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Effective �S ¼ 1 four-fermion operators involving left- and right-handed currents are relevant in

left-right gauge extensions of the Standard Model and scalar extension of the Yukawa sector. They induce

K ! �� decays which are strictly constrained by experimental data, typically resulting in strong bounds

on the new physics scales or parameters. We evaluate the K ! �� hadronic matrix elements of such

operators within the phenomenological framework of the chiral quark model. The results are consistent

with the estimates used in a previous work on TeV scale left-right symmetry, thus confirming the

conclusions obtained there.
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I. INTRODUCTION

The enduring successes of the Standard Model (SM), in
particular in the quark flavor sector, naturally provide
stringent tests and constraints on new physics (NP) theo-
retical modeling. An historical and relevant role in testing
NP models is played by the CP-violating �S ¼ 1, 2 pro-
cesses in kaon physics. It is in fact a common feature of
NP scenarios the presence of additional flavor-changing
(FC) interactions that induce new effective operators at the
electroweak scale. The presence of such operators often
leads to sharp constraints on the scales and the couplings of
the extended theory.

A paradigmatic example is the left-right (LR) extension
of the SM [1–5], which in its minimal version provides a
complete theory of neutrino masses [6], and directly con-
nects possible new accelerator (LHC) physics to lower
energy phenomena like neutrinoless double-beta decay
and lepton flavor violation [7] (for a recent review see
e.g. Ref. [8]). In the quark sector, flavor changing operators
lead to a lower bound on the right-handed gauge boson
scale slightly above the TeV region [9], within the reach of
LHC searches. LR symmetric models generate a new set
of FC operators (a complete set for�S ¼ 1 can be found in
[10]) some of which turn out to be crucially relevant for
phenomenology.

Characteristic of the LR setup are the following current-
current operators:

QLR
1 ¼ ð �s�u�ÞLð �u�d�ÞR; QRL

1 ¼ ð�s�u�ÞRð �u�d�ÞL;
QLR

2 ¼ ð�suÞLð �udÞR; QRL
2 ¼ ð�suÞRð �udÞL; (1)

where the subscripts L, R stand for ��ð1� �5Þ and �, �

are color indices, understood in Q2. In the LR models
these operators are generated at tree level by gauge boson
exchange and thus have a prominent role in setting
constraints on the model parameters [9,11]. They are as
well generated in other popular NP extensions of the SM,
as for instance supersymmetry, with FC processes driven
by squark mediation, or extended Higgs models with FC
interactions (for a systematic discussion on flavor physics
beyond the SM see Ref. [12]).
As mentioned above the operators (1) play a role in

�S ¼ 1 processes and they are particularly relevant for
the study, within NP models, of direct CP violation inK !
�� decay, namely for the calculation of the "0 parameter.
In order to match the experimental precision, the K ! ��
matrix elements of the effective operators are needed
beyond the simple and naive factorization. First principle
approaches to nonperturbative QCD (of which lattice is the
foremost) have not yet provided an accurate and reliable
answer. In this work we address this issue by offering a
(phenomenological) calculation of such matrix elements in
the framework of the chiral quark model (�QM) [13–20].
To this aim, we construct and determine, via the inte-

gration of the constituent quark fields of the �QM, the

�S ¼ 1 chiral Lagrangian relevant to QLR;RL
1;2 at Oðp2Þ in

the momentum expansion. The chiral coefficients are
generally determined within the model in terms of three
nonperturbative parameters, namely the constituent quark
mass M, the quark condensate h �qqi and the gluon conden-
sate h�s

� GGi. Their values and model ranges were phenom-

enologically determined in Ref. [21] via the fit of the
�I ¼ 1=2 selection rule in K ! �� decays, which even-
tually lead to the successful prediction of "0=" [22]. Such a
phenomenological and self-contained determination of
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the model parameters represents in our opinion the strength
of the approach and it is at the root of the robustness of
the results.

Consistency with the needed order in momentum expan-
sion requires the inclusion of the chiral loops contributions
to the K ! �� amplitudes, that we compute. Eventually,
we provide theOðp2Þmatrix elements via the B parameters,
which gauge the departure from the vacuum saturation
approximation (VSA). The B parameters are given at the
intrinsic �QM scale of about 0.8 GeV, as well as at 2 GeV,
for direct comparison with forthcoming lattice calculations.

II. THE �S¼ 1 CHIRAL LAGRANGIAN
(MAKING OF)

The quark �S ¼ 1 effective Lagrangian is written as a
combination of local quark operators

L�S¼1 ¼ �iCið�ÞQið�Þ; (2)

where Qi are effective four-quark operators as in Eq. (1)
and Ci are their short-distance Wilson coefficients,
evaluated at a scale �. By extending the SM to include
right-handed interactions, the sum in Eq. (2) spans a com-
plete set of 28 operators [10], which exhibit all chiral
combinations of L, R currents.

Contact with the physical mesonic transitions is made
once the relevant hadronic matrix elements of the effective
quark operators are computed. Since the relevant scale for
kaon physics falls in the strong interacting regime of QCD,
the problem cannot be addressed with perturbative (cou-
pling expansion) methods. In the present work we address
this issue by means of a phenomenological approach based
on the �QM.

The �QM takes advantage of the QCD chiral symmetry
while introducing an effective quark-meson interaction.
This provides a bridge between the perturbative QCD
and chiral Lagrangian regimes. The model can be seen as
the mean-field approximation of an extended Nambu-Jona-
Lasinio model that mimics QCD at intermediate energies
[23,24]. After integrating out the constituent quark fields,
the meson octet interactions are determined in terms of
three nonperturbative parameters: the constituent quark
mass, the quark condensate and the gluon condensate.
The model is renormalizable in the large-Nc limit [25]
and it is successful in reproducing the Oðp4Þ low energy
constants of the Gasser-Leutwyler Lagrangian as well as
a number of observables, albeit one must be aware of its
limitations [26,27].

In the 1990s a thorough investigation of the �S ¼ 1 and
�S ¼ 2 chiral Lagrangians within the framework of the
�QM has been carried out [21,22,28,29]. The project led to
a successful prediction of the direct CP violation in K !
�� decays ("0=") shortly before its experimental determi-
nation. The approach was based on the self-consistent
determination of the nonperturbative parameters of the
�QM via the fit of the CP conserving �I ¼ 1=2 selection

rule in K ! ��. Such a phenomenological setup was
central to reducing the model systematic uncertainties
and to providing a robust prediction.
While, ultimately, first principle approaches to nonper-

turbative QCD (lattice being the foremost; see Ref. [30]
for recent developments) must provide the evaluations of
hadronic transitions, here we apply the �QM phenomeno-
logical approach to the calculation of the K ! �� matrix
elements of the LR current-current operators (1).

A. The chiral quark model

In the �QM a meson-quark interaction term is added to
the ordinary QCD Lagrangian:

LM ¼ �Mð �qR�qL þ �qL�
yqRÞ; (3)

where q ¼ ðudsÞt and � � e
2i
f�ðxÞ, �ðxÞ being the SUð3Þ

meson octet acting on the fundamental representation. The
parameterM is identified as the constituent quark mass, as
it follows from a chiral quark rotation that absorbs � in
the constituent quark fields (henceforth referred to as the
‘‘rotated’’ picture):

LM ¼ �Mð �QRQL þ �QLQRÞ; (4)

where qL ¼ �yQL, qR ¼ �QR, with � ¼ �2 and �y ¼
ð�yÞ2, respectively. In the rotated picture the quark-meson
interactions arise from the quarks kinetic term, as

Lint ¼ �Qð��V� þ ���5A�ÞQ; (5)

the vector and axial fields V� and A� being defined as

V� ¼ i

2
ð�y@��þ �@��

yÞ;

A� ¼ i

2
ð�y@��� �@��

yÞ:
(6)

Analogously, in the rotated description the ordinary
quark mass term

Lm ¼ �qRMqL þ �qLMyqR; (7)

with M ¼ diagfmu;md;msg, becomes

Lm ¼ �QR�
yM�yQL þ �QL�My�QR: (8)

B. Bosonic representation of the quark operators

The �QM provides a systematic way of constructing the
bosonic representation of the effective �S ¼ 1 quark op-
erators in Eq. (2) [28]. By integrating out the constituent
quarks, an effective chiral Lagrangian is generated:

L�S¼1 ¼
X
i;j

GjðQiÞO�
j ; (9)

where O
�
j are bosonic operators involving the octet meson

fields and GjðQiÞ are the chiral coefficients determined by

the matching with the �QM Lagrangian.
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We are now set to construct the chiral representation of
the QLR

1;2 operators. It is sufficient to consider the LR opera-

tors, as the RL ones are related to the former by symmetry.
Up to the color structure, both QLR

1;2 have the form

�qL�
3
1�

�qL �qR�
1
2��qR (10)

that in the rotated picture reads

�QL��
3
1�

��yQL
�QR�

y�1
2���QR: (11)

The flavor projectors �j
i are appropriate matrices such that

�q�j
iq ¼ �qjqi, for i, j ¼ 1, 2, 3.

For any such four-quark operator, the effective
bosonic operators in the chiral Lagrangian arise by in-
tegrating out the quarks Q, while inserting in all possible
ways either two A� fields of Eq. (6), or �yM�y, �My�
from Eq. (8) in the constituent quark loops. Since V�

transforms as a gauge field, terms involving the vector
field break local chiral invariance and cannot appear
in the Oðp2Þ chiral Lagrangian [17–19]. Both the opera-
tors in Eq. (11) and their fierzed forms can be used
[28]. By applying this procedure to QLR

1;2 we obtain

at Oðp2Þ

L�S¼1 ¼ �G0ðQLR
1;2ÞTr½�3

1�
y�1

2�� þ �GmðQLR
1;2ÞfTr½�1

2��
3
1�

yM�y� þ Tr½�3
1�

y�1
2�M

y��g
þ �Ga

LRðQLR
1;2ÞTr½�3

2D
���Tr½�1

1D��
y� þ �Gb

LRðQLR
1;2ÞTr½�3

1�
yD���Tr½�1

2�D��
y�

þ �Gc
LRðQLR

1;2ÞfTr½�3
2��Tr½�1

1D��
yD���y� þ Tr½�3

2D��D
��y��Tr½�1

1�
y�g; (12)

where we used A� ¼ � i
2�ðD��

yÞ� ¼ i
2�

yðD��Þ�y and
flavor trace rearrangements [28].

The term proportional to �G0 corresponds to no axial field

insertion. The terms �Ga;b;c
LR arise from the insertion of two

axial fields A�, while �Gm corresponds to the insertion of

Lm, Eq. (8) [22]. We use the notation �G to distinguish them
from the analogous SM chiral coefficients G in Ref. [28].
In our calculation we take mu ¼ md ¼ 0, so that the
relevant contribution to �Gm is proportional to ms.

III. CALCULATION OF THE
CHIRAL COEFFICIENTS

In the �QM the amplitudes for processes involving
external mesons are evaluated through quark loops con-
nected by a given operator insertion, and quark-meson
interactions as given for instance by Eq. (3) in the unro-
tated picture. The contribution to the chiral coefficients
Gi of a given quark operator is computed by matching
the �QM amplitude for a conveniently chosen mesonic
transition with the same amplitude obtained from the
expansion of the chiral Lagrangian (12).

At order Oðp2Þ, and for the operators considered, five

coefficients �G0, �Gm, �Ga;b;c
LR are present, thus requiring five

independent matching equations. We will choose below to
calculate the off-shell transitions K0 ! �0 and Kþ ! �þ,
together with the on-shell K ! �þ��, K ! �0�0 decay
amplitudes. Expanding in the quark mass one of the
off-shell transitions will then determine �Gm.

For the regularization of the divergent integrals we use
dimensional regularization (d ¼ 4� 2	). The ‘‘quadratic’’
(	� 1 pole) and logarithmic (	 pole) divergences serve
as a bookkeeping device to identify the ‘‘bare’’ quark
condensate and the meson decay constant, namely [23,24]

h �qqið0Þ ¼ �NcM
3

4�2

�
4� ~�2

M2

�
	
�ð	� 1Þ; (13)

fð0Þ ¼ NcM
2

4�2f

�
4� ~�2

M2

�
	
�ð	Þ; (14)

where Nc is the number of colors. We replace below these
bare parameters with the physical ones h �qqi and f. This
automatically includes in the chiral coefficients the factor-
izable gluon condensate corrections that are needed to
recover the numerical consistency of the parameters, in
particular of h �qqi. It is also worth mentioning that Eqs. (13)
and (14) imply a relation between the two bare quantities.
This ambiguity, intrinsic to the regularization scheme,
becomes numerically irrelevant when all the contributions
to the amplitudes at a given order are included. Finally,
at the one-loop level in the chiral expansion [and at Oðp2Þ
in the momentum expansion] f will be further identified
with the renormalized decay constant f1, that reproduces
the correct pion and kaon decay constants [21].

A. Constituent quark loops

With one insertion of the four-fermion operators, the
constituent quark loops appear in two possible patterns,
the so-called factorized or the unfactorized form [28],
corresponding to two distinct or a single Dirac trace. The
amplitude is evaluated considering all the possible ways
the desired process is realized by attaching the meson fields
to the quark loops. This is best performed in the unrotated
picture. As an example the off-shell process kþ ! �þ is
represented in Fig. 1. Theway color indices are saturated in
the quark operator determines which diagrams are leading
or subleading in 1=Nc. For the case of QLR

2 , the first
diagram in Fig. 1 is of OðNcÞ2 whereas the last two are
of OðNcÞ. The opposite occurs for QLR

1 .
The direct computation in the naive dimensional regu-

larization (NDR) �5 scheme of the diagrams in Fig. 1 for
the QLR

1;2 operators leads to
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h�þjQLR
1 jKþiNDR ¼ 2i

3

�
3h �qqi

�h �qqi
f2

þms

�
� f2p2

�

� 6iM2

�2
�

½2f2p2 þMðf2ms þ h �qqiÞ�

(15)

and

h�þjQLR
2 jKþiNDR ¼ 2i

3

�
h �qqi

�
ms þ h �qqi

f2

�
� 3f2p2

�

� 2iM2

�2
�

½2f2p2 þMðf2ms þ h �qqiÞ�;

(16)

where �� ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffi
6=Nc

p
f� ’ 0:82 GeV [28] is the natural

cutoff of the theory and f� is the pion decay constant. The
two amplitudes exhibit a leading term and a subleading one
in the M2=�2

� expansion.

Similar results are found in the ’t Hooft–Veltman (HV)
�5 scheme:

h�þjQLR
1 jKþiHV ¼ 2i

3

�
3h �qqi

�h �qqi
f2

þms

�
� f2p2

�

� 12iM2f2p2

�2
�

; (17)

h�þjQLR
2 jKþiHV ¼ 2i

3

�
h �qqi

�
ms þ h �qqi

f2

�
� 3f2p2

�

� 4iM2f2p2

�2
�

; (18)

which differ from Eqs. (15) and (16) only by subleading
terms in M2=�2

�.

The corresponding expressions for the K ! �þ�� and
K ! �0�0 on-shell processes are also found by direct
evaluation of the quark loops in the unrotated picture.
These processes involve a fairly large number of diagrams
and we do not report here the detailed expressions.
By matching all mesonic amplitudes with the corre-

sponding transitions obtained from the expansion of the
chiral Lagrangian (12) we determine the chiral coefficients
�G0, �Gm and �Ga;b;c

LR up to order Oðp2Þ. The results are
reported in Table I, in both the NDR and HV �5 schemes.
The chiral coefficients depend on the quark condensate

h �qqi and on the f parameter. The latter will be eventually
identified, after inclusion of the Oðp2Þ wave function
renormalization and of the chiral loop corrections to the
leading-order term ( �G0) of the amplitude, with the Oðp2Þ
decay constant parameter f1 [21].
Some subtleties arise during the calculation. Namely, in

the NDR scheme one is not allowed to use Fierz rotations
and, as consequence, both the factorized and unfactorized
calculations have to be performed. In the HV scheme
fierzing is allowed that simplifies the calculation, but one
must be aware of the possible presence of ‘‘fake’’ chiral
anomalies (see for instance [31]), and convenient subtrac-
tions have to be implemented in the chiral Lagrangian [28].
This implies, among else, that �Gb

LR can be computed in
both schemes from factorized diagrams, and as a conse-
quence it does not depend on the �5 scheme. This holds
also for �Gc

LR that turns out to be subleading in M2=�2
�.

In this case, the vanishing of the leading contribution is
immediately seen by considering the bosonization of the
fierzed operator.

TABLE I. The contributions of QLR
1;2 to the chiral coefficients

in Eq. (12) as computed in the �QM, in the HV and NDR
renormalization schemes.

HV NDR

�G0ðQLR
1 Þ �2h �qqi2 �2h �qqi2

�
1� 3M3f2

h �qqi�2
�

�
�GmðQLR

1 Þ �2f2h �qqi �2f2h �qqi
�
1� 3M2

�2
�

�
�Ga
LRðQLR

1 Þ 2 f2h �qqi
M 2 f2h �qqi

M

�
1� 3M2

�2
�

�
�Gb
LRðQLR

1 Þ � f4

3 � f4

3

�Gc
LRðQLR

1 Þ � 6Mf2h �qqi
�2

�
� 6Mf2h �qqi

�2
�

�G0ðQLR
2 Þ � 2

3 h �qqi2 � 2
3 h �qqi2

�
1� 3M3f2

h �qqi�2
�

�
�GmðQLR

2 Þ � 2
3 f

2h �qqi � 2
3 f

2h �qqi
�
1� 3M2

�2
�

�
�Ga
LRðQLR

2 Þ 2
3
f2h �qqi
M

2
3
f2h �qqi
M

�
1� 3M2

�2
�

�
�Gb
LRðQLR

2 Þ f4 f4

�Gc
LRðQLR

2 Þ � 2Mf2h �qqi
�2

�
� 2Mf2h �qqi

�2
�

FIG. 1. Diagrams leading to the off-shell Kþ ! �þ transition
within the �QM, in the unrotated quark picture. The black points
represent the meson-quark vertices, while the crossed circles
represent the four-quark operator insertion. The loop momenta
are q1 and q2. The two configurations of constituent quark loops
correspond to the product of two distinct Dirac traces or to a
single one.
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It is interesting to mention that the results for the chiral
coefficients induced by the 8L � 8R QLR

1;2 operators are

common to any four-quark LR operator of the form (10),
with an arbitrary choice of flavor projectors, which trans-
form in general as ð8þ 1ÞL � ð8þ 1ÞR. This is best under-
stood in the rotated picture, where one can treat the flavor

projectors �j
i as spurions, that eventually appear in the

diverse operators in the chiral Lagrangian (12) without
affecting the values of the coefficients. In practice the
coefficients are SUð3Þ invariant, as long as they depend
on chirally symmetric parameters. One may in fact verify
that the results given in Table I forQLR

1;2 coincide with those

obtained in Refs. [21,22] for the operators �Q8;7 that differ

in the flavor structure and transform as 8L � ð8þ 1ÞR. This
result is nontrivial in the unrotated picture as the number and
the topology of the diagrams involved in the bosonization
and in the computation of the chiral coefficients for the two
sets of operators do crucially depend on the flavor indices. In
passing, let us also mention that when computing the isospin
2 component of the K ! �� amplitude the difference
between theQLR

1;2 and�Q8;7 operators vanishes. In the chiral

limit this implies a relation among the QLR
1;2 and Q8;7 con-

tributions to A2 on which we will comment in the following.
In Table I subleading 1=Nc corrections due to the

gluon condensate h�s

� GGi are neglected. The values of

the nonperturbative �QM parameters, namely M, h �qqi
(and hGGi), are phenomenologically determined by the
successful fit of the �I ¼ 1=2 selection rule in K ! ��,
as explained in Ref. [21].

IV. K0 ! �� MATRIX ELEMENTS AT Oðp2Þ
A. Chiral loops

In the previous section we have computed the chiral
coefficients, induced by the quark operators QLR

1;2 , at Oðp2Þ
which, in the case at hand, is next to leading order in the
momentum expansion. In order to consistently compute the
K ! �� amplitudes in the chiral expansion, we must in-
clude the corrections due to the relevant chiral loops. Again,
it is enough to focus on the QLR

1;2 operators, since the matrix

elements of the RL ones have the opposite sign due to parity.
Using the standard decomposition of the K ! �� am-

plitudes in isospin zero and two, A0 ¼ ð2A� þ A00Þ=
ffiffiffi
6

p
,

A2 ¼ ðA� � A00Þ=
ffiffiffi
3

p Þ, it is also useful to parametrize
them as

A0;2 ¼ A�0

0;2 þ A�1

0;2; (19)

where the superscripts �0;1 refers to the tree and one-loop

chiral contributions, respectively.
The tree-level isospin amplitudes for both QLR

1;2 read

A�0

0 ¼ 1ffiffiffi
3

p
f3

½4 �G0Z�

ffiffiffiffiffiffiffi
ZK

p þ 4 �Gmms þ �Ga
LRð3m2

K þm2
�Þ

þ 2 �Gb
LRðm2

K �m2
�Þ þ �Gc

LRð2m2
K � 9m2

�Þ�; (20)

A
�0

2 ¼ � 1

f3

ffiffiffi
2

3

s
½ �G0Z�

ffiffiffiffiffiffiffi
ZK

p þ �Gmms þ �Ga
LRm

2
�

þ �Gb
LRðm2

K �m2
�Þ � �Gc

LRm
2
K�; (21)

where Z� and ZK are the one-loop wave function renorm-
alizations within the �QM [21]:

Z� ¼ 1� 2
m2

�

�2
�

; ZK ¼ 1� 2
m2

K

�2
�

þ 6
Mms

�2
�

(22)

(neglecting terms proportional to the up and down quark
masses).
Some care must be taken in computing the tree-level

component of the amplitudes proportional to �G0, since
the related chiral operator [the first in Eq. (12)] allows for
a nonvanishing K ! 0 transition that must be rotated
away, in agreement with the Feinberg-Kabir-Weinberg
theorem [32].
At the one-loop level in chiral perturbation theory, vertex

and wave function renormalizations due to chiral loops
appear, which are displayed in Figs. 2 and 3, respectively.
We evaluate the chiral loops in dimensional regularization

FIG. 2. Chiral loop vertex renormalization of K ! ��.
The internal states are all the allowed SUð3Þ octet mesons.
The square box represents the weak vertex, while the circle
represents the insertion of a strong vertex.

FIG. 3. Chiral loop wave function renormalization for the
K ! �� transitions. The square box and the circle represent
the weak and the strong vertex, respectively. All allowed SUð3Þ
octet mesons are exchanged in the loop.
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and subtract the divergences according to the MS, consis-
tently with the�QM determination of the chiral coefficients.

At orderOðp2Þ only the chiral loop corrections to the �G0

term need to be included. The resulting analytical expres-
sions for the amplitudes are complicated polynomial and
logarithmic functions of the meson masses. We find it
useful to report the following seminumerical forms of the
isospin amplitudes:

A�1

0 ¼ 4ffiffiffi
3

p �G0f
2
�

f5
½1:36þ 0:46iþ 0:46 ln�2�; (23)

A�1

2 ¼
ffiffiffi
2

3

s
�G0f

2
�

f5
½0:20þ 0:20iþ 0:051 ln�2�; (24)

where� is in units of GeV, and we have explicitly factored
the tree-level amplitudes in front. The numerical coeffi-
cients correspond to the values of the meson parameters
given in Table II. The absorptive part of the amplitudes
stems from the last diagram in Fig. 2, as it follows from the
Cutkosky cuts. We stress though that in order to obtain the
absorptive part at a given order in the perturbative expan-
sion the amplitude must be evaluated at the next order.

These expressions allow us to appreciate the impact of
the chiral loops on the full amplitudes. While they are
small in the isospin-two amplitude, the isospin-zero pro-
jection receives a sizable chiral loop renormalization, that
is responsible for most of its deviation from the VSA, as
we shall discuss next.

It is worth noting that the chiral corrections to the
A2 amplitude, Eq. (24), coincide numerically with those
computed for the operators �Q8;7 in Ref. [22], as men-

tioned at the end of the previous section. This is due to the
fact that the �Q8;7 and QLR

1;2 share the same �I ¼ 3=2

component [33].

B. The B parameters

A convenient way to show the results is to normalize
the K ! �� matrix elements to their VSA values. By
denoting hQi0;2¼h��;I¼0;2jQjKi, where the subscripts

refer to the isospin components, the B parameters are
defined as

B0;2 �
RehQimodel

0;2

hQiVSA0;2

: (25)

The reference VSA values for the QLR
1 operator can be

written as [11]

hQLR
1 iVSA0 ¼

ffiffiffi
2

p ðXþ 9Y þ 3ZÞ
3

ffiffiffi
3

p ; (26)

hQLR
1 iVSA2 ¼ 1

3

ffiffiffi
1

3

s
ðX � 6ZÞ; (27)

and similarly for QLR
2

hQLR
2 iVSA0 ¼

ffiffiffi
2

p ð3Xþ 3Y þ ZÞ
3

ffiffiffi
3

p ; (28)

hQLR
2 iVSA2 ¼ 1

3

ffiffiffi
1

3

s
ð3X � 2ZÞ; (29)

where X� i
ffiffiffi
2

p
f�ðm2

K�m2
�Þ, Y� i

ffiffiffi
2

p
fKA

2, Z� i
ffiffiffi
2

p
f�A

2,
respectively, and A � m2

K=ðms þmdÞ.
By taking the scale � at the chiral perturbation theory

cutoff �� ’ 0:82 GeV (where the values for the nonper-

turbative parameters M and h �qqi in Table II were obtained
in [21]) and spanning over the model parameter space, we
obtain the values for the different B0;2ðQLR

1;2Þ. In Fig. 4 the

contour levels of B0 and B2 as a function of the relevant
�QM parameters are displayed. Both HVand NDR schemes
results are shown. As one can see, the �5-scheme depen-
dence is quite limited since it appears at OðM2=�2

�Þ.
The numerical summary of B0;2 for the two LR operators

is reported in Table III (the same values hold for the RL
related operators). Their uncertainties are evaluated by con-
sidering the variation of the relevant parameters, namelyM,
h �qqi, f1 and ms. The parameters f1 and h �qqi have a
correlated variation range, displayed as the shaded ellipses
in Fig. 4. The correlation stems from the dependence on f1
and h �qqi on the next to leading order low energy constant L5

in the strong chiral Lagrangian as computed in the �QM
(see Appendix B in Ref. [21]), namely

L5 ¼ � f41
8Mh �qqi

�
1� 6

M2

�2
�

�
; (30)

by taking into account the present uncertainty on the knowl-
edge of L5 (about 10%). This correlated variation drives
most of the final uncertainty in B0, B2, the effect of the
constituent quark mass M and of its correlation being nu-
merically irrelevant. We have consistently (and conserva-
tively) used for the strange quark mass its partial
conservation of axial current (PCAC) value msð�Þ ¼
�f2�m

2
K=h �qqið�Þ, which for the range of the quark

TABLE II. Values of the physical parameters and phenomeno-
logical ranges of the nonperturbative �QM parameters used in
the numerical analysis.

f� 0.092 GeV

fK 0.113 GeV

m� 0.137 GeV

mK 0.498 GeV

m
 0.547 GeV

�� 0.82 GeV

f1 0:087þ0:012
�0:014 GeV

M 0:200þ:0:005
�0:003 GeV

h �qqi �ð0:240þ0:030
�0:010 GeVÞ3
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condensate given in Table II leads to msð��Þ ¼
152þ20

�45 MeV. This is well consistent, albeit with a larger

range, with msð2 GeVÞ ¼ 95� 5 MeV from lattice deter-
minations [34].

The B parameters for the LR current-current operators
QLR

1;2 turn out to have a size comparable to that of the

standard electroweak penguins Q7;8 [35]. For the isospin-

two component of the amplitudes one expects, on the basis
of the symmetry arguments discussed earlier, the parame-
ters B2ðQLR

1;2Þ to be the same as the corresponding B2ðQ8;7Þ.

The numerical difference is due to the Oðp4Þ corrections
included in Refs. [21,22] and here neglected.
For future reference we also give in Table IV the values

of B0, B2 at the renormalization scale � ¼ 2 GeV, calcu-
lated by taking into account the anomalous dimension
matrix of the QLR

1;2 operators [36] as well as the running

of h �qqi and ms (related by PCAC). As one sees, within the
uncertainties, the values of B0 and B2 can be considered
scale independent between �� and 2 GeV, in agreement

with the leading role of the Oðp0Þ coefficient �G0 and its
dependence on h �qqi2, analogous to the VSA.
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FIG. 4 (color online). Contour levels of B0 and B2 for Q
LR;RL
1 (left) and QLR;RL

2 (right panels) in the HV and NDR renormalization
schemes (continuous and dashed contours, respectively). The ellipse marks the correlated range of the parameters h �qqi and f1 in the
phenomenological fit of the �QM, as discussed in the text.

TABLE III. Values of B0 and B2 at � ¼ 0:82 GeV for
h��jQLR;RL

1;2 jKi, in the NDR and HV �5 schemes.

NDR HV

B0ðQLR;RL
1 Þ 2:00þ0:87

�0:39 2:04þ0:85
�0:40

B0ðQLR;RL
2 Þ 1:95þ0:82

�0:37 1:99þ0:80
�0:38

B2ðQLR;RL
1 Þ 0:64þ0:11

�0:17 0:62þ0:11
�0:17

B2ðQLR;RL
2 Þ 0:59þ0:14

�0:18 0:57þ0:13
�0:18

TABLE IV. The same as Table III at � ¼ 2 GeV.

NDR HV

B0ðQLR;RL
1 Þ 1:84þ0:85

�0:36 1:87þ0:84
�0:37

B0ðQLR;RL
2 Þ 1:82þ0:82

�0:35 1:84þ0:81
�0:36

B2ðQLR;RL
1 Þ 0:55þ0:09

�0:15 0:54þ0:09
�0:15

B2ðQLR;RL
2 Þ 0:52þ0:10

�0:15 0:51þ0:10
�0:15
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V. CONCLUSIONS

In this work we considered the calculation of hadronic
matrix elements of the �S ¼ 1 left-right four-quark opera-
torsQLR

1;2 which are present in popular extension of the SM.

Because of their possible tree-level origin, they are poten-
tially the source of large contributions of new physics
to kaon hadronic decays, thus giving rise to stringent
constraints on the new physics scales and/or couplings. A
paradigmatic example is the LR symmetric model, where
the above operators are generated at a large scale by
WL �WR mixing. The possibility of a TeV size right-
handed scale, together with the absence of loop suppres-
sion in the Wilson coefficients, may be the source of
sizable contributions of LR current-current operators to

direct CP violation in the kaon sector. The QLR;RL
1;2 opera-

tors are present in minimal extensions of the SM Yukawa
sector and in supersymmetry extensions as well.

Among the complete set of �S ¼ 1 four-quark opera-
tors, these were the only one for which an evaluation of
the relevant h��jQLR

1;2jKimatrix elements was missing. We

addressed the calculation of these hadronic matrix ele-
ments in the context of the chiral quark model. To this

aim, the complete Oðp2Þ �S ¼ 1 effective chiral
Lagrangian was constructed. This allowed us to perform
a complete evaluation of the K ! �� matrix elements at
Oðp2Þ, which includes the one-loop chiral contributions.
The computation was performed in both NDR and HV �5

renormalization schemes. The K ! �� amplitudes for
QLR

1;2 were found to be similar to those of the standard

penguin operators Q7;8, respectively (which are partially

related to the LR current-current ones by symmetry argu-
ments). We compared our results, obtained at the chiral
breaking scale, with those of the simple factorization
(VSA), showing deviations within 50%. For a convenient
comparison with forthcoming (and hopefully ultimate)
lattice results, the values of the matrix elements are also
shown at the scale of 2 GeV.

ACKNOWLEDGMENTS

S. B. acknowledges partial support by the Italian MIUR
Grant No. 2010YJ2NYW_001 and by the EU Marie Curie
ITN UNILHC Grant No. PITN-GA-2009-237920. A.M.
acknowledges SISSA for hospitality during the conclusion
of this work.

[1] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); 11,
703(E) (1975).

[2] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566
(1975).

[3] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558
(1975).
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