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I. INTRODUCTION

The early works by Froissart [1], Martin [2] and
colleagues [3] have shown in a series of seminal papers1

that under very general assumptions, total cross sections
for ��, K �K, �K, �N and �� scattering cannot grow
faster than

�totðsÞ �
s!1

4�

t0
log 2 s

s0
; (1.1)

where s is the total center-of-mass–energy squared, t0
denotes the lowest mass squared singularity in the t chan-
nel, which for the processes mentioned above occurs at
4m2

�, and the normalization s0 in the log 2s is arbitrary
indicating where the asymptotic behavior sets in. Although
several hadronic models have been shown to saturate the
Froissart-Martin (FM) bound,2 it is quite frustrating that
the advent of QCD as the theory of the strong interactions
has not added anything new, at least so far, on the FM
bound. Some obvious questions which one would like to
answer are the following:

(1) What happens in QCD in the chiral limit where
pions, the Nambu-Goldstone states of the chiral
SUð2Þ flavor symmetry of QCD, become massless?
Does the bound become irrelevant, as the presence
of the pion mass in the denominator in Eq. (1.1)
seems to indicate?

(2) What becomes of the FM bound in the large-Nc

limit of QCD? The large-Nc counting rules fix
�totðsÞ in Eq. (1.1) to be of Oð1=NcÞ, while the
FM bound appears to be of Oð1Þ.

(3) Independently of the previous questions concerning
the chiral limit and the large-Nc limit, one would
also like to know if the log 2s behavior of the FM
bound is saturated in QCD.

The purpose of this paper is to set the path to an inves-
tigation of these questions. Here we shall limit ourselves to
the case of total cross sections for �� scattering. In the

next section we summarize the well-known properties of
the elastic �� scattering amplitudes which we shall need
for our discussion. The framework of our analyses uses a
Mellin-Barnes representation for the�� amplitudes which
we present in Sec. III. This will allow us to fix the dis-
cussion concerning the first question above. Section IV is
dedicated to a discussion of the FM bound within the
framework of the QCD large-Nc limit. Our conclusions
are given in Sec. V.

II. ELASTIC PION-PION SCATTERING

Elastic �� scattering in the isospin symmetry limit is
described by a single invariant Lorentz amplitude
Aðs; t; uÞ,3

h�dðp4Þ�cðp3Þ outj�aðp1Þ�bðp2Þ ini
¼ 1þ ið2�Þ4�4ðp3 þ p4 � p1 � p2Þf�ab�cdAðs; t; uÞ

þ �ac�bdAðt; u; sÞ þ �ad�bcAðu; s; tÞg; (2.1)

where a, b, c, d denote the 1, 2, 3 components of the
adjoint representation of the pion fields in SUð2Þ and s, t
and u the usual Mandelstam variables constrained by

sþ tþ u ¼ 4m2
�: (2.2)

Because of the optical theoremwhich relates the absorptive
part of an elastic amplitude to a total cross section we shall
only consider elastic scattering amplitudes with the same
in and out quantum numbers, i.e.,

A���0!���0ðs;tÞ¼Aðt;u;sÞ;
A�0�0!�0�0ðs;tÞ¼Aðs;t;uÞþAðt;u;sÞþAðu;s;tÞ;

A�þ��!�þ��ðs;tÞ¼Aðs;t;uÞþAðt;u;sÞ;
A����!����ðs;tÞ¼Aðt;u;sÞþAðu;s;tÞ:

(2.3)

It is convenient to work with the three s-channel isospin
components T ¼ ðT0; T1; T2Þ of the amplitudes in Eq. (2.1)
given by

1See e.g. Ref. [4] where earlier references can be found.
2See e.g. Refs. [5,6] and references therein. 3For a modern review see Ref. [7].
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T0ðs; tÞ ¼ 3Aðs; t; uÞ þ Aðt; u; sÞ þ Aðu; s; tÞ;
T1ðs; tÞ ¼ Aðt; u; sÞ � Aðu; s; tÞ;
T2ðs; tÞ ¼ Aðt; u; sÞ þ Aðu; s; tÞ:

(2.4)

These amplitudes obey fixed-t dispersion relations, valid in
the interval �28m2

� < t < 4m2
�. They are the so-called

Roy equations [8] which we shall consider at t ¼ 0 and,
because of our first question in the Introduction concerning
the chiral limit of the FM bound, at m� ! 0. The Roy
equations simplify then as follows:

Re

T0ðs;0Þ
T1ðs;0Þ
T2ðs;0Þ

0
BB@

1
CCA¼ s

f2�

2

1

�1

0
BB@

1
CCAþs2

Z 1

0
ds0

1

s02

2
664 1

s0�s

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA

þ 1

s0þs

1=3 �1 5=3

�1=3 1=2 5=6

1=3 1=2 1=6

0
BB@

1
CCA
3
775

� 1

�
Im

T0ðs0;0Þ
T1ðs0;0Þ
T2ðs0;0Þ

0
BB@

1
CCA: (2.5)

The term in the rhs in the first line of this equation reflects
the two subtractions which have been made, as required
by the Froissart bound.4 In QCD, the explicit values of
these subtractions are fixed by lowest order �PT [9]. We
recall that in chiral SUð2Þ the amplitude Aðs; t; uÞ in the
limit we are considering is given by the �PT expansion
(see Ref. [10] and earlier references therein):

Aðs;t;uÞ �
s;t;u!0

s

f2�
þ 1

f4�

�
2s2lr1þ½s2þðt�uÞ2�1

2
lr2

�

þ 1

96�2f4�

�
3s2

�
log

�2

�s
þ5

6

�

þ tðt�uÞ
�
log

�2

�t
þ7

6

�

þuðu� tÞ
�
log

�2

�u
þ7

6

��
þOðp6Þ; (2.6)

where lr1;2 are renormalized coupling constants of the

Oðp4Þ effective chiral Lagrangian at the scale�. The terms
in the first line of Eq. (2.6) are leading in the QCD large-Nc

limit but so far, in this section, we are not restricting
ourselves to this limit. The terms in the second line are
induced by the chiral loops generated by the lowest order
Lagrangian renormalized at the scale �. The overall con-
tribution ofOðp4Þ is �-scale independent and well defined
in the chiral limit. The relation between the lri constants and

the more conventional Lr
i constants of the chiral SUð3Þ

Lagrangian [11] is as follows:

lr1ð�Þ ¼ 4Lr
1ð�Þ þ 2L3 � 1

96�2

1

8

�
log

M2
K

�2
þ 1

�
; (2.7)

lr2ð�Þ ¼ 4Lr
2ð�Þ � 1

96�2

1

4

�
log

M2
K

�2
þ 1

�
; (2.8)

where here, kaon particles have been treated as massive
and integrated out, hence the dependence on their
mass MK.
The linear combinations of the isospin amplitudes

TIðs; 0Þ which diagonalize the crossing matrix in the
second line of Eq. (2.5) are

F1ðs; 0Þ ¼ � 1

6
T0ðs; 0Þ � 1

4
T1ðs; 0Þ þ 5

12
T2ðs; 0Þ;

F2ðs; 0Þ ¼ þ 1

6
T0ðs; 0Þ þ 1

4
T1ðs; 0Þ þ 7

12
T2ðs; 0Þ;

F3ðs; 0Þ ¼ � 1

6
T0ðs; 0Þ þ 3

4
T1ðs; 0Þ þ 5

12
T2ðs; 0Þ;

(2.9)

and the physical elastic forward scattering amplitudes
we are concerned with are then given by

A���0!���0ðs; 0Þ ¼ 1

2
½F2ðs; 0Þ þ F3ðs; 0Þ�

¼ 1

2
½T1ðs; 0Þ þ T2ðs; 0Þ�;

A�0�0!�0�0ðs; 0Þ ¼ 1

2
½3F2ðs; 0Þ � F3ðs; 0Þ�

¼ 1

3
½T0ðs; 0Þ þ 2T2ðs; 0Þ�;

A�þ��!�þ��ðs; 0Þ ¼ �F1ðs; 0Þ þ F2ðs; 0Þ
¼ 1

3
T0ðs; 0Þ þ 1

2
T1ðs; 0Þ þ 1

6
T2ðs; 0Þ;

A����!����ðs; 0Þ ¼ F1ðs; 0Þ þ F2ðs; 0Þ ¼ T2ðs; 0Þ:
(2.10)

The Roy equations for the Fiðs; 0Þ amplitudes are then

Re

F1ðs;0Þ
F2ðs;0Þ
F3ðs;0Þ

0
BB@

1
CCA

¼ s

f2�

�1

0

0

0
BB@

1
CCAþ s2

Z 1

0
ds0

1

s02

2
664 1

s0 � s

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA

þ 1

s0 þ s

�1 0 0

0 1 0

0 0 1

0
BB@

1
CCA
3
775 1

�
Im

F1ðs0;0Þ
F2ðs0;0Þ
F3ðs0;0Þ

0
BB@

1
CCA: (2.11)

From these equations there follows that the amplitudes F2

and F3 obey the same dispersion relation

4Notice, however, that the presence of the two powers of log s
in the asymptotic behavior of the absorptive amplitudes does not
restrict any further the two subtractions which are already
required for a cross section going as a constant at s ! 1.
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ReF2;3ðs;0Þ¼ s2
Z 1

0

ds02

s02
1

s02�s2
1

�
ImF2;3ðs0;0Þ; (2.12)

and are even under s $ �s, while the amplitude F1ðs; tÞ
obeys the dispersion relation

ReF1ðs; 0Þ ¼ � s

f2�
þ 2s3

Z 1

0

ds0

s02
1

s02 � s2
1

�
ImF1ðs0; 0Þ;

(2.13)

and is odd under s $ �s. Indeed, one can check that there
is no contribution of Oðs2Þ to the F1ðs; 0Þ amplitude in
�PT, while the contributions of that order from �PT to the
F2ðs; 0Þ and F3ðs; 0Þ amplitudes are

ReF2ðs;0Þ ¼
s!0

s2

f4�

�
2lr1þ3lr2þ

1

12�2

�
log

�2

s
þ25

24

��
þOðs4Þ;

(2.14)

ReF3ðs;0Þ ¼
s!0

s2

f4�

�
�2lr1þ lr2þ

1

96�2

�
þOðs4Þ: (2.15)

III. MELLIN-BARNES REPRESENTATION
FOR THE Fiðs; 0Þ AMPLITUDES

The optical theorem relates the amplitudes ImFiðs; 0Þ to
the total �� cross sections as follows (massless pions):

ImF1ðs; 0Þ ¼ 1

2
½s�tot

�þ�þ � s�tot
�þ���;

ImF2ðs; 0Þ ¼ 1

2
½s�tot

�þ�þ þ s�tot
�þ���

¼ 1

2
½s�tot

�þ�0 þ s�tot
�0�0�;

ImF3ðs; 0Þ ¼ 1

2
½3s�tot

�þ�0 � s�tot
�0�0�:

(3.1)

Let us then consider the Mellin transforms of the
1
� ImFiðs; 0Þ amplitudes,

�ið�Þ ¼
Z 1

0
d

�
s

M2

��
s

M2

�
��1 1

�
ImFiðs; 0Þ; (3.2)

and the corresponding inverse Mellin transforms,

1

�
ImFiðs; 0Þ ¼ 1

2�i

Z cþi1

c�i1
d�

�
s

M2

���
�ið�Þ; (3.3)

where, for convenience, we have introduced an arbitrary
mass scale M (e.g. the � mass) so as to normalize the
dimensions of the s variable. We then observe the follow-
ing facts:

(i) According to Eq. (1.1), a FM-like asymptotic behav-
ior for the physical �tot

��ðsÞ cross sections implies

�tot
�þ�þðsÞ �

s!1A�þ�þ
�

M2
log 2 s

M2
;

�tot
�þ��ðsÞ �

s!1A�þ��
�

M2
log 2 s

M2
;

�tot
�þ�0ðsÞ �

s!1A�þ�0

�

M2
log 2 s

M2
;

�tot
�0�0ðsÞ �

s!1A�0�0

�

M2
log 2 s

M2
;

(3.4)

where the A�� are some appropriate constants.
According to the normalization implied by Eq. (1.1)
they should all be fixed to

A��jFM ¼ M2

m2
�

; (3.5)

but here we consider the A�� constants as a priori
unknown.
The inverse mapping theorem [12] requires then

that if the asymptotic behaviors in Eq. (3.4) are
satisfied, the Mellin transforms of the 1

� ImFiðs; 0Þ
amplitudes must have a triple pole at � ! �1:

�ið�Þ �
�!�1

�2ai
ð�þ 1Þ3 ; (3.6)

where

a1 ¼ 1

2
½A�þ�þ � A�þ���;

a2 ¼ 1

2
½A�þ�þ þ A�þ��� ¼ 1

2
½A�þ�0 þ A�0�0�;

a3 ¼ 1

2
½3A�þ�0 � A�0�0�: (3.7)

The leading singularity of�ið�Þ in theMellin plane at
the right of the fundamental strip [which fixes the
integration boundary c in the inverse Mellin trans-
form in Eq. (3.3)] must then be at � ¼ �1 and it must
be a triple pole. If all theA�� constants are equal, then
a1 ¼ 0 and the corresponding pole at � ¼ �1 be-
comes, at most, a double pole. We assume however,
for the sake of generality, that all the ai � 0.

(ii) Let us next consider the Mellin-Barnes representa-
tion of the dispersion relations for the amplitudes
Fiðs; 0Þ in Eq. (2.11). Using the relations

1

1þ A
¼ 1

2�i

Z c�þi1

c��i1
d�A���ð�Þ�ð1� �Þ; (3.8)

1

1� A
¼ 1

2�i

Z c�þi1

c��i1
d�A���ð�Þ�ð1� �Þ

� �

�ð12 þ �Þ�ð12 � �Þ ; (3.9)

and respecting the s $ �s symmetry properties of
the ReFiðs; 0Þ amplitudes, one finds

FROISSART-MARTIN BOUND FOR �� SCATTERING IN QCD PHYSICAL REVIEW D 88, 034015 (2013)

034015-3



Re

F1ðs; 0Þ
F2ðs; 0Þ
F3ðs; 0Þ

0
BB@

1
CCA ¼ s

f2�

�1

0

0

0
BB@

1
CCAþ 1

2�i

Z c�þi1

c��i1
d��ð�Þ�ð1� �Þ �

�1ð�� 2Þ s
M2

�
jsj
M2

�
1��

�
1� �

�ð12þ�Þ�ð12��Þ

�

�2ð�� 2Þ
�
jsj
M2

�
2��

�
1þ �

�ð12þ�Þ�ð12��Þ

�

�3ð�� 2Þ
�
jsj
M2

�
2��

�
1þ �

�ð12þ�Þ�ð12��Þ

�

0
BBBBBBBBB@

1
CCCCCCCCCA
; (3.10)

where we have used the fact that

Z 1

0
d

�
s0

M2

��
s0

M2

�
��3 1

�
ImFiðs0;0Þ¼�ið��2Þ;

(3.11)

with �ið�Þ the same Mellin transform as the one
defined in Eq. (3.2). Notice that the fundamental
strip in Eq. (3.10) is now defined by c� ¼ Reð�Þ 2
�0; 1½. Again, the low energy behavior of the Fiðs; 0Þ
amplitudes is governed by the singularities at the left
of this fundamental strip, while their high energy
behavior is governed by the singularities at the right
of the same fundamental strip.

(iii) In particular, the leading low energy behaviors
of the Fiðs; 0Þ amplitudes are governed by the
values of the �ið�� 2Þ at � ! 0 and leads to the
results:

ReF1ðs; 0Þ ¼
s!0

� s

f2�
þOðs3Þ; (3.12)

ReF2ðs; 0Þ ¼
s!0

s2

M4
lim
�!0

�
d

d�
½2��2ð�� 2Þ� logM

2

s

þ 2��2ð�� 2Þ
�
þOðs4Þ; (3.13)

ReF3ðs; 0Þ ¼
s!0

s2

M4
2�3ð�2Þ þOðs4Þ: (3.14)

Comparison with the �PT expansion in Eq. (2.14)
allows us then to fix the values of�2;3 at � ¼ �2 to

�2ð�Þ �
�!�2

M4

f4�

�
lr1 þ

3

2
lr2 þ

25

576�2

�

þ 1

24�2

1

�þ 2
; (3.15)

�3ð�Þ �
�!�2

M4

f4�

�
�lr1 þ

1

2
lr2 þ

1

192�2

�
: (3.16)

(iv) On the other hand, the leading high energy
behaviors of the Fiðs; 0Þ amplitudes are governed
by the �ið�� 2Þ at � ! 1 which, if the FM bound
is saturated for all the �tot

�� cross sections, have
triple poles at the values:

�ið�� 2Þ �
�!1

�2ai
ð�� 2þ 1Þ3 : (3.17)

For the amplitudes ReF2ðs; 0Þ and ReF3ðs; 0Þ the
effect of this triple pole is softened by the fact that

�

�ð12 þ �Þ�ð12 � �Þ �
�!1

� 1

þ �2

2
ð�� 1Þ2 þOð�� 1Þ4; (3.18)

and there is a cancellation between the two terms
in the brackets in the second line at the rhs of
Eq. (3.10). Therefore, the leading asymptotic
behavior of F2;3ðs; 0Þ is then of the type

ReF2;3ðs; 0Þ �
s!1O½a2;3jsj log jsj�: (3.19)

By contrast, if a1 � 0, there is no such a cancella-
tion for the F1ðs; 0Þ amplitude and its leading high
energy behavior will then be of the type:

ReF1ðs; 0Þ �
s!1 � s

f2�
þO½a1slog 3jsj�: (3.20)

From the previous considerations we conclude that the
Mellin-Barnes representation of the elastic �� forward
scattering amplitudes Fiðs; 0Þ show explicitly how their
asymptotic behaviors for s ! 1 (relevant to the FM
bound) and for s ! 0 (relevant to the �PT expansion)
are governed by the Mellin transforms �ið�Þ defined in
Eq. (3.2). We find from �PT that the chiral limits (m� ! 0)
of these Mellin functions exist and are perfectly well
defined in QCD at the left of the corresponding fundamen-
tal strips. We have also shown how the high energy be-
haviors of the Fiðs; 0Þ amplitudes are governed by the same
Mellin transforms and, therefore, the FM bound has direct
implications on their behaviors. If, as implied by the
normalization of the FM bound in Eq. (1.1), and hence
Eq. (3.5), the Mellin functions �ið�Þ at the right of their
fundamental strips are singular in the chiral limit, it means
that they must have a discontinuous behavior with respect
to the pion mass in the sense that they exist in the chiral
limit at the left of their fundamental strips yet they blow up
to infinity, in the same limit, at the right of their funda-
mental strips. This we find a rather peculiar behavior
which, although mathematically possible, questions the
presence of a pion mass factor in the denominator of the
normalization of the FM bound in QCD.
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IV. THE FROISSART-MARTIN BOUND
IN THE QCD LARGE-Nc LIMIT

In this section we shall directly work with the ��
scattering amplitudes ImTIðs; 0Þ with well-defined
isospin (I ¼ 0, 1, 2). They are related to the ImFiðs; 0Þ
amplitudes which we have considered in the previous
section as follows:

ImT0ðs; 0Þ ¼ 1

2
½�4 ImF1ðs; 0Þ

þ 5 ImF2ðs; 0Þ � 3 ImF3ðs; 0Þ�;
ImT1ðs; 0Þ ¼ �ImF1ðs; 0Þ þ ImF3ðs; 0Þ;
ImT2ðs; 0Þ ¼ ImF1ðs; 0Þ þ ImF2ðs; 0Þ: (4.1)

In the large-Nc limit of QCD, the ImTIðs; 0Þ amplitudes are
composed of an infinite set of narrow states:

1

�
ImTIðs;0Þ¼X1

n¼0

jFI;nj2�ðs�M2
I;nÞ; I¼0;1;2: (4.2)

The question is then the following: is it possible to find
constraints on the couplings FI;n and the masses MI;n of a

possible large-Nc ansatz so as to reproduce the FM asymp-
totic behavior for the �tot

�� cross sections?
In order to answer this question we shall proceed as

follows. The Mellin transforms of 1
� ImTIðs; 0Þ in the

large-Nc limit are given by Dirichlet-like series5:

�Ið�Þ ¼ X1
n¼0

jFI;nj2
M2

�
M2

M2
I;n

���þ1
; (4.3)

and the corresponding inverse Mellin transforms are

1

�
ImTIðs; 0Þ ¼ 1

2�i

Z cþi1

c�i1
d�

�
s

M2

���

� X1
n¼0

jFI;nj2
M2

�
M2

M2
I;n

���þ1
: (4.4)

As discussed in the previous section, a FM-like asymptotic
behavior for the �tot

�� cross sections fixes the leading
singularity of the Mellin transforms of the 1

� ImFiðs; 0Þ
amplitudes as given in Eqs. (3.6) and (3.7) and therefore,
from Eq. (4.1), there follows that

�Ið�Þ �
�!�1

�2AI

ð�þ 1Þ3 ; (4.5)

where

A0 ¼ 1

2
½�4a1 þ 5a2 � 3a3�; A1 ¼ �a1 þ a3;

A2 ¼ a1 þ a2: (4.6)

In order to construct a simple large-Nc ansatz with the
required properties we shall assume a Regge growth for the
masses of the narrow states with I ¼ 1:

M2
I¼1;n ¼ M2

� þ n�2; (4.7)

and the absence of exotic trajectories i.e., no poles with
I ¼ 2. We are then assuming that the I ¼ 1 channel fully
dominates the physicalA½���0 ! ���0� amplitude and
focus our attention on this amplitude in the limit where

A���0!���0ðs; 0Þ ¼ 1

2
½F2ðs; 0Þ þ F3ðs; 0Þ�

’ 1

2
TI¼1ðs; 0Þ: (4.8)

Saturation of the FM bound for the corresponding total

cross section �tot
���0 requires the couplings

jFI¼1;nj2
M2 in

Eq. (4.3) to grow like nlog 2n as n ! 1. The simplest
form of a large-Nc ImTI¼1ðs; 0Þ amplitude satisfying these
requirements is then

1

�
ImTI¼1ðs; 0Þ ¼ C

X1
n¼0

ðM2
� þ n�2Þlog 2

�
M2

�

�2
þ n

�

� �ðs�M2
� � n�2Þ; (4.9)

where C denotes a dimensionless constant. Here we have
fixed the arbitrary scale M to M ¼ M�, and � is the mass

scale which as shown in Eq. (4.7) fixes the equally spaced
Regge-like spectra. Quite remarkably, the Mellin trans-
form of this large-Nc ansatz has a close analytic form,

�I¼1ð�Þ ¼ C

�
M2

�

�2

��� d2

d�2
�

�
��;

M2
�

�2

�
; (4.10)

where �ð��;
M2

�

�2 Þ is the Hurwitz function, a generalization
of the Riemann zeta function, defined by the series,

�ð�; vÞ ¼ X1
n¼0

1

ðnþ vÞ� ;

Re� > 1; with 0< v � 1;
(4.11)

and its analytic continuation. For v ¼ 1 it reduces to the
Riemann zeta function. The asymptotic behavior of
1
� ImTI¼1ðs; 0Þ for s ! 1 and hence of �tot

�þ�0 is governed

by the residue of the triple pole of �I¼1ð�Þ at � ¼ �1 [see
Eq. (4.5)]. This relates the overall constant C in Eq. (4.9)
to the coefficient A�þ�0 in Eq. (3.4) and hence:

�tot
�þ�0ðsÞ �s!1

C

2

M2
�

�2

�

M2
�

log 2 s

M2
�

: (4.12)

Let us next discuss the low energy constraint that we can
impose to the simple large-Nc ansatz in Eq. (4.9) so as to
fix the value of the overall constant C. The isospin I ¼ 1
dominance assumption of the �PT expressions in
Eq. (3.15), when restricted to the large-Nc limit, fixes
them to the values

5For a recent discussion of QCD large-Nc properties in con-
nection with the asymptotic behaviors of two-point functions see
Ref. [13].
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�2ð�Þ �
�!�2

M4

f4�

�
l1 þ 3

2
l2

�
� 1

4

M2
�

f2�
; (4.13)

�3ð�Þ �
�!�2

M4

f4�

�
�l1 þ 1

2
l2

�
� 3

4

M2
�

f2�
; (4.14)

where in the rhs we have used the �-dominance approxima-
tion for the li constants [14,15] and, as before, we have fixed
M ¼ M�. Matching the large-Nc ansatz in Eq. (4.10) to these

considerations using Eq. (4.8) fixes the C constant to

C� 1

� 00ð2; M2
�

�2 Þ
�4

f2�M
2
�

; (4.15)

and, therefore, the leading asymptotic growth of the total
�þ�0 cross section to

�tot
���0ðsÞ �s!1

�2

M2
�

2� 00ð2; M2
�

�2 Þ
�

f2�
log 2 s

M2
�

: (4.16)

Like the usual FM bound, it grows as log 2s, but it is finite in
the chiral limit and of Oð1=NcÞ in the large-Nc counting.
Numerically, for� ¼ M�, the rhs of Eq. (4.16) becomes

�tot
���0ðsÞ �

s!10:25
�

f2�
log 2 s

M2
�

; (4.17)

butwe should stress that this is only a large-Nc model estimate
with many simplifications.

V. CONCLUSIONS

We have shown that it is possible to construct a large-Nc

QCD ansatz compatible with the Froissart-Martin bound.

The bound, however, is finite in the chiral limit and it is of
Oð1=NcÞ in the large-Nc counting rules. In fact, it seems
very likely that these two features should be generic to full
QCD because of the fact that QCD has spontaneous chiral
symmetry breaking. This implies the existence of a mass
gap between the Nambu-Goldstone states (the pions) and
the other hadronic states. It is this property which, very
likely, forces the presence of characteristic scales like
f� in the normalization of the FM bound and which at
the same time provides the correct Oð1=NcÞ large-Nc

counting.
The usual derivation of the FM bound does not take into

account the fact that the underlying dynamics of the strong
interactions has the property of spontaneous chiral sym-
metry breaking. In fact, it implicitly assumes a realization
of the hadronic spectrum a la Wigner-Weyl without
Nambu-Goldstone particles, in which case, the normaliza-
tion in Eq. (1.1) is not surprising.
Finally, we wish to emphasize that the discussion above

does not answer the third question in the Introduction.
We have only shown that, in the large-Nc limit of QCD,
it is possible to construct models which a priori show no
obstruction for the asymptotic behavior of the total ��
cross sections to saturate a log 2s-like behavior.
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