The

starting point for the Dþ
ðsÞ ! �ð0Þlþ�l form factor,

hPðpÞj �q��cjDðsÞðpþ qÞi
¼ 2fþDðsÞPðq2Þp� þ ðfþDðsÞPðq2Þ þ f�DðsÞPðq2ÞÞq�;

is the correlation function,

FHP
� ðp;qÞ ¼ i

Z
d4xeiqxhPðpÞjTfVP

�ðxÞ; jyHð0Þgj0i
¼ FHPðq2; ðpþ qÞ2Þp� þ ~FHPðq2; ðpþ qÞ2Þq�;

(12)

where P is the on-shell pseudoscalar meson (in our case
P ¼ �, �0, H ¼ B, DðsÞ), VP is the local weak interaction

vertex and jH is a local interpolating current for the heavy
quark system. In the present case we deal with the expres-
sions collected in Table I. The scalar form factor,

f0DðsÞPðq2Þ ¼ fþDðsÞPðq2Þ þ
q2

m2
DðsÞ �m2

�ð0Þ
f�DðsÞPðq2Þ;

enters the leptonic spectrum only with factors proportional
to m2

l . Therefore, we do not consider ~FP, which is needed

to calculate f0
DðsÞ�ð0Þ .

Inserting a complete set of hadronic states between
the two currents Eq. (12) and separating the ground state
leads to

FDðsÞPðq2; ðpþ qÞ2Þ

¼ 2m2
DðsÞfDðsÞf

þ
DðsÞPðq2Þ

ðm2
DðsÞ � ðpþ qÞ2Þ þ

Z 1

s
hðsÞ
0

ds
�hðsÞ ðq2; sÞ

s� ðpþ qÞ2 ; (13)

where s
hðsÞ
0 is a hadronic threshold, �hðsÞ ðsÞ is the hadronic

spectral density and fDðsÞ is the decay constant of theDðDsÞ
meson. Since the Borel transform will take care of sub-
traction terms in the end, we will not write them anywhere.
The light-cone expansion for q2, ðpþ qÞ2 � m2

c can be
written in the general form

½FDðsÞPðq2; ðpþ qÞ2ÞÞ�OPE
¼ X

t¼2;3;4

FP;t
0 ðq2; ðpþ qÞ2Þ

þ 	sCF

4�

X
t¼2;3

FP;t
1 ðq2; ðpþ qÞ2Þ þ � � � : (14)

Here t denotes the twist which is taken into account at
the current accuracy. The leading- and next-to-leading
order expressions F0;1 are given as convolutions of

hard-scattering amplitudes and distribution amplitudes
(see Fig. 1),

F
DðsÞP;t
0;1 ðq2; ðpþ qÞ2Þ
¼
Z

duTðtÞ
0;1ðq2; ðpþ qÞ2; m2

c; u; �Þ�ðtÞ
�ð0Þ ðu;�Þ: (15)

u denotes a generic expression for the momentum fractions
of the partons in the meson and �, the factorization scale.
The leading-order term is given by contracting the c quarks
to generate the free propagator and taking into account
only the twist-2 distribution amplitude [see Eq. (A1)],

F
DðsÞ�ð0Þ ;2
0 ðq2; ðpþ qÞ2Þ

¼ f�m
2
c

Z 1

0

du��ð0Þ ðuÞ
m2

c � q2 �u� ðpþ qÞ2u : (16)

Analytic continuation of the momentum ðpþ qÞ2 flowing
through the interpolating current leads to

TABLE I. Currents entering the correlation function Eq. (12).

Decay Interpolation current Weak current

Dþ
s ! �ð0Þl�l jDþ

s
¼ mc �si�5c V

ð�;�0Þ
� ¼ �s��c

Dþ ! �ð0Þlþ�l jDþ ¼ mc
�di�5c V

ð�;�0Þ
� ¼ �d��c

η V j

c
T

0

φ

FIG. 1 (color online). Structure of the light-cone sum rule
calculation: j is the interpolating current for the heavy meson.
The weak matrix element is contained in V, and the charm quark
propagator is treated perturbatively. Thus, the factor T can be
calculated purely perturbatively, which is done at NLO accuracy.
At that level, the parton lines coupling into the � can be either
quark-antiquark or two gluons. The occurring matrix elements
are parametrized in terms of the distribution amplitudes. A Borel
transform serves to filter out the D and Ds contributions from T.
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½FDðsÞPðq2; ðpþ qÞ2Þ�OPE
¼ 1

�

Z 1

m2
c

ds

s� ðpþ qÞ2 Im½FDðsÞPðq2; sÞ�OPE: (17)

Now the two representations can be equated by using the
semilocal quark-hadron duality assumption that from a

certain continuum threshold s
DðsÞ
0 on, the integral over the

hadronic spectral density and over the partonic result
should be the same,

Z 1

s
DðsÞ
0

ds
Im½FDðsÞPðq2; sÞ�OPE

s� ðpþ qÞ2 ¼
Z 1

s
hðsÞ
0

ds
�hðsÞ ðq2; sÞ

s� ðpþ qÞ2 :

This assumption and the final Borel transformation

BM2

1

s� ðpþ qÞ2 ! e
� s

M2

lead to the sum rule,

fþDðsÞPðq2Þ

¼ 1

2m2
DðsÞfDðsÞ

e

m2
DðsÞ
M2

1

�

Z s
DðsÞ
0

m2
c

ds Im½FDðsÞPðq2; sÞ�OPEe�
s

M2 ;

(18)

where M2 is the Borel parameter. It is important to note
that every additional two units of twist are accompanied by
another power of the denominator,

D ¼ m2
c � q2 �u� ðpþ qÞ2u; (19)

which shows that for the processes in question, the mo-
mentum transfer q2 is severely constrained in order to have
a converging light-cone expansion. Another point worth
mentioning is that odd twists (3; 5; . . . ) come from the mass
term of the c-quark propagator and are formally subleading
in 1

mc
compared to their even counterparts. However, due to

chiral enhancement coming from the prefactor �� of the

twist-3 distribution amplitudes, they numerically exceed
these. This would imply that the unknown twist-5 contri-
butions might be larger than the twist-4 ones, which we
analyze, and convergence cannot be taken for granted. To
really assess the situation, a dedicated study of these higher
twist contributions would be needed, which is a formidable
task, far exceeding the scope of this paper. To have at least
a rough guess of the resulting uncertainty, we follow [33]
and assume that the ratio of the unknown twist-5 term to
the twist-3 term is the same as the ratio of the twist-4 term
to the twist-2 term. This gives an additional uncertainty,
varying from 4% for q2 ¼ �2 GeV to 2.5% for q2 ¼ 0.

The inclusion of the gluonic part of the �ð0Þ in the sum
rules was already discussed in [16], and we do not repeat it
here. It boils down to using relation (6) to calculate the
correlation functions,

FDs� ¼ �FDs�s sin�þ FDs�q cos�;

FDs�
0 ¼ FDs�s cos�þ FDs�q sin�;

FD� ¼ FD�q cos�� FD�s sin�;

FD�0 ¼ FD�q sin�þ FD�s cos�;

(20)

and inserting these into Eq. (18).
The second summand in each equation of (20) gets only

contributions at NLO from the gluonic part, while the
first summand is a combination of quark and gluonic
contributions. The quark contribution we take from

[17,33] with the replacements f�!fqðsÞ, f�
m2

�

2mq
!fq

m2
�

2mq
,

f�
m2

�

2mq
! fs

2m2
K�m2

�

2ms
, which means that we take

SUð3Þ-flavor violation into account only via the decay
constants. In [33,34] it was shown that for decays into
kaons and pions, this is indeed a good approximation.
We checked that our results do not change significantly if
we include meson and quark mass corrections. But keeping
all SUð3Þ-violating effects would force us not only to keep
all quark and meson mass dependences in the correlation
function but also to use

hq ¼ fqðm2
�cos

2�þm2
�0sin 2�Þ

� ffiffiffi
2

p
fsðm2

�0 �m2
�Þ sin� cos�;

hs ¼ fsðm2
�0cos 2�þm2

�sin
2�Þ

� fqffiffiffi
2

p ðm2
�0 �m2

�Þ sin� cos�;

(21)

[35] instead of fqm
2
� and fsð2m2

K �m2
�Þ, respectively.

These quantities are, due to cancellations, very weakly
constrained, which would lead to uncertainties at the level
of 200% if one assumes uncorrelated errors in the twist-3
part (see e.g. [16]). In the ratios, these uncertainties cancel
for the largest part, but for the form factors and decay rates
this seems to be a huge overestimation.

IV. NUMERICS

A. Choice of input

We follow [17,33] in using the MS scheme and one
universal scale throughout our calculation. The scale is

set to be � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

DðsÞ �m2
c

q
¼ 1:4ð1:5Þ GeV, and all quan-

tities are evolved to this scale using one-loop running for
the quark masses and distribution amplitude parameters
and two-loop running for 	s.
The values for the Gegenbauer moments need

some discussion. In a recent perturbative analysis [36,37]

of the �ð0Þ transition form factors, P. Kroll and
K. Passek-Kumeric̆ki got the values (for � ¼ 1 GeV)
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a82 ¼ �0:05� 0:02;

a12 ¼ �0:12� 0:01;

ag2 ¼ 19� 5;

(22)

similar to their older results in [26] (see also [38,39]).
Unfortunately, these numbers are at first sight in contra-
diction with the sum rule value a82 � 0:2. The authors of

[36,37] state that their values are effective ones, contami-
nated by higher Gegenbauer moments, while the effect
of power corrections is neglected. Both effects were shown
to be large in the accessible Q2 region for the pion tran-
sition form factor in [8,9], where the value a�2 ¼ 0:13–0:16
was obtained, in stark contrast to the value a�2 ¼ �0:02�
0:02, obtained in [36,37]. Including generic power correc-
tions leads to a82 ¼ 0:06� 0:05, which also suggests that
the values given in (22) should be taken with a grain of salt.
As we do not see how to correct for these effects, we
decided to ignore Eq. (22) and to use the average over
sum rule fits to experimental data and direct lattice and sum
rule calculations instead, leading to

a82ð1 GeVÞ ¼ 0:25� 0:15: (23)

We implement the quark-flavor scheme by setting
a12ð1 GeVÞ ¼ a82ð1 GeVÞ and evolving both via the renor-

malization of the octet moment. This, in turn, implies
aq2 ¼ as2, see (10). There is no hint of large SUð3Þ-flavor
violation in the even Gegenbauer moments, where one
finds, e.g., a�2 � aK2 , which should be an acceptable ap-
proximation. Since the impact of the mixing between a12
andBg

2 is rather small, we treat the latter as a free parameter
and vary it over the same very conservative range
Bg
2 ¼ 0� 20 as in [16]. We take the quark and meson

masses from the Particle Data Group [40]. Their current
values are

�mcð �mcÞ ¼ ð1:275� 0:025Þ GeV; (24)

muð� ¼ 2 GeVÞ ¼
�
2:3þ0:7

�0:5

�
MeV; (25)

mdð� ¼ 2 GeVÞ ¼
�
4:8þ0:7

�0:3

�
MeV; (26)

msð� ¼ 2 GeVÞ ¼ ð95� 5Þ MeV; (27)

and

mDþ ¼ 1869:6 MeV; mDþ
s
¼ 1968:5 MeV; (28)

m�0 ¼ 134:98 MeV; mK0 ¼ 497:61 MeV: (29)

The latter ones are related via flavor symmetry to the
masses of the j�qðsÞi states as given in Eq. (7). For the

pion decay constant, we use f� ¼ 130:4 MeV and for
the DðsÞ decay constant we take the experimental values

from [40],

fD ¼ ð206:7� 8:5� 2:5Þ MeV;

fDs
¼ ð260� 5:4Þ MeV;

(30)

while for the B meson, in view of the existing large
discrepancies in determinations of jVubj, which is in turn
needed for the extraction of fB, we use a two-point sum
rule at order 	s [41]. For the continuum threshold and the
Borel parameter, we choose

sD0 ¼ ð7� 0:6Þ GeV2; sB0 ¼ ð35:75� 0:25Þ GeV2;

M2
DðsÞ ¼ ð4:4� 1:1Þ GeV2; M2

B ¼ ð18� 3Þ GeV2;

(31)

and for the two-point sum rule,

�sB0 ¼ ð35:75� 0:25Þ GeV2; �M2
B ¼ ð5� 1Þ GeV2;

(32)

which fulfill the usual criteria for these parameters and are
close to the ones used in [17,33]. The quark, gluon and
mixed condensates are given by [42,43]

h �qqið2 GeVÞ ¼
�
�0:246�0:019

þ0:028

�
3
GeV3;�

	S

�
GG

�
ð2 GeVÞ ¼

�
0:012�0:012

þ0:006

�
GeV4;

m2
0 ¼

gh �q
��G
��qi

h �qqi ;

¼ ð0:8� 0:2Þ GeV2: (33)

Finally we take for the twist-3 and -4 parameters at
� ¼ 1 GeV,

f�3 ¼ ð0:0045� 0:0015Þ GeV2;

!�
3 ¼ ð�1:5� 0:7Þ GeV2;

�� ¼
�
21

8

�
ð0:2� 0:1Þ GeV2;

�2
� ¼ ð0:18� 0:06Þ GeV2:

(34)

B. Forms factors and their shape

As can be seen from Eq. (19), our sum rules for D and
Ds decays are only applicable for q2 � m2

c. To be able to
make a prediction for the shape of the form factor and for

TABLE II. Shape parameters for f
Dþ

ðsÞ�
ð0Þ

þ ðq2Þ as input for the
BZ model, Eq. (35).

Decay r 	 jfþð0Þj
Dþ

s ! �lþ�l 0:284þ0:003
�0:002 0:252þ0:107

�0:082 0:432þ0:033
�0:033

Dþ
s ! �0lþ�l 0:284þ0:137

�0:095 0:252þ0:382
�0:395 0:520þ0:080

�0:080

Dþ ! �lþ�l 0:174þ0:001
�0:001 �0:043þ0:068

�0:052 0:552þ0:051
�0:051

Dþ ! �0lþ�l 0:174þ0:243
�0:142 �0:043þ0:526

�0:596 0:458þ0:105
�0:105
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the value of the branching fractions, we follow [33]. We
calculate the form factors at q2 < 0, where the twist ex-
pansion of the sum rules works perfectly well, and then
basically use a fit to extrapolate our results to q2 > 0. We
use the simple Ball-Zwicky parametrization [44], keeping
in mind that all fit formulas work nearly equally well
[33,45,46] and that unitarity constraints for more elaborate
formulas are up to now not restrictive,

fBZþ ðq2Þ

¼fþð0Þ
0
@ 1

1�q2=m2
D	

ðsÞ

þ
rq2=m2

D	
ðsÞ

ð1�q2=m2
D	

ðsÞ
Þð1�	q2=m2

DðsÞ Þ

1
A:

(35)

The idea of this fit formula is basically to take the dis-
persive representation of the form factor, take out the
known lowest-lying resonance and approximate the dis-
persion integral over many particle states, starting from
ðmDðsÞ þm�Þ2 by an effective pole. r, 	 parametrize the

residuum and position of this pole, while fþð0Þ gives the
overall normalization. Despite the resonances D	

ðsÞ being
very close to the two-particle threshold, the fits are
numerically perfectly stable.

The results for f
Ds�þ ðq2Þ and f

Ds�
0

þ ðq2Þ are shown in
Figs. 3 and 4. To get the error bands, we made a statistical

analysis of all input parameters at each q2 
 0, assuming
Gaussian uncertainties, and then extrapolated them in
the same way as the central values. As can be seen, the
uncertainty coming from the unknown gluon distribution

amplitude is nearly negligible for the f
Ds�þ ðq2Þ form factor,

which holds for fD�
þ ðq2Þ and fB�þ ðq2Þ as well, supporting

the notion of a nearly total octet nature of the �. On
the other hand, there is a considerable impact on the
DðsÞðBÞ ! �0-form factors from the gluonic part. The fit

parameters can be found in Table II. Figures 3 and 4 also
contain results from a first lattice simulation for this quan-
tity [47], which were corrected in accordance with a private
communication from the author. (The fact that one has to
calculate disconnected contributions makes such lattice
simulations very demanding [48].)
Our results for q2 ¼ 0 are shown in Table III. For

illustration, we show the dependence of the Ds ! �ð0Þ
form factors on the Borel parameter in Fig. 2.
As can be seen, the sum rules are stable for a very large

range of parameter values.
Especially interesting are the ratios of the �0 to � form

factors, since for such ratios most of the uncertainties
cancel. For the gluonic part, we made the assumption

2 1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

q² GeV²

f
D

s
q

²

FIG. 3 (color online). f
Ds�

0
þ ðq2Þ plotted as a function of q2. The

black dots are the calculated sum rule values. The blue straight
line is the fit to the central values. Blue dashed band: Full
uncertainties of our result. Red lines: Uncertainty coming from
the gluonic contribution, which due to a very small impact nearly
conceals the blue line. Brown line: Results of [15]. Orange point:
corrected lattice result from [47] in accordance with a private
communication from the author.

2.5 3.0 3.5 4.0 4.5 5.0 5.5

0.30

0.35

0.40

0.45
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0.55

0.60

0.65

M² GeV²

f Ds ’ M²

f Ds M²

FIG. 2 (color online). jfDs�þ ðq2 ¼ 0Þj, jfDs�
0

þ ðq2 ¼ 0Þj plotted
as a function of the Borel parameter M2. The blue dashed line
corresponds to jfDs�þ ðq2 ¼ 0Þj and the brown dashed line to

jfDs�
0

þ ðq2 ¼ 0Þj.

TABLE III. Form factors f
Dþ

s �
ð0Þ

þ ð0Þ, fDþ�ð0Þ
þ ð0Þ and f

Bþ�ð0Þ
þ ð0Þ calculated from LCSRs, Eq. (20).

Formfactor central value M2 � (sD0 =s
B
0 ) a2 Bg

2 ðfq; fs; �Þ twist-3 twist-4 (condensates, mc=mb)

jfDþ
s �þ ð0Þj ¼ 0:432 �0:003 �0:026 �0:010 �0:013 �0:001 �0:025 �0:014 �0:002 �0:005

jfDþ
s �

0
þ ð0Þj ¼ 0:520 �0:003 �0:032 �0:012 �0:015 �0:070 �0:028 �0:016 �0:002 �0:006

jfDþ�
þ ð0Þj ¼ 0:552 �0:008 �0:034 �0:013 �0:016 �0:002 �0:015 �0:036 �0:002 �0:007

jfDþ�0
þ ð0Þj ¼ 0:458 �0:007 �0:028 �0:011 �0:013 �0:096 �0:025 �0:030 �0:002 �0:006

jfBþ�
þ ð0Þj ¼ 0:238 �0:002 �0:013 �0:002 �0:004 �0:001 �0:006 �0:011 �0:0002 �0:007

jfBþ�0
þ ð0Þj ¼ 0:198 �0:001 �0:011 �0:002 �0:003 �0:061 �0:007 �0:009 �0:0001 �0:006
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B
g;�
2 ¼ B

g;�0
2 , since no large SUð3Þ-breaking is expected in

this Gegenbauer moment. Note, however, that the contri-
bution to the form factors is vastly different, due to the
different admixture of the singlet part, which is given by
the decay constants

f1� ¼
ffiffiffi
2

3

s
cos�fq �

ffiffiffi
1

3

s
sin�fs;

f1�0 ¼
ffiffiffi
2

3

s
sin�fq þ

ffiffiffi
1

3

s
cos�fs;

(36)

[see Eqs. (A3) and (A4)].
What can be seen from Table IV is that almost the whole

uncertainty comes from Bg
2 , which would give the possi-

bility to constrain this quantity if more precise experimen-
tal data were available. The result for theDs form factors in
the considered q2 region is shown in Fig. 5. As can be seen,
the uncertainties are completely governed by the gluonic
contribution. Table IV shows our results at q2 ¼ 0.

C. Branching fractions and experimental results

With an extrapolation of the form factors to the whole
kinematic region, we are able to calculate the branching
fractions and compare them to experimental results. For

massless leptons, the scalar form factor f0
DðsÞ�ð0Þ does not

contribute, so the decay rate is given by

�ðDþ
s ! �ð0Þlþ�lÞ

¼ G2
FjVcsj2
24�3

Z q2max

0
dq2

3
2ðq2ÞjfDþ

s �
ð0Þ

þ ðq2Þj2; (37)

where the kinematical function ðq2Þ is defined via

ðxÞ ¼ 1

4m2
H

½ðm2
H þm2

M � xÞ2 � 4m2
Hm

2
M�; (38)

with (P ¼ �, �0; H ¼ Bþ, Dþ, Ds). After multiplication
with the mean lifetime of the considered meson, we get the
relevant branching fractions. To extract the uncertainties,
we again assume Gaussian errors and extrapolate the error
of jfþðq2Þj2 with different fit functions from q2 < 0 to the
physical region. The deviations found due to the change of
the fit function are incorporated in the error budget. Our
results and the experimental values are shown in Table V.
Again the ratios turn out to be especially interesting

since most of the uncertainties in the theoretical calculation
cancel, and they are dominated by the contribution of the

TABLE IV. Ratios

�����������
f
Dþ
ðsÞ�

0
þ ð0Þ
f
Dþ
ðsÞ�

þ ð0Þ

����������� and

��������f
Bþ�0
þ ð0Þ
fB

þ�
þ ð0Þ

�������� calculated from LCSRs, Eq. (20).

Formfactor

central value M2 � (sD0 =s
B
0 ) a2 Bg

2 ðfq; fs; �Þ twist-3 twist-4

(condensates,

mc=mb)��������f
Dþ
s �0

þ ð0Þ
f
Dþ
s �

þ ð0Þ

��������¼ 1:20 �1� 10�13 �1� 10�12 �6� 10�13 �7� 10�14 �0:16 �0:06 �3� 10�12 �3� 10�14 �2� 10�14

��������f
Dþ�0
þ ð0Þ
fD

þ�
þ ð0Þ

��������¼ 0:83 �5� 10�13 �9� 10�13 �2� 10�13 �5� 10�15 �0:18 �0:04 �8� 10�13 �3� 10�14 �5� 10�14

��������f
Bþ�0
þ ð0Þ
fB

þ�
þ ð0Þ

��������¼ 0:83 �8� 10�13 �6� 10�13 �1� 10�13 �1� 10�13 �0:26 �0:04 �8� 10�13 �2� 10�14 �2� 10�13
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FIG. 4 (color online). fDs�
0

þ ðq2Þ plotted as a function of q2.
Same convention as in Fig. 3.

2 1 0 1 2
0.8

1.0

1.2

1.4

1.6

q² GeV²

f
D

s
’

q
²

f
D

s
q

²

FIG. 5 (color online). jfDs�
0

þ ðq2Þ=fDs�þ ðq2Þj plotted as a func-
tion of q2. Again the black dots are the calculated sum rule
values. The blue dashed lines are fits to the sum rule results,
where the upper and lower line correspond to the uncertainties of
our calculation. They are completely dominated by the gluonic
contribution (red lines).
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gluonic Gegenbauer moment Bg
2 . Here we made the same

assumption, B
g;�
2 ¼ B

g;�0
2 , as for the ratios of the form

factors. Comparing them to the experimental values,

�ðDþ
s ! �0eþ�eÞ

�ðDþ
s ! �eþ�eÞ ¼ 0:37� 0:09ðBg

2Þ � 0:04ðrestÞ;
Exp: 0:36� 0:14 ½49�;

�ðDþ ! �0eþ�eÞ
�ðDþ ! �eþ�eÞ ¼ 0:16� 0:06ðBg

2Þ � 0:02ðrestÞ;
Exp: 0:19� 0:09 ½50�;

�ðB ! �0eþ�eÞ
�ðB ! �eþ�eÞ ¼ 0:50� 0:29ðBg

2Þ � 0:05ðrestÞ;
Exp: 0:67� 0:24� 0:1 ½52�; (39)

one can see good overall agreement, but clearly the experi-
mental precision is up to now not sufficient to draw any
conclusion on Bg

2 .

V. SUMMARYAND DISCUSSION

We have calculated the form factors and branching

fractions of the decays DðsÞ ! �ð0Þl� and B ! �ð0Þl� in

the framework of light-cone sum rules for massless

leptons. The form factors were shown to agree with avail-
able lattice results and the branching ratios, Eq. (39), with
experiment. So the overall picture is nicely consistent. Our
main result is, however, the error budget given in Eq. (39),
clearly showing that Bg

2 dominates the uncertainties in all

cases. Therefore, even a moderate increase in experimental
accuracy will allow us to determine the gluonic contribu-
tion to � and �0 from all three ratios, providing a sensitive
consistency check. FAIR and Super-KEKB should provide
precision measurements of these ratios and thus allow us to
settle this long-standing issue.
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APPENDIX: DEFINITIONS OF
DISTRIBUTION AMPLITUDES

Here we give the definitions of the distribution ampli-
tudes used in the paper. We follow the notation of [49] (see
also [33] for a minor correction) for the quark-antiquark,

h�ðpÞj �qi!ðx1Þqj�ðx2Þj0ix2!0 ¼
i�ij

12
f�

Z 1

0
dueiup�x1þi �up�x2

�
½6p�5��!’�ðuÞ � ½�5��!���

p
3�ðuÞ

þ 1

6
½
���5��!p�ðx1 � x2Þ����



3�ðuÞ þ

1

16
½6p�5��!ðx1 � x2Þ2�4�ðuÞ

� i

2
½ð6x1 � 6x2Þ�5��!

Z u

0
c 4�ðvÞdv

�
; (A1)

and quark-antiquark-gluon distributions,

h�ðpÞj �qi!ðx1ÞgsGa
��ðx3Þqj�ðx2Þj0ix2!0

¼ a
ji

32

Z
D	ie

ipð	1x1þ	2x2þ	3x3Þ
	
if3�ð
��5Þ�!ðp�pg�� � p�pg��Þ�3�ð	iÞ

� f�ð��5Þ�!


ðp�g� � p�g�Þ�4�ð	iÞ þ

pðp�x� � p�x�Þ
ðp � xÞ ð�4�ð	iÞ þ�4�ð	iÞÞ

�

� if�

2
�����ð�Þ�!



ðp�g� � p�g�Þ ~�4�ð	iÞ þ pðp�x� � p�x�Þ

ðp � xÞ ð ~�4�ð	iÞ þ ~�4�ð	iÞÞ
��
: (A2)

TABLE V. Branching fractions for the different decays.

Decay LCSRs (this work) Experiment

Ds ! �0e�e ð0:75� 0:23Þ% ð0:91� 0:33Þ% [50]

Ds ! �e�e ð2:00� 0:32Þ% ð2:48� 0:29Þ% [50]

D ! �0e�e ð3:86� 1:77Þ � 10�4 ð2:16� 0:53� 0:07Þ � 10�4 [51]

D ! �e�e ð24:5� 5:26Þ � 10�4 ð11:4� 0:9� 0:4Þ � 10�4 [51]

B ! �0e�e ð0:36� 0:22Þ � 10�4 ð2:66� 0:80� 0:56Þ � 10�4 [52]

ð0:24� 0:08� 0:03Þ � 10�4 [53]

B ! �e�e ð0:73� 0:20Þ � 10�4 ð0:44� 0:23� 0:11Þ � 10�4 [52]

ð0:36� 0:05� 0:04Þ � 10�4 [53]
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For the gluon-gluon distribution amplitude, we take over the notation of [16],

h�ð0ÞðpÞjG�xðxÞ½x;�x� ~G�xð�xÞj0i ¼ f1
�ð0Þ

CF

2
ffiffiffi
3

p ðpxÞ2
Z 1

0
due�ið2u�1Þpxc g

2;�ð0Þ ðuÞ; (A3)

with

f1� ¼
ffiffiffi
2

3

s
cos�fq �

ffiffiffi
1

3

s
sin�fs; f1�0 ¼

ffiffiffi
2

3

s
sin�fq þ

ffiffiffi
1

3

s
cos�fs; (A4)

which differs by a normalization factor of 
 ¼
ffiffiffiffiffi
3
CF

q
from the one used in [26]. The explicit conformal expansion of the

different distribution amplitudes can be found in [16,26,33,49]. For conciseness, we do not write them here.
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