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We revisit the problem of new physics (NP) contribution to the branching ratio of theBs ! �þ�� decay

in light of the recent observation of this decay by LHCb. We consider R-parity violating (RPV) super-

symmetric models as a primary example—recently one has reported stringent constraints on the products of

the RPV coupling constants that account for the Bs ! �þ�� transition at the tree level. We argue that

despite the fact that the LHCb measurement of the BðBs ! �þ��Þ is in a remarkable agreement with the

Standard Model (SM) prediction, there is still a room for a significant new physics contribution to the

BðBs ! �þ��Þ, as the sign of theBs ! �þ�� transition amplitudemay be opposite to that of the Standard

Model; alternatively the amplitude may have a large phase. We conduct our analysis mainly for the case of

real RPV couplings. We find that taking into account the scenario with the sign flip of the Bs ! �þ��

amplitude (as compared to that of the SM) makes the bounds on the RPV coupling products significantly

weaker. Also, we discuss briefly how our results are modified if the RPV couplings have large phases. In

particular, we examine the dependence of the derived bounds on the phase of the NP amplitude.

DOI: 10.1103/PhysRevD.88.034020 PACS numbers: 13.20.He, 12.60.�i, 12.60.Jv

The rare Bs ! �þ�� decay is believed to be one of
the most powerful tools to test the physics that may
occur beyond the Standard Model. Within the Standard
Model this decay is loop induced and in addition is helicity
suppressed. Numerical evaluation gives [1–3]

BðBs ! �þ��Þ ¼ ð3:25� 0:17Þ � 10�9: (1)

In contrast, the Bs ! �þ�� decay rate may be dramati-
cally enhanced within some of the Standard Model (SM)
extensions and may exceed the SM prediction by several
orders of magnitude. At the same time this decay is char-
acterized by a pure final leptonic state, which causes the
theoretical predictions for it to be very clean. It was there-
fore used intensively to constrain the SM extensions, and
there was a hope to observe a distinct new physics (NP)
signal in this decay mode.

Recently the LHCb Collaboration has reported the first
evidence for the Bs ! �þ�� decay at 3:5� level [4],

�Bexp ðBs ! �þ��Þ ¼ ð3:2þ1:5
�1:2Þ � 10�9; (2)

which is in a remarkable agreement with the SM prediction.
However, it would not be correct to declare that there is no
new physics contribution toBs ! �þ�� at all. Some of the
popular SM extensions do predict indeed a negligible NP
contribution to the Bs ! �þ�� decay rate, due to strong
correlations between the Bs- �Bs mixing and Bs ! �þ��
amplitudes [5]. Yet, for other SM extensions the problem of
new physics contribution to Bs ! �þ�� in light of the
recent observation of this decay by LHCb is the subject of
discussion in the literature [2,6–9]. In particular, it has been
argued in [6–8] that the LHCb result still leaves room for a

non-negligible NP contribution, due to the uncertainty in
the experimental value of the BðBs ! �þ��Þ.
In this paper we examine a source of new physics

contribution to Bs ! �þ�� that would be actual even in
the idealized limit of zero experimental and theoretical
uncertainties in the BðBs ! �þ��Þ and perfect coinci-
dence of the SM prediction with the experimental data.
Namely, we consider a possibility for the Bs ! �þ��
transition amplitude to have a sign opposite to that of the
Standard Model or to have a large phase. The LHCb
measurement of the Bs ! �þ�� branching ratio con-
strains the decay rate, whereas the sign (if it is real) or
the phase (if it is complex) of the transition amplitude
remains arbitrary. Thus, it is possible that
(i) If the amplitude is real (or has a small enough

phase so that it may be discarded), one may fit
the experimental data for the BðBs ! �þ��Þ in
particular when

ANPðBs ! �þ��Þ
’ �2ASMðBs ! �þ��Þ; so that

AðBs ! �þ��Þ
¼ ASMðBs ! �þ��Þ þ ANPðBs ! �þ��Þ
’ �ASMðBs ! �þ��Þ: (3)

(ii) If instead the NP amplitude has a large phase,
one may fit the experimental data for the
BðBs ! �þ��Þ when
jASMðBs ! �þ��Þ þ jANPðBs ! �þ��Þjei�NP j

’ jASMðBs ! �þ��Þj (4)*yeghiyag@gvsu.edu
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[if neglecting the SM amplitude phase and using
the approximation Bexp ðBs!�þ��Þ�BSMðBs!
�þ��Þ]. Note that Eq. (4) implies

� 2ASMðBs ! �þ��Þ
< Re½ANPðBs ! �þ��Þ�< 0; (5)

jIm½ANPðBs ! �þ��Þ�j & jASMðBs ! �þ��Þj:
(6)

In particular,

jIm½ANPðBs ! �þ��Þ�j
’ jASMðBs ! �þ��Þj

if Re½ANPðBs ! �þ��Þ�
’ �ASMðBs ! �þ��Þ: (7)

One may infer from Eqs. (3)–(7) that the NP contribu-
tion to the Bs ! �þ�� transition amplitude is the largest
when the amplitude just flips the sign as compared to that
of the Standard Model (rather than getting a large non-
trivial phase). So, we will be concentrating here mainly on
the case of a real amplitude, by assuming that the relevant
NP parameters are real. We will however discuss at the end
of the paper how our results are modified in presence of
large phases of the NP parameters.

Note that the possibility of the Bs ! �þ�� amplitude
sign flip has already been mentioned in [7] where one
considered new physics models with modified Z-boson
couplings to down-type quarks. This possibility has been
rejected there, as it is disfavored by the constraints on
Z ! b �b. To our best knowledge, there is no reason to
disfavor the Bs ! �þ�� amplitude sign flip within other
SM extensions (in fact it has also been implicitly consid-
ered in [2] within the general analysis of the NP contribu-
tion to Bs ! �þ�� in a variety of models, with the
amplitude phases varied freely from 0 to �). In our opin-
ion, the detailed analysis of the possibility that the
Bs ! �þ�� amplitude may have a sign opposite to that
of the Standard Model (or have a large phase) may be of
great importance, especially in light of future improvement
of the experimental accuracy of measurements of the
Bs ! �þ�� branching ratio.

We consider here R-parity violating supersymmetric
models with leptonic number violation as a primary ex-
ample. It has been recently argued [9] that the remarkable
agreement between the LHCb measurement and the SM
prediction for the Bs ! �þ�� branching ratio implies
rigorous constraints on the RPV coupling products that
account for the Bs ! �þ�� transition at the tree level.
We show that if the Bs ! �þ�� transition amplitude is
allowed to have a sign opposite to that of the Standard

Model, bounds on the RPV couplings may be by order of
magnitude weaker.
The most general Yukawa superpotential for an

explicitly broken R-parity supersymmetric theory may be
written as

W 6R ¼ 1

2
�ijkLiLjE

c
k þ �0

ijkLiQjD
c
k þ

1

2
�00
ijkU

c
i D

c
jD

c
k: (8)

Here Q and L denote SUð2ÞL doublet quark and lepton
superfields, and U, D and E stand for SUð2ÞL singlet
up-quark, down-quark and charged lepton superfields.
Also, i, j, k ¼ 1, 2, 3 are generation indices. We shall
require baryon number symmetry by setting �00

ijk to zero.

Also, as mentioned above, we will assume the couplings
�ijk and �0

ijk are real.

Subsequently, the Lagrangian describing the RPV
supersymmetry (SUSY) contribution to Bs ! �þ�� can
be written as

L 6R ¼ �ð�0
i23 ~�iL

�bPLsþ �0
i32 ~�iL �sPLbþ �i22~�iL ��PL�

þ �0
2k2~ukL �sPL�þ �0

2k3~ukL
�bPL�þ H:c:Þ (9)

where PL;R are the helicity projection operators, and we

use the notation PL ¼ ð1� �5Þ=2. Note that for the sake of
transparency of our analysis, we neglect the transformation
of the RPV couplings from the weak isospin basis to the (s)
quark and sneutrino mass basis. (We invoke however to
the reader to be cautious when using the bounds on RPV
coupling products derived in this paper. Rigorously speak-
ing, they may be used for the processes involving down-
type quark–down type quark–sneutrino and down-type
quark–up-type squark–charged lepton transitions only.)
Within R-parity violating supersymmetric models, to the

lowest order in perturbation theory the Bs ! �þ�� tran-
sition occurs at the tree level, due to exchange of sneutrinos
or up-type squarks, as depicted in Fig. 1. We need also to
include the SM contribution to Bs ! �þ��: recall that we
are interested in destructive interference of the SM and NP
amplitudes. Thus, the relevant low-energy j�Bj ¼ 1 effec-
tive Hamiltonian would have the following form:

H�B¼1
eff ¼ HSM

eff þH~�
eff þH~u

eff : (10)

Here [10,11]

HSM
eff ¼ �4GFffiffiffi

2
p �

2�sin 2�W

� ðV?
tbVtsÞ	YY0ðxtÞ �b��PLs ����PL�þ H:c: (11)

where [12]

Y0ðxtÞ ¼ xt
8

�
4� xt
1� xt

þ 3xt
ð1� xtÞ2

ln xt

�
;

xt ¼ m2
t =M

2
W , and 	Y is the factor that accounts for the

QCD corrections to Y0ðxtÞ.
Two other terms in Eq. (10) are derived by integrating

out the sneutrino and squark heavy degrees of freedom.
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This yields

H~�
eff ¼ �

�
�?
i22�

0
i23

m2
~�iL

�bPLs ��PR�

þ �0?
i32�i22

m2
~�iL

�bPRs ��PL�þ H:c:

�
(12)

H~u
eff ¼

�0?
2k2�

0
2k3

2m2
~ukL

�b��PRs ����PL�þ H:c: (13)

where ~�iL , ~ukL are respectively the lightest sneutrino and

the lightest ‘‘left’’ up-type squark states.1 For (nearly)
degenerate sneutrino and/or squark masses, one should
replace in Eq. (12) and/or Eq. (13) the lightest sparticle
masses by universal sneutrino and/or squark masses,
m~�iL

! m~�L
, m~ukL

! m~uL , as well as sum over indices i

and/or k.
Also, for the sake of clarity of our analysis, we will

follow Ref. [5] and assume

�0
i23 ¼ �0

i32 (14)

in our further calculations.
Using Eqs. (10)–(13) as well as the simplifying assump-

tion (14), one may present the Bs ! �þ�� transition
amplitude in the following form:

AðBs!�þ��Þ¼ASMðBs!�þ��ÞþA~�ðBs!�þ��Þ
þA~uðBs!�þ��Þ (15)

where

ASMðBs ! �þ��Þ ¼ �h�þ��jHSM
eff jBsi

¼ �iGFffiffiffi
2

p �fBs
m�

�sin 2�W
ðV?

tbVtsÞ	YY0ðxtÞ �uðp�Þ�5vðpþÞ

(16)

A~�ðBs ! �þ��Þ ¼ �h�þ��jH~�
eff jBsi

¼ �i�?
i22�

0
i23fBs

M2
Bs

2m2
~�iL
mb

�uðp�Þ�5vðpþÞ

(17)

A~uðBs ! �þ��Þ ¼ �h�þ��jH~u
effjBsi

¼ �i�0?
2k2�

0
2k3fBs

m�

4m2
~ukL

�uðp�Þ�5vðpþÞ

(18)

where uðp�Þ and vðpþÞ are the bispinor wave functions of
the leptonic states. (Subsequently, pþ and p� are the mo-
menta of �þ and ��.) In deriving (16)–(18) we used the
following parametrization of the hadronic matrix elements:

h0j �b��PLsjBsi ¼
ifBs

2
p�
B

h0j �b��PRsjBsi ¼
�ifBs

2
p�
B

h0j �bPRsjBsi ¼
ifBs

2

�M2
Bs

mb

�

h0j �bPLsjBsi ¼
�ifBs

2

�M2
Bs

mb

�

where fBs
is the Bs meson decay constant, and pB is the Bs

4-momentum.
We want to stress that all three parts of the amplitude

have the same structure. They all contain the same pseu-
doscalar bispinor bilinear form multiplied by some factor.
In what follows, both A~�ðBs ! �þ��Þ and A~uðBs !
�þ��Þ may interfere with the SM amplitude. In other

~ν
Li

s

b

~

_
µ+

µ−

ν
Li

s

b

~

_
µ+

µ−

u

s

b

~

_
µ+

µ−

P PPRPL R L

(a) (b)

kL

FIG. 1 (color online). Diagrams for the Bs ! �þ�� transition within R-parity violating supersymmetric models to the lowest order
in perturbation theory, (a) due to exchange of sneutrinos, (b) due to exchange of up-type squarks. The direction of the sneutrino
propagator depends on the helicities of the quark and lepton states, in other words whether we have PL or we have PR operator at an
interaction vertex.

1It is assumed that squark mass eigenstates do not differ
significantly from the left and right squark states. This is known
to be the case for most SUSY scenarios with the squark masses
much greater than 100 GeV.

NEW PHYSICS CONTRIBUTION TO . . . PHYSICAL REVIEW D 88, 034020 (2013)

034020-3



words, the Bs ! �þ�� amplitude may have a sign oppo-
site to that of the SM both due to the contribution of the
sneutrino-mediated diagrams, and due to the contribution
of the squark-mediated diagram.2

Calculation of the decay branching ratio using (15)–(18)
is straightforward and yields

BðBs !�þ��Þ

¼ 
Bs
MBs

f2Bs

8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

M2
Bs

vuut
��������
GFffiffiffi
2

p �m�

�sin2�W

� ðV?
tbVtsÞ	YY0ðxtÞ þ

�?
i22�

0
i23M

2
Bs

2m2
~�iL
mb

þ�0?
2k2�

0
2k3m�

4m2
~ukL

��������
2

(19)

where 
Bs
is the average lifetime of the Bs meson.

We use during the numerical analysis 
Bs
¼ 1:509 ps

[13], fBs
¼ 0:225 GeV [14], V?

tbVts ¼ 0:0405 [15]

(as mentioned above, we neglect the small phase of
this CKM product), MW ¼ 80:4 GeV, sin 2�W ¼ 0:231,
GF ¼ 1:166� 10�5 GeV�2, � ¼ �ðMZÞ ¼ 1=128,
m� ¼ 0:106GeV, MBs

¼ 5:3667GeV, mb ¼ mbðmbÞ ¼
4:18GeV [16]. For the top quark mass we use mpole

t ¼
173:2 GeV [17], which yields for theMS, QCD renormal-
ized mass �mtðmtÞ ¼ 163:2 GeV [1]; 	Y ¼ 1:012 for
xt ¼ �m2

t ðmtÞ=M2
W [1,18–20].

We neglect the uncertainties in the values of the input
parameters specified above. Those are known to alter the
predictions for the BðBs ! �þ��Þ by about 10% [1,2].
This uncertainty in the BðBs ! �þ��Þ is much less than
the one in the experimental value of the branching ratio and
the one in our results due to destructive interference of
different NP amplitudes (see the discussion at the end of
the paper).

We choose m~�iL
* 100 GeV and m~ukL

* 500 GeV. The

squark masses below 500 GeVare highly disfavored by the
LHC data (see [16,21] and references therein). To our
best knowledge, however, no such strong constraints on
sneutrino masses has been derived so far [16].

Also, following the common approach, we will assume
only one nonvanishing RPV coupling product at a time, or
alternatively only one of the NP amplitudes in (15) to be
nonvanishing at a time.

We consider first an idealized scenario with zero uncer-
tainties in the experimental and theoretical values of the
Bs ! �þ�� branching ratio and perfect coincidence of
the Standard Model prediction with the experimental data.
In such a scenario (if assuming real RPV couplings), non-
vanishing new physics contribution to Bs ! �þ�� may

occur if only the transition amplitude has a sign opposite to
that of the Standard Model. Following the approach of one
nonvanishing coupling product at a time, we choose first

�0?
2k2�

0
2k3 ¼ 0 or equivalently A~uðBs ! �þ��Þ ¼ 0. Then

the transition amplitude flips the sign if

A~�ðBs ! �þ��Þ ¼ �2ASMðBs ! �þ��Þ:
Using Eqs. (16) and (17) and the values of the input
parameters specified above, one finds that this occurs when

��?
i22�

0
i23 ¼ 2:12� 10�6

� m~�iL

100 GeV

�
2
: (20)

This value of �?
i22�

0
i23 is several times greater in magnitude

than the bound quoted in [9] (as no amplitude sign flip or
large phase has been considered in [9]). Nevertheless,
Eq. (20) implies rigorous constraints on this coupling
product or alternatively on the sneutrino masses. Indeed,
Eq. (20) implies ð��?

i22�
0
i23Þ � 10�6 for the lightest sneu-

trino mass�100 GeV. Alternatively, if one desires for this
coupling product to be of the same order as the SM weak
coupling squared (g2 � 0:5), the lightest sneutrino should
have a mass �50 TeV. This is a manifestation of the so-
called flavor problem [22,23]: to assure that tree level
flavor changing neutral currents beyond the SM do not
conflict with the experimental data, either the relevant
couplings should be unnaturally small or the new physics
mass scale should be enormously large. Solving the flavor
problem goes beyond the scope of the present paper.
Instead we will simply assume further that �?

i22�
0
i23 ¼ 0,

or A~�ðBs ! �þ��Þ vanishes, and we will be concentrat-
ing on the contribution of the squark-mediated diagram
only [Fig. 1(b)]. As mentioned above, possible effects of
interference of different NP amplitudes will be discussed at
the end of the paper.
If assuming A~�ðBs ! �þ��Þ ¼ 0, the transition ampli-

tude flips the sign when

A~uðBs ! �þ��Þ ¼ �2ASMðBs ! �þ��Þ:
Using Eqs. (16) and (18) and the values of the input
parameters specified above, one finds that this occurs when

� �0?
2k2�

0
2k3 ¼ 6:88� 10�3

� m~ukL

500 GeV

�
2
: (21)

Equation (21) implies rather weak constraints on the cou-
plings �0

2k2 and �0
2k3. If assuming no hierarchy in the values

of �0
2k2 and �

0
2k3, one gets j�0

2k2j � 0:085 and j�0
2k3j � 0:085

form~ukL
� 500 GeV. Thus, moderately small values of �0

2k2

and �0
2k3 are still allowed form~ukL

� 500 GeV. Furthermore,

choosing the lightest left up-type squark mass to be heavier
(say 1 TeV of few TeV) would yield larger values for �0

2k2

and �0
2k3 (and for their product) to be allowed.

At first glance this result is not surprising, as the
contribution of the diagram with a squark exchange in
Fig. 1(b) is helicity suppressed (like the SM contribution),

2If we give up the simplifying assumption (14), A~�ðBs !
�þ��Þ will also contain a term with a scalar bispinor bilinear
form. This term however will not interfere with the other terms
of the transition amplitude, so it does not play any essential role
in our analysis.
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as can be seen e.g. from Eq. (18). We want to stress
however that this is a rather nontrivial result, in a sense
that one should consider the possibility of the Bs ! �þ��
amplitude sign flip to derive it. If instead one assumes that
the sign of the transition amplitude is the same as within
the SM, so that the NP contribution is solely due to the
uncertainty in the experimental value of the BðBs !
�þ��Þ, the constraints on the coupling product �0?

2k2�
0
2k3

are significantly stronger. To illustrate this, we will con-
sider a realistic scenario now: we will demand that our
predictions for the Bs ! �þ�� branching ratio fall in the
experimentally allowed interval.

In order to do this, one should take into account that the
experimentally measured branching ratio of the Bs !
�þ�� decay is the time integrated branching ratio
[usually denoted �BðBs ! �þ��Þ like in Eq. (2) above]. It
is related to the ‘‘theoretical’’ branching ratio as [2,24–26]

BðBs ! �þ��Þ ¼
�

1� y2s
1þ A

��
�� ys

�
�BðBs ! �þ��Þ: (22)

Here [27]

ys ¼ ��s

2�s

¼ 0:088� 0:014 (23)

where ��s is the width difference in the Bs- �Bs mixing, and
�s is the average width of the Bs meson. The expression for
A
��
�� in terms of Wilson coefficients of the low-energy

effective operators may be found in [2]. For the considered
case of real NP couplings and under simplifying assumption
(14), one can show after doing some algebra that A

��
�� ¼ 1.

Thus, the experimentally allowed (1�) interval for the
�BðBs ! �þ��Þ [given by Eq. (2)] is converted to the
following allowed interval for the theoretical branching ratio:

BðBs ! �þ��Þ ¼ ð1� ysÞ �BðBs ! �þ��Þ
¼ ð2:9þ1:4�1:2Þ � 10�9: (24)

Equation (24) [combined with Eq. (19) in the limit when
only the squark-mediated diagram in Fig. 1(b) gives a
nonvanishing NP contribution] yields the following con-

straints on the coupling product �0?
2k2�

0
2k3:

� 4:9� 10�4

� m~ukL

500 GeV

�
2

� ��0?
2k2�

0
2k3 � 9:6� 10�4

� m~ukL

500 GeV

�
2

(25)

and

5:92� 10�3

� m~ukL

500 GeV

�
2

� ��0?
2k2�

0
2k3 � 7:37� 10�3

� m~ukL

500 GeV

�
2
: (26)

The first interval [given by (25)] is derived when the
Bs ! �þ�� transition amplitude has the same sign as

that of the Standard Model. The new physics contribution
is due to the uncertainty in the experimental value of the

Bs ! �þ�� branching ratio. This interval for �0?
2k2�

0
2k3 is

in a reasonable agreement with that quoted in Ref. [9]. The
second interval [given by (26)] is derived when the tran-
sition amplitude has a sign opposite to that of the Standard

Model. In that case the allowed values of ��0?
2k2�

0
2k3 are

greater by an order of magnitude. As discussed above, this
implies weaker constraints on the allowed region of the NP
parameter space.
Notice also that for the Bs ! �þ�� amplitude to flip

the sign, the coupling product �0?
2k2�

0
2k3 must be negative

[as it follows from Eq. (26)]. Contrary to this, within the

other interval [given by (25)], the sign of �0?
2k2�

0
2k3 is

arbitrary.
We used the 1� experimental interval to derive the

constraints on �0?
2k2�

0
2k3 given by (25) and (26). A more

conservative approach would imply using the 95% C.L.
interval, �BðBs ! �þ��Þ ¼ ½1:1� 6:4� � 10�9 [4]. One
would observe the same effect in that case as well,
although less pronounced and harder to analyze. While
using the 95% C.L. interval (instead of the 1� one) would
affect the sign-flip interval [given by (26)] by about 10%
only, the same-sign interval would be significantly more
widespread than (25). We leave for a reader to verify that if
using the 95% C.L. interval, the maximum value of

��0?
2k2�

0
2k3 in the sign-flip interval would be about 5 times

greater than the maximum value of j�0?
2k2�

0
2k3j in the same-

sign interval, or constraints on this coupling product would
still be significantly weaker when taking into account the
possibility of the Bs ! �þ�� amplitude sign flip.
In principle, one may conduct a similar analysis for

the contribution of the sneutrino-mediated diagrams on
Fig. 1(a) and subsequently for the other coupling product,
�?
i22�

0
i23. Assuming now that the squark-mediated diagram

in Fig. 1(b) has a vanishing contribution to Bs ! �þ��,
one will get in this case two different intervals for �?

i22�
0
i23

[that originate in the same way as (25) and (26) for

�0?
2k2�

0
2k3]. We leave this for a reader as another exercise

to do.
In a realistic scenario neither of the diagrams in Fig. 1

may have a vanishing contribution to Bs ! �þ��. In
addition, one should also take into account the impact of
the R-conserving sector of the theory on the Bs ! �þ��
transition amplitude as well [6]. Thus, in a realistic
scenario one has different sources of a NP contribution to
Bs ! �þ�� that may in general interfere both construc-
tively and destructively [28].
If different NP amplitudes interfere constructively, the

coupling product �0?
2k2�

0
2k3 may also acquire the values

between the two intervals given by (25) and (26). [That
is to say, the Bs ! �þ�� amplitude sign flip may be only
in part due to the contribution of the squark-mediated
diagram in Fig. 1(b); it may also be in part due to other
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new physics effects.] In other words, one should replace
(25) and (26) by

�4:9� 10�4

� m~ukL

500 GeV

�
2

� ��0?
2k2�

0
2k3 � 7:37� 10�3

� m~ukL

500 GeV

�
2
: (27)

Of course, the NP amplitudes may also interfere destruc-

tively. In that case the bounds on �0?
2k2�

0
2k3 given by Eq. (27)

may somehow be distorted (they may become weaker).
Yet, if there is no fine-tuning or exact cancellation of the
contributions of different NP amplitudes, it is very unlikely

that this distortion alter the bounds on �0?
2k2�

0
2k3, say, by an

order of magnitude. Thus, one may always use (27) to get
an insight into how large (in order of magnitude) the

coupling product �0?
2k2�

0
2k3 is still allowed to be.

So far we were assuming that the R-parity violating
couplings are real (or have small enough phases so that
they may be discarded). Yet, our analysis may be extended
also to the case when these couplings have large phases.
Demanding again that our predictions fall into the experi-
mentally allowed interval [and assuming again A~uðBs !
�þ��Þ to be the only nonvanishing NP amplitude], one
may derive an upper bound on the absolute value of the
coupling product �0?

2k2�
0
2k3 as a function of the NP ampli-

tude phase �NP ¼ arg ð�0?
2k2�

0
2k3Þ. One must however be

cautious what the allowed interval is now, as the observable
A��
�� is not equal to unity anymore. Thus, Eq. (24), which

we were using in the case of real NP couplings, is not valid
here. One shall demand instead

�
1þ A��

�� ys
1� y2s

�
BðBs ! �þ��Þ ¼ �BðBs ! �þ��Þ

¼ ð3:2þ1:5
�1:2Þ � 10�9 (28)

where in the limit of vanishing contribution of scalar
operators, A

��
�� ¼ cos ð2’P ��NP

s Þ [2]. Here �NP
s is the

NP piece of the Bs- �Bs mixing phase, and within the con-
sidered scenario ’P is the phase of the total (SMþ NP)
amplitude. There is a rather weak correlation between
the NP contribution to Bs- �Bs coming from the R-parity
violating sector and that to Bs ! �þ�� [5]. Moreover,
this correlation is negligible, if analyzing the contribution
of the squark-mediated diagram in Fig. 1(b) only
(or analyzing the constraints on �0?

2k2�
0
2k3). Also, the recent

measurements of �s at LHCb [27], combined with the
knowledge of the SM piece of �s, allow us to infer that
�NP

s & 0:15 radians, so this phase is too small to affect
A��
�� significantly. We will discard �NP

s in our calculations,

thus using A
��
�� � cos 2’P. Note that’P does not acquire a

unique value as the NP amplitude phase �NP is fixed. ’P

depends both on �NP ¼ arg ð�0?
2k2�

0
2k3Þ (which is the

only genuine free parameter in our analysis), and on

j�0?
2k2�

0
2k3j=m2

~ukL
(or on the relative weight of the NP

amplitude compared to the SM one).
The derived bound on j�0?

2k2�
0
2k3j as a function of the NP

amplitude phase�NP is presented in Fig. 2. As one can see
from Fig. 2, the bound on j�0?

2k2�
0
2k3j becomes weaker as

�NP gets larger, and it is the weakest when �NP ! �.
As mentioned above, this result could also be inferred
from the analysis of Eqs. (3)–(7). Thus, the most general
bound on j�0?

2k2�
0
2k3j (both in the case when this product is

real and in the case this product has a phase) would be

j�0?
2k2�

0
2k3j & 7:37� 10�3

� m~ukL

500 GeV

�
2
: (29)

In conclusion, we have revisited the problem of new
physics contribution to the Bs ! �þ�� decay in light of
the recent experimental measurement of this decay branch-
ing ratio by the LHCb Collaboration. We have examined
R-parity violating supersymmetric models as a primary
example, and argued that there is still room for a significant
NP contribution, as the transition amplitude still may have a
sign opposite to that of the Standard Model or alternatively
may get a large phase. We have found that if taking into
account the effect of the Bs ! �þ�� amplitude possible
sign flip as compared to that of the SM (or possible large
phase), the bounds imposed on the RPV coupling products
that account for the Bs ! �þ�� transition may be weaker
by an order of magnitude than if the effect of the amplitude
sign flip (or possible large phase) is disregarded. We em-
phasize that a similar effect may be observed also within
other SM extensions. So considering within other new
physics models the possibility for the Bs ! �þ�� transi-
tion amplitude to have a sign opposite to that of the SM or
to have a large nontrivial phase is strongly encouraged.

The author is grateful to Alexey A. Petrov and Javier
Virto for stimulating discussions and valuable suggestions
and comments.
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FIG. 2 (color online). Upper bound on j�0?
2k2�

0
2k3j as a func-

tion of the NP amplitude phase �NP for m~ukL
¼ 500 GeV

(solid red line), m~ukL
¼ 750 GeV (dashed-dotted green line),

m~ukL
¼ 1 TeV (dashed blue line).
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