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Avenue Rovisco Pais, 1049-001 Lisboa, Portugal

Robert D. Pisarski

Department of Physics and RIKEN/BNL, Brookhaven National Laboratory, Upton, New York 11973, USA

E. Seel

Institute of Theoretical Physics, J. W. Goethe University, Max-von-Laue Strasse 1, D-60438 Frankfurt am Main, Germany
(Received 19 June 2013; published 6 August 2013)

We use matrix models to characterize deconfinement at a nonzero temperature T for an SUð2Þ gauge
theory in three spacetime dimensions. At one-loop order, the potential for a constant vector potential A0 is

�T3 times a trilogarithm function of A0=T. In addition, we add various nonperturbative terms to model

deconfinement. The parameters of the model are adjusted by fitting the lattice results for the pressure. The

nonperturbative terms are dominated by a constant term �T2Td, where Td is the temperature for

deconfinement. Besides this constant, we add terms which are nontrivial functions of A0=T, both

�T2Td and �TT2
d. There is only a mild sensitivity to the details of these nonconstant terms. Overall we

find a good agreement with the lattice results. For the pressure, the conformal anomaly, and the Polyakov

loop the nonconstant terms are relevant only in a narrow region below �1:2Td. We also compute the

’t Hooft loop, and find that the details of the nonconstant terms enter in a much wider region, up to�4Td.
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I. INTRODUCTION

Understanding the phase transitions of a non-Abelian
gauge theory is of intrinsic interest, and of relevance to
the collisions of heavy ions at ultrarelativistic energies.
Numerical simulations on the lattice provide detailed
results for the pressure and other quantities in equilibrium.
This includes results in the pure gauge theory (without
dynamical quarks) for three colors [1]: for the pure
SUðNÞ theory when N > 3 [2], and with dynamical
quarks, Ref. [3].

Besides the theory in four space-time dimensions, it is
also useful to consider gauge theories in three dimensions.
For the pure glue theory, the behavior appears similar in
three and four space-time dimensions. There is confine-
ment at zero temperature, with a linear potential between
(external) quarks in the fundamental representation. This
linear potential is characterized by a string tension, �.

At nonzero temperature, numerical simulations on the
lattice indicate that for both theories, there is a deconfining
transition at a temperature Td. The results of simulations in
three dimensions are given in [4–10].

There are some differences between deconfinement in
three and four dimensions. For example, in an elementary
string model [11], in d space-time dimensions the relation-
ship between the deconfinement temperature and the string
tension is

Td ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3�

�ðd� 2Þ

s
: (1)

The deconfinement temperature is infinite in two dimen-
sions, as then the pure glue theory is a free field theory
(consider, e.g., A0 ¼ 0 gauge). This ratio decreases as d
increases, equal to Td=

ffiffiffiffi
�

p � 0:98 in three dimensions and
�0:67 in four. These values are in good agreement with the
lattice results of Refs. [3,7]. For an SUðNÞ theory, the order
of the transition also changes, as infrared fluctuations in
two spacial dimensions drive the transition to second order
even for three colors, where mean field theory predicts a
first-order transition.
We also note that gauge theories in three dimensions

may also be relevant for theories of high temperature
superconductivity [12].
For the pure glue theory, the results of lattice simulations

are close to the continuum limit. This is much harder with
dynamical quarks, especially those that are light.Moreover,
while numerical simulations can directly compute many
quantities in thermal equilibrium, obtaining results for
quantities near equilibrium is rather more challenging.
Such quantities are often of greatest interest to experiment,
such as for transport coefficients like the shear viscosity.
Consequently, it is useful to have approximate models to

model the deconfining transition. One such class of theo-
ries are matrix models [13–26]. These involve zero [14,15],
one [19], and two [20] parameters, and have been used
to compute various quantities for gauge theories in four
dimensions. Such models dominate for a gauge theory on a
femtosphere [24].
These matrix models are manifestly effective theories.

Their virtue is simplicity. It is known that in the pure gauge
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theory the Polyakov loop approaches one at infinitely high
temperature, and vanishes below Td. This can be modeled
by constructing an effective theory for the eigenvalues of
the Wilson line. The relevant variables are A0=T, where A0

is the timelike component of the vector potential. One then
adds, by hand, terms which are functions of A0=T, to drive
the transition to confinement. For an SUðNÞ theory, this
approach is reasonable at infinite N, where this A0 field
represents a master field for deconfinement.

The parameters of the matrix models are determined by
fitting to the lattice data for the pressure. Numerical simu-
lations on the lattice gives detailed data on the pressure as a
function of temperature, pðTÞ. It is also useful to compute
other quantities, such as the interaction measure in four
dimensions, ½eðTÞ � 3pðTÞ�=T4, where eðTÞ is the energy
density. This vanishes in the conformal limit, and so natu-
rally characterizes the deviations from ideality.

In four dimensions, lattice simulations find that, to a
good approximation, the interaction measure, times T2=T2

d,

is constant from�1:2Td to�4:0Td [1,14,17]. An approxi-
mately constant value of interaction measure, times T2=T2

d,

implies that the pressure is dominated by a constant term
�T2

dT
2. In the following we refer to terms independent of

A0 as constant, and to terms which depend on A0 as non-
constant. One finds that when scaled by the pressure of an
ideal gas of gluons, the ratio pðTÞ=pidealðTÞ grows sharply
for �1:2Td < T <�4:0Td. This range is also called the
semiquark gluon plasma (semi-QGP). For the pressure
the details of the matrix model matter only in a narrow
transition region, from Td to �1:2Td. In contrast to the
pressure, the ’t Hooft loop, for example, is sensitive to the
details of the matrix model in a much wider region, up to
4:0Td [19,20].

In this paper we consider a matrix model for an SUð2Þ
gauge theory in three space-time dimensions. As in four
dimensions, we find that the matrix model works reason-
ably well even for two colors. The major reason for
studying two colors is technical. After diagonalizing the
constant matrix A0=T, for SUðNÞ the matrix model is a
function of the N � 1 mutually commuting eigenvalues.
For two colors there is only one such eigenvalue, greatly
simplifying the computations.

Broadly, we find that the model in three dimensions
looks similar to that in four dimensions. The interaction
measure in three dimensions, ½eðTÞ � 2pðTÞ�=T3, times a
single power of T=Td, is approximately constant from
�1:2Td to �10Td [6,10]. This implies that in this region,
the pressure is dominated by a constant term �T2Td.

In three dimensions the one- and the two-parameter
matrix models are in reasonable agreement with the lattice
results for the pressure. However, near Td there are signifi-
cant differences between the matrix model and the lattice
data for the interaction measure. We then introduce a
four-parameter fit which improves the agreement with
the lattice data, and reproduces the correct shape for the

interaction measure near Td. In this four-parameter fit, the
Polyakov loop deviates from one over a narrow region, up
to �1:2Td. In contrast, for the ’t Hooft loop the details of
the matrix model are relevant over a much broader region,
up to �4:0Td. The ’t Hooft loop also exhibits only a mild
dependence on the details of the nonconstant terms in the
effective Lagrangian.
The outline of the paper is as follows. In Sec. I we

introduce the basic concept of the matrix model and give
the motivation to study it in three space-time dimensions.
In Secs. II and III we construct the effective potential using
the four-dimensional case as a guideline: In Sec. II we
calculate the perturbative potential to one-loop order, and
in Sec. III we model the nonperturbative contributions. In
Sec. IV we present the analytical solution to the effective
potential, and in Sec. V we show the numerical fits to the
lattice pressure and to the interaction measure. In Sec. VI
we compute the interface tension and present the plots for
the Polyakov loop and for the ’t Hooft loop. Finally, in
Sec. VII we summarize our results and give an outlook.

II. PERTURBATIVE POTENTIAL

In the imaginary-time formalism, the partition function
of an SUð2Þ gauge theory at a temperature T is

Z ¼
Z

DA� exp

�
� 1

4

Z 1=T

0
d�

Z
d2x trG��G��

�
; (2)

where A� ¼ iAa
��

a=2 is the gauge potential, �a are the

Pauli matrices, and G�� ¼ @�A� � @�A� � ig½A�; A�� is
the field-strength tensor. In 2þ 1 dimensions A� and the

coupling constant g both have dimensions of mass1=2.
Thus, results to one-loop order are proportional to g2,
which has the dimensions of mass.
The goal is to construct a model to describe the

confinement-deconfinement phase transition in SUð2Þ.
We begin by computing the perturbative potential in the
presence of a constant background field

A0 ¼ Acl
0 þ A

qu
0 : (3)

Acl
0 is a constant classical field

Acl
0 ¼ �Tq

g
�3; (4)

where �3 is the diagonal SUð2Þ Pauli matrix,

�3 ¼
1 0

0 �1

 !
; (5)

and A
qu
0 denotes quantum fluctuations.

In this background field the Wilson line is

Lð ~xÞ ¼ P exp

�
ig
Z 1=T

0
A0ð ~x; �Þd�

�
¼ ei�q 0

0 e�i�q

 !
:

(6)
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The eigenvalues of the Wilson line are given by e�i�q.
They are the basic variables of this model. The relationship
between a background A0 field and the eigenvalues of the
Wilson line becomes more complicated at two-loop order
and beyond, but this can be ignored to one-loop order. The
Polyakov loop is the trace of the Wilson line

l ¼ 1

2
trL ¼ cos ð�qÞ: (7)

Equation (4) is the simplest ansatz which generates
a nontrivial expectation value for the Polyakov loop.
Notice, within our model the Polyakov loop differs from
unity only if q � 0.

One perturbative vacuum is given by A0 ¼ q ¼ 0, where
L ¼ 1 and l ¼ 1. The pure gauge SUð2Þ theory is invariant
under global Zð2Þ gauge rotations. Reflecting this Zð2Þ
symmetry, an equivalent perturbative vacuum occurs at
q ¼ 1, whereL ¼ �1 and l ¼ �1. As a periodic variable,
normally one would expect q to vary from 0 ! 2. Because
of the Zð2Þ symmetry we can be more restrictive and
require q to lie in the interval from 0 ! 1. If we require
q to lie in this interval, a global Zð2Þ transformation is
given by

q!1�q:L!¼ð�Þ e�i�q 0

0 ei�q

 !
; l!�l: (8)

The Zð2Þ symmetry will become important when we con-
struct the effective potential, as any possible term will have
to be invariant under the transformation q ! 1� q. The
confining vacuum is given by the point halfway between
these degenerate vacua,

qc ¼ 1

2
; Lc ¼

i 0

0 �i

 !
; lc ¼ 0: (9)

Thus, one can model the transition to deconfinement by
introducing potentials for q. It is important to stress that
this assumes that the expectation value of the Polyakov
loop is dominated by the classical configuration of
Eq. (4). This is certainly valid at infinite N. It is less
obvious that such a master field applies even for two colors.
Nevertheless, one finds that this classical approximation
provides a reasonable ansatz.

Assuming that confinement is dominated by the classical
configuration of Eq. (4) does not provide any understand-
ing of what type of the effective Lagrangian can produce
such a state. This is the principal task of constructing
matrix models for deconfinement. However, there are
perturbative contributions to the free energy in this back-
ground field. This has been computed previously in four
dimensions by many authors; see, e.g., Refs. [27–30]. In
three dimensions it was computed in Ref. [31]. This clas-
sical field is directly relevant for the computation of the
ZðNÞ interface tension [27,28,31], which is equivalent to
the string tension of the ’t Hooft loop [32].

To one-loop order the perturbative potential is

VptðqÞ ¼ T

2V
tr ln ½�D2ðqÞ�; (10)

where V is the two-dimensional spacial volume. D�ðqÞ
denotes the covariant derivative in the adjoint representa-
tion, in the presence of the background A0 field of Eq. (4)

D�ðqÞ ¼ @� � ig½A�; � ¼ @� � i�qT��;0½�3; �: (11)

D2ðqÞ is the associated gauge covariant d’Alembertian

D2ðqÞ ¼ ð@0 � i�qT½�3; �Þ2 þ ~@2; (12)

and ½�3; � denotes the adjoint operator
½�3; �t ¼ ½�3; t�: (13)

To proceed one needs to introduce a suitable parametriza-
tion for the generators of SUð2Þ. It is useful to choose a
ladder basis [28]

tþ ¼ 1ffiffiffi
2

p 0 1

0 0

 !
; t� ¼ 1ffiffiffi

2
p 0 0

1 0

 !
;

t3 ¼ 1

2

1 0

0 �1

 !
;

(14)

where t3 is proportional to the diagonal Pauli matrix �3,
and t� are the off-diagonal step operators. These genera-
tors form an orthogonal set, with the normalization

trðt23Þ ¼
1

2
; trðtþt�Þ ¼ 1

2
;

trðtþtþÞ ¼ trðt�t�Þ ¼ 0:
(15)

The trace in Eq. (10) is over all color degrees of freedom.
The diagonal mode �t3 commutes with the background
field. So, the covariant derivative associated with the
diagonal degree of freedom is independent of q:

D��3 ¼ @��3; (16)

and the potential is as in zero background field. The two
off-diagonal modes �t� do not commute with Acl

0 ,

½�3; t
�� ¼ �2t�: (17)

They give a nontrivial potential for q. The quantum
correction enters by replacing @0 by @0 � i2�Tq in the
covariant derivative

D0t
� ¼ ð@0 � i�qT½�3; �Þt� ¼ i2�Tðn� qÞt�: (18)

In momentum space, the propagators along the off-
diagonal degrees of freedom are as in zero background
field, except that the energy k0 is shifted to k�0 ¼
i2�Tðn� qÞ. As a bosonic field the gluon must satisfy
periodic boundary conditions, which require that n is an
integer, n ¼ 0;�1;�2 . . . .
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Summing over the diagonal and the off-diagonal modes,
the full one-loop result for the perturbative potential in the
background field of Eq. (4) is

VptðqÞ ¼ T

2V
ftr ln ðk20 þ k2Þ þ tr ln ½ðkþ0 Þ2 þ k2�

þ tr ln ½ðk�0 Þ2 þ k2�g: (19)

The trace over momenta in Eq. (19) is evaluated using
contour integration [33],

tr ln ½ðk�0 Þ2 þ k2� ¼ 2V
Z d2k

ð2�Þ2 ln ð1� e�jkj=T�i2�qÞ

¼ �V
�

Z 1

0
dkk

X1
n¼1

e�nk=T�i2�qn

n

¼ �VT2

�

X1
n¼1

e�i2�qn

n3
: (20)

The sum over n converges quickly, and so it can easily be
evaluated numerically [31]. It is also useful to recognize
that this sum can be written in terms of the polylogarithm
function,

LijðzÞ ¼
X1
n¼1

zn

nj
: (21)

To one-loop order the perturbative potential for q involves
the polylogarithm function of the third kind, which is the
trilogarithm function,

VptðqÞ ¼ � T3

2�
½Li3ðei2�qÞ þ Li3ðe�i2�qÞ þ Li3ð1Þ�: (22)

This expression is manifestly symmetric under Zð2Þ trans-
formations, where q ! 1� q. In Eq. (22), the last term,
Li3ð1Þ ¼ �ð3Þ � 1:202 . . . , is due to the free energy of the
diagonal mode. In zero field we obtain,

Vptð0Þ ¼ �3
T3

2�
�ð3Þ: (23)

In total, this value is minus the pressure for three
massless bosons in d ¼ 2þ 1. Note that unlike the four-
dimensional case, in three space-time dimensions there
is no factor for the gluon spin. The full one-loop result of
Eq. (22) is then the sum of the zero-field contribution in
Eq. (23) and of the quantum correction

V
qu
pt ðqÞ¼� T3

2�
½Li3ðei2�qÞþLi3ðe�i2�qÞ�2Li3ð1Þ�: (24)

III. NONPERTURBATIVE TERMS IN
THE EFFECTIVE POTENTIAL

A. Four dimensions

Before considering the types of terms which can
be added to model deconfinement, it is instructive to
review what happens in four dimensions. In d ¼ 3þ 1
the perturbative term for two colors is given by

Vd¼4
pt ðqÞ ¼ �2T4

�
� 1

15
þ 4

3
q2ð1� qÞ2

�
: (25)

The term independent of q is the free energy for three
gluons, with a factor of 2 for the spin. The q-dependent
term arises from a sum as in three dimensions,P

ne
�i2�q=n4. But in d ¼ 3þ 1 it reduces simply to a

quartic potential in q, �q2ð1� qÞ2.
There are various nonperturbative terms which one

can add to model the transition to confinement. From
the lattice data we know that in four dimensions the value
ðe� 3pÞ=ðT2T2

dÞ is approximately constant from 1:2Td to

several times Td, [1,14,17]. Taking this into account,
one must certainly add a constant term �T2

dT
2. For the

pressure, this is the dominant term for temperatures
above �1:2Td.
Similarly, since in three dimensions ðe� 2pÞ=ðT2TdÞ is

constant from �1:2Td to �10Td [6,10], one must also add
a constant nonperturbative term�TdT

2 to the potential for
q. Referring to such a constant term as nonperturbative is
somewhat of a misnomer. In three dimensions, the cou-
pling constant squared has dimensions of mass. Thus at
one-loop order, perturbative corrections to the free energy
are �g2T2, and so automatically proportional to T3.
Nevertheless, the results of numerical simulations on the
lattice are still surprising. It is not natural to expect
that perturbation theory at one-loop order is dominant
down to temperatures as low as 1:2Td. Furthermore, the
lattice does not indicate the presence of perturbative terms
at two-loop order, which would be �g4T. Those at three-
loop order are independent of temperature, �g6. In detail,
perturbation theory is more involved, including logarithms
of g2=T [34].
The possible q-dependent nonperturbative terms in four

dimensions can certainly include a term like the perturba-
tive potential�q2ð1� qÞ2. In addition, a term linear in q is
added. To be consistent with the Zð2Þ symmetry, the linear
term must be �qð1� qÞ. The need for the linear term can
be argued on two grounds. One argument is the following:
When q develops an expectation value, the deconfining
phase is in an adjoint Higgs phase. While there is no gauge-
invariant order parameter for an adjoint Higgs phase, there
can still be a first-order transition from a truly perturbative
phase, where hqi ¼ 0, to one where hqi � 0. This would be
a second phase transition, at a temperature higher than Td.
Though it is possible, the lattice finds no evidence of such a
second phase transition. A term linear in q will give an
expectation value for q at any temperature, obviating the
possibility of such a second phase transition. Another
explanation was first discussed by Meisinger and Ogilvie
[15]: If one assumes that the gluons develop a mass, then
expanding in the mass squared to leading order, the one-
loop determinant in a background Acl

0 field is

T

V
tr ln ð�D2

cl þm2Þ �m2 T

V
tr

�
1

�D2
cl

�
: (26)
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In Sec. III B 2 we show explicitly how this determinant
generates a term linear in q. The origin of this mass term
will not be discussed here. The point is that since the
determinant is gauge invariant, the result in Eq. (26) is
gauge invariant as well. Such a term arises naturally in
expanding about the supersymmetric limit. Then m is the
mass of an adjoint fermion, and Eq. (26) is the leading term
in an expansion about a small mass; see [35,36].

Altogether the possible nonperturbative potential one
can construct in four dimensions is

Vd¼4
npt ðqÞ¼�T2T2

d

�
1

5
C1qð1�qÞþC2q

2ð1�qÞ2�C3

�
�B:

(27)

The constant term �C3T
2T2

d is required by the lattice data

for the pressure. It is the dominant term above �1:2Td

[1,14,17]. The term �C1 is required to avoid an adjoint
Higgs phase. This term is also generated by expanding the
one-loop determinant in the mass squared to leading order,
Eq. (26), with m� Td. Since there is a perturbative term
�q2ð1� qÞ2 in Eq. (25), presumably it can also arise in the
nonperturbative potential. It is natural to assume that the
temperature dependence of these nonperturbative terms is
�T2T2

d, although this is manifestly an assumption. Lastly,

one can add a term like an bag constant, B. This is the most
general model studied to date.

Equation (27) involves four parameters, C1, C2, C3, and
B. Introducing two conditions, one gets a model with only
two independent parameters. The first condition is that the
transition occurs at Td, and not at another temperature.
The second condition is that the pressure vanishes at Td.
The second condition is motivated by large-N arguments,
where the pressure is�N2 in the deconfined phase, and�1
in the confined phase. However, especially for two colors,
this is a rather drastic approximation. Instead, one should
add an effective theory for the confined phase, and ensure
that the pressures match at Td. To date this has not been
done. Consequently, it is not surprising that one finds
unphysical features close to Td, within 1% of the transition,
such as a negative pressure [20]. One finds similar unphys-
ical behavior in three dimensions. But as in four dimen-
sions, we shall view this purely as a consequence of not
matching to a physical equation of state in the confined
phase. We discuss this further when we turn to the results
of the matrix models.

B. Nonperturbative terms in three dimensions

1. Linear terms

Using the four-dimensional case as a guideline,
we add the following terms to the nonperturbative poten-
tial. First, we need a constant term �T2Td, to ensure that
ðe� 2pÞ=ðT2TdÞ is approximately constant [6,10]. Second,
it is natural to include a term similar to that generated in
perturbation theory, Eq. (24). Lastly, to avoid a transition to

an adjoint Higgs phase above Td, one adds a term linear in
q for small q,�qð1� qÞ. We can also write the linear term
in a more general way by adding a factor plus a constant

bqð1� qÞ þ d; (28)

which preserves all the required features and the Zð2Þ
symmetry. Altogether the nonperturbative potential for
SUð2Þ is

VA
nptðqÞ ¼ �T2TdC1½bqð1� qÞ þ d� þ T2TdC3

3�ð3Þ
2�

þ T2Td

C2

2�
½Li3ðei2�qÞ þ Li3ðe�i2�qÞ � 2�ð3Þ�:

(29)

So far we have assumed that all nonperturbative terms are
proportional to T2Td. This is necessary for the constant
term �C3, but there is no such restriction for the
q-dependent terms. The possibility of a different tempera-
ture dependence for the term �C1 will be discussed later.

2. Vandermonde determinant

Besides the linear term �qð1� qÞ, there is another
possibility to construct a nonperturbative term which is
linear in q for small q. As in four dimensions, we consider
the expansion of the one-loop determinant to leading order
in a mass parameter

T

V
tr ln ð�D2

cl þm2Þ �m2 T

V
tr

�
1

�D2
cl

�
: (30)

The simplest way is to follow the computation for zero
mass in Eq. (20),

tr ln½ðk�0 Þ2þk2þm2�¼ 2V
Z d2k

ð2�Þ2 lnð1�e�EðkÞ=T�i2�qÞ

¼�V
�

Z 1

0
dkk

X1
n¼1

e�nEðkÞ=T�i2�qn

n
;

(31)

where EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
is the energy. Now it is easy to

compute the derivative with respect to the mass, and then
consider the limit m ! 0

d

dm2
tr ln ½ðk�0 Þ2 þ k2 þm2�m2¼0

¼ V
2T�

Z 1

0
dk

X1
n¼1

e�nk=T�i2�qn

¼ V
2�

X1
n¼1

e�i2�qn

n

¼ V
2�

Li1ðe�i2�qÞ: (32)

This is a polylogarithm function of the first kind, which can
be written as Li1ðzÞ ¼ � ln ð1� zÞ. Including both, the

MATRIX MODEL FOR DECONFINEMENT IN A SUð2Þ . . . PHYSICAL REVIEW D 88, 034007 (2013)

034007-5



contributions of kþ0 and k�0 gives a result which is auto-

matically real,

tr

 
1

�D2
cl

!
¼ V

�

X1
n¼1

cos ð2�qnÞ
n

: (33)

In all we obtain

T

V
tr

 
1

�D2
cl

!
¼ T

2�
½Li1ðei2�qÞ þ Li1ðe�i2�qÞ�

¼ � T

2�
fln ½1� exp ð2i�qÞ�

þ ln ½1� exp ð�2i�qÞ�g
¼ � T

�
ln ½2 sin ð�qÞ�: (34)

Unlike the linear term, which is �T2, the term in
Eq. (34) is proportional to T. This is expected, since it
enters times the square of a mass parameter, Eq. (30). On
the other hand, it is surprising that this term is identical to
the Vandermonde determinant, which enters so often in
matrix models. For a femtosphere, or other small systems,
it is natural that the Vandermonde determinant enters, and
dominates [24]. In large volume, however, it is propor-
tional to �dð0Þ, where d is the dimension of space-time.
This is in turn proportional to �d, where � is some
ultraviolet cutoff, which vanishes when applying dimen-
sional regularization. Such a regularization-dependent
term is not expected to contribute in the limit of infinite
spatial volume. Thus it is surprising to find that it enters in
a mass expansion in three dimensions. Remarkably, while
the Vandermonde term arises on a femtosphere [24], it does
not arise in a mass expansion in four dimensions, Eq. (26).
A term such as Eq. (34) will ensure that the condensate for
q is always nonzero.

It is interesting to mention that performing a
mass expansion is just one possibility to derive the
Vandermonde term from the perturbative one-loop result.
A similar Vandermonde term can also be found at the two-
loop order in the perturbative expansion [28,37,38]. An
equivalent way to determine the q dependence of this
nonperturbative term is to consider the second derivative
of the perturbative trilogarithm function with respect to q,

d2

dq2

��1

2�
½Li3ðei2�qÞ þ Li3ðe�i2�qÞ � 2Li3ð1Þ�

�
¼ 2�½Li1ðei2�qÞ þ Li1ðe�i2�qÞ�
¼ �4� ln ½2 sin ð�qÞ�: (35)

Notice, by expanding this expression around q ¼ 1=2, and
keeping only terms to order q2 we also recover the linear
term introduced in Eq. (28),

�4� ln ½2 sin ð�qÞ� ¼ �2�

�
2 ln 2� �2

�
q� 1

2

�
2
�

þO

��
q� 1

2

�
4
�
; (36)

with b ¼ 2�3 and d ¼ 4� ln 2� �3=2. Strictly speaking,
the Vandermonde term exhibits a divergence at q ¼ 0. But,
as we will see later, this divergence does not pose any
problem for the present study. This is because all thermo-
dynamical quantities in this work are computed at the
minimum of the effective potential, where the condensate
for q effectively vanishes at high temperatures, but it is
never exactly zero. The linear term in Eq. (36) can also be
seen as a regularized version of the Vandermonde term
in Eq. (35).
Replacing the linear term in Eq. (29) by the

Vandermonde term derived in Eq. (35), the nonperturbative
potential can be written as

VB
nptðqÞ ¼ �C1T

3��Td
�4� ln ½2 sin ð�qÞ� þ C3T

2Td

3�ð3Þ
2�

þ T2Td

C2

2�
½Li3ðei2�qÞ þ Li3ðe�i2�qÞ � 2�ð3Þ�;

(37)

where � ¼ 1, 2 denotes two possible temperature
dependences. The value � ¼ 2 is suggested by the mass
expansion. But it is also reasonable to try � ¼ 1, which
gives the same temperature dependence as for the other
two nonperturbative terms.

IV. ANALYTICAL SOLUTION

In this section the analytical solution to the effective
potential is presented. We discuss how to determine the
parameters of the model utilizing the conditions at Td.
Further, we explain how to obtain the minimum of the
effective potential, and give the analytical expressions for
the pressure and for the interaction measure. The effective
potential is constructed as the sum of the perturbative result
to one-loop order plus the nonperturbative contributions.
Then we can compute the pressure as a function of the
temperature

pðTÞ ¼ �Veff½qmin ðTÞ�; (38)

where qmin ðTÞ is the minimum of the effective potential.
Using the first principle of thermodynamics, we can
also calculate the energy density e, and the interaction
measure �

eðTÞ ¼ T
dp

dT
� pðTÞ; � ¼ eðTÞ � 2pðTÞ: (39)

A. Linear potential

First we discuss the case where the linear term of
Eq. (36) is used. The effective potential is then
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Veff ¼ Vpt þ VA
npt; (40)

where Vpt denotes the perturbative one-loop result of

Eq. (22), and VA
nptðqÞ the nonperturbative contributions of

Eq. (29). In the following discussion it is useful to rewrite
Veff as

Veff ¼ �3
�ð3Þ
2�

T3

�
1� Td

T
C3

�
þ T3

�
1� Td

T
C2

�

�
�
LðqÞ � 2�

�
2 ln 2� �2

�
q� 1

2

�
2
�
aðTÞ

�
; (41)

where we introduce the notation

LðqÞ ¼ � 1

2�
½Li3ðei2�qÞ þ Li3ðe�i2�qÞ � 2�ð3Þ�;

aðTÞ ¼
Td

T C1�
1� Td

T C2

	 : (42)

This effective potential exhibits a second-order phase tran-
sition; see Fig. 1. VeffðqÞ has the shape of a double-well
potential symmetric to the confined vacuum qc ¼ 1=2.
Depending on the value of a, one can describe the tran-
sition from deconfinement to confinement: At a ¼ 0, the
minima of the effective potential are given by the pertur-
bative vacua at q ¼ 0 and q ¼ 1. This is the region
of complete QGP. For 0< a< ad the system is in the
semi-QGP phase, and the distance between the confined
vacuum and the two degenerate minima starts decreasing.
At ad ¼ 0:070230 the transition to confinement takes
place, and for a ^ ad there is just one minimum which is
given by the confined vacuum at q ¼ 1=2.

1. Fixing the parameter at Td

Apart from Td, the effective potential of Eq. (41)
involves three parameters C1, C2, C3 which are determined
from the lattice measurements of the pressure in the
deconfined phase. First, we impose that the transition
occurs at Td. This implies that aðTdÞ ¼ ad:

ad ¼ C1

1� C2

; (43)

which gives C2 as a function of C1. We further require that
the pressure is zero at Td, which allows us to determine C3

C3 ¼ 1� C1½Lð0:5Þ � ad8�
2 ln 2�

3 �ð3Þ
2� ad

: (44)

Due to the two conditions, there is only one free parameter
left, say C1. This single parameter is utilized to fit the
lattice pressure and the interaction measure.

2. The minimum of the effective potential

The main numerical problem to compute the pressure
pðTÞ resides in finding the minimum of the effective
potential as a function of q at T � Td. This defines a
function qmin ðTÞ.
For mathematical clarity, it is convenient to denote the

q-dependent part of the effective potential in Eq. (41)
as Vðq; aÞ,

Vðq; aÞ ¼ LðqÞ � 2�

�
2 ln 2� �2

�
q� 1

2

�
2
�
aðTÞ: (45)

The minimum is found by solving numerically the
equation

@Vðq; aÞ
@q









q¼qmin

¼ 0; (46)

for different values of a, in the range 0 	 a 	 ad. This
gives the minimum of the effective potential as a function
a, qmin ðaÞ. We use this solution to obtain an expression for
the potential at the minimum, which depends only on a

Vmin ðaÞ ¼ V½qmin ðaÞ; a�: (47)

In principle, one needs to solve Eq. (46) for every value
0 	 a 	 ad we want to study. However, it is more conve-
nient to find a good ansatz for qmin ðaÞ and for Vmin ðaÞ.
Then, it is straightforward to determine the temperature-
dependent minimum by utilizing the definition for aðTÞ
in Eq. (42)
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FIG. 1 (color online). The effective potential, VeffðqÞ (left panel), and its first derivative, V0effðqÞ (right panel), as a function of q. We
present the plots for three different values of a: a < ad (dashed line) represents the semi-QGP, at a ¼ ad (solid line) the phase
transition to confinement takes place, and for a > ad (dotted line) the system is in the confined phase.
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qmin ðTÞ ¼ qmin ½aðTÞ� ¼ qmin

2
4 Td

T C1�
1� Td

T C2

	
3
5;

Vmin ðTÞ ¼ Vmin ½aðTÞ� ¼ Vmin

2
4 Td

T C1�
1� Td

T C2

	
3
5:

(48)

To solve Eq. (46) we apply the numerical bisection
method. Then we fit the numerical solutions for qmin ðaÞ
and Vmin ðaÞ with high precision. As an ansatz for the fits
we use simple linear expansion in rational powers of a, and
in powers of ad � a. The absolute deviation between the
numerical solution and our ansatz for Vmin ðaÞ is of the
order of 10�7. It is important to work with good accuracy,
because the error bars of the lattice data for the pressure
p=ð3T3Þ are small, 10�5. In Fig. 2, we plot the solutions for
qmin ðaÞ and for Vmin ðaÞ. Since we use a very high preci-
sion, the curves of our Ansätze coincide with the curves of
the exact numerical solutions.

3. Analytical expressions for the pressure
and for the interaction measure

The pressure as a function of T is obtained by plugging
the solution qmin ðTÞ of Eq. (48) into the equation for the
effective potential of Eq. (41)

p

3T3
¼
�
1� Td

T
C3

�
�ð3Þ
2�

þ 2�Td

3T
C1

�
2 ln 2� �2

�
qmin ðTÞ � 1

2

�
2
�

þ
�
1� Td

T C2

	
6�

fLi3½ei2�qmin ðTÞ�
þ Li3½e�i2�qmin ðTÞ� � 2�ð3Þg: (49)

Another possibility to compute the pressure is to directly
use the ansatz for Vmin ðTÞ depicted in Fig. 2 and in
Eq. (48),

p

3T3
¼
�
1� Td

T
C3

�
�ð3Þ
2�

�
�
1� Td

T
C2

�
Vmin ðTÞ

3
; (50)

which greatly simplifies the numerics.
Differentiating the pressure of Eq. (49) with respect to T,

gives the interaction measure

�

3T3
¼ T

d

dT

�
p

3T3

�
: (51)

Notice, since qmin ðTÞ vanishes in the large-T limit,

lim
T!1

p

3T3
! �ð3Þ

2�
¼ c: (52)

The constant c is the solution to the pressure in the pertur-

bative limit. At the same time, �
3T3 vanishes at large T.

Equations (49) and (51) are the final analytical results
which are used to fit the lattice QCD data by adjusting the
parameters of the model.

B. Vandermonde potential

Utilizing the Vandermonde term of Eq. (35), the effec-
tive potential is given by

Veff ¼ Vpt þ VB
npt

¼ �3
�ð3Þ
2�

T3

�
1� Td

T
C3

�
þ T3

�
1� Td

T
C2

�
� fLðqÞ � 4� ln ½2 sin ð�qÞ�aðTÞg; (53)

where VB
npt is the nonperturbative contribution constructed

in Eq. (37). Repeating the analysis of Sec. IVA one can
determine the minimum of the effective potential, qmin ðaÞ,
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FIG. 2 (color online). Left panel: the minimum of the effective potential as a function of a, qminðaÞ, using the linear term (solid line),
and the Vandermonde term (dashed line). Right panel: the potential at the minimum as a function of a, VminðaÞ. Our fits to qminðaÞ and
VminðaÞ are essentially identical to the exact numerical solutions, since we work with a high precision.
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where the definition of the function aðTÞ is now extended
with a more general exponent,

a ¼
�
Td

T

	
�
C1�

1� Td

T C2

	 ; � ¼ 1; 2: (54)

The qmin ðaÞ we obtain for the Vandermonde potential,
again with a great accuracy, is depicted in Fig. 2. At
a ¼ ad the linear potential and the Vandermonde potential
produce the same Vmin and qmin.

V. RESULTS

In this section we present the numerical results for the
one- and the two-parameter matrix model and compare
them to the lattice data of Ref. [10]. We show the plots
for the pressure, the interaction measure, and for the
Polyakov loop utilizing three different options for the
q-dependent nonperturbative term �C1: the linear term,
T2Td2�½2 ln 2� �2ðq� 1

2Þ2�, and the Vandermonde term

T3��Td
�4� log ½2 sin ð�qÞ�, where we consider two differ-

ent temperature dependences � ¼ 1, 2.
Close to the critical temperature the lattice data become

smeared out due to glueballs below Td, the gluon mass
above Td, and lattice artifacts such as finite-volume effects.
Therefore, it is convenient to apply a cut, and only fit the
data at T > 1:05Td. Moreover the finite-volume effect
also affects the pressure at high temperatures [39,40]. In
general, one finds that the pressure decreases with increas-
ing volume. Motivated by the uncertainties on the lattice
near Td and at high temperatures, we also discuss the
possibility of introducing a four-parameter fit, and show
the corresponding plots.

We determine the free parameters of the models by
applying the corresponding nonlinear fits to the lattice
pressure. First, we present the results for the pressure and
for the interaction measure utilizing the linear term, Figs. 3
and 4, and the Vandermonde term, Figs. 5 and 6. For the
Vandermonde term we just show the plots for the term
�T2, which provides in general better fits than the other
temperature dependence �T. To give a better overview of
the results we list the values of all parameters in Table I. In
this table we also include the results of the �2=dof test to
quantify how good our fit are. The lattice pressure has
small error bars, �10�5. Therefore it is crucial that we
achieve a high accuracy for our ansatz for Vmin ðaÞ,�10�7,
to compare the best fits of the different models.

A. Results of the one-parameter model

The one-parameter model exhibits only mild sensitivity
to the choice of the q-dependent nonconstant terms. By
adjusting the only free parameter of the model we already
obtain good agreement with the lattice pressure and
with the interaction measure. Especially at high and
low temperatures the fits are close to the lattice data.

At intermediate temperatures the agreement becomes
slightly worse. Moreover, the one-parameter model fails to
reproduce the correct shape of the peak in the interaction
measure, residing at T � 1:14Td.
An important observation is that in the one-parameter

model the best fit to the lattice pressure gives always a
rather small value of C1; see Table I. From Eq. (48) and
Fig. 2 one can deduce that the smaller the value for C1, the
faster the condensate for q approaches zero above the
critical temperature. If qmin ðTÞ � 0 all q-dependent terms
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FIG. 3 (color online). Lattice data, as well as the numerical fits
to the pressure p=3T3 using the linear term. We present the
curves in the one-parameter model (dashed line), the two-
parameter model (solid line), and in the four-parameter fit
(dotted line). The horizontal lines represents the perturbative
constant c, which corresponds to the perturbative limit of the
pressure. In the one- and in the two-parameter models c ¼
�ð3Þ=2� (solid line), and in the four-parameter fit it is shifted
by �0:5%.
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FIG. 4 (color online). Lattice data for the interaction measure
�=3T3 in comparison with the results for the linear term. We
present the curves in the one-parameter model (dashed line), the
two-parameter model (solid line), and in the four-parameter fit
(dotted line).
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in the effective potential vanish. This implies that, except
from a narrow region close to Td, the thermodynamics is
completely governed by the q-independent ideal term�T3

plus the constant term �T2Td.

B. Two-parameter model

Aiming to improve the results of the one-parameter
model, we consider the two-parameter model, as proposed
in Ref. [20]. In the two-parameter model the constants C1

and C2 remain the same as before, but C3 is replaced by the
temperature-dependent parameter

C3ðTÞ ¼ C3ð1Þ þ C3ðTdÞ � C3ð1Þ
T2=T2

d

; (55)

which is equivalent to adding an MIT bag constant B.
We find again that the results are quite similar for the

linear term and the Vandermonde term. The two-parameter
fit improves the results of the one-parameter model at
intermediate temperatures, and gives overall good agree-
ment with the lattice data in the entire temperature region;
see Figs. 3 and 4. Only at the peak of the interaction
measure do our results deviate notably from the lattice
results. It must be pointed out, however, that the parameters
of the model are fixed by imposing that the pressure
vanishes at the transition point. Instead, it would be neces-
sary to fit the pressure in the confined phase to some
hadronic (glueball) resonance gas. Therefore, one should
not expect to fit the lattice data close to Td with a great
accuracy by making this simple assumption.
Moreover, the two-parameter model also produces an

extremely narrow region in which the condensate for q is
nonvanishing.

C. Four-parameter fit

The one- and the two-parameter models give already
good fits to the lattice pressure and to the interaction
measure. However, at the peak of the interaction measure,
residing close to Td, the agreement becomes notably
worse. Further, due to the small error bars of the lattice
pressure, the �2=dof test still gives a large value �200.
Therefore it is interesting to investigate, whether further

extending the number of degrees of freedom can improve
the results near the critical temperature, and reproduce the
correct shape for the interaction measure peak. In this
work, the possibility of introducing a four-parameter fit is
discussed, which can be motivated in two ways. First, in
our analytical calculations we make two obvious approx-
imations: We compute the perturbative potential only to
one-loop order, and we impose that the pressure must
vanish at the transition point. Moreover, due to the smear-
ing and finite-volume effects present on the lattice close to
Td and in the high-temperature region, it is difficult to
determine the exact values for the critical temperature,
and for the pressure in the perturbative limit. Taking these
uncertainties into account, two additional free parameters
are introduced in the two-parameter matrix model, one for
Td, and one for c, which corresponds to the perturbative
limit of the pressure; see Eq. (52). We note that this four-
parameter fit should be regarded just as an approximation
to a more complete model including an effective theory for
the confined phase.
The two additional parameters provide a perfect agree-

ment with the lattice pressure and with the interaction
measure for all the three nonconstant terms considered in
this work; see Figs. 3–6. Especially close to Td the results
improve notably, giving a good fit to the peak of the
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FIG. 5 (color online). Numerical fits to the lattice pressure
p=3T3 using the Vandermonde term �T2. We show the curves
in the one-parameter model (dashed line), the two-parameter
model (solid line), and in the four-parameter fit (dotted line). The
horizontal lines represent the pressure in the perturbative limit.
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FIG. 6 (color online). Lattice interaction measure in compari-
son with the results for the Vandermonde term �T2. We show
the curves in the one-parameter model (dashed line), the two-
parameter model (solid line), and in the four-parameter fit
(dotted line).
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interaction measure, with �2=dof � 0:5 for the model with
a linear term. This shows that the difference between the
model and the lattice pressure is smaller than the error bars.

An important result is that the four-parameter fit gives a
significantly larger value of C1 than the other two models;
see Table I. This implies that there is a transition region in
the deconfined phase, in which the system develops a
nontrivial condensate for q, qmin ðTÞ � 0. In our matrix
model this happens in principle at all temperatures. But in
practice, the condensate is only numerically large below
�1:2Td for the linear and for the Vandermonde term,
which will become clear when we discuss the Polyakov
loop, Fig. 8. This is the range where the details of the
matrix model are relevant, since the q-dependent terms
of the effective theory provide a nontrivial contribution
in the deconfined phase. Notably, this is in accordance with
the results in d ¼ 3þ 1, where the condensate is nonzero
up to �1:2Td.

In Table I we list the values for the parameters. The
deviation in c is rather small for all nonconstant terms
and can be explained as follows. At high tmperature the
lattice pressure is slightly volume dependent, and tends to
decrease with increasing volume; see Refs. [39,40]. This
implies that on the lattice the value of c may be shifted to
lower values when the volume is increased. Moreover, this
small shift in c could be partly due to the applied one-loop
approximation. Extending the calculation to higher-loop
order will shift the perturbative constant. Thus, the higher-
order loop calculations and the volume dependence could
account for the difference in c.

In what concerns the shift in Td, we note that the lattice
results for the interaction measure show that there is a
significant energy density below Td. This arises from two
effects. One is simply an uncertainty of the transition
temperature, which is affected by finite-size effects such

as critical slowing down. For N ¼ 2 the transition is of
second order. Further, from Eq. (1), in three dimensions the
ratio of Td=

ffiffiffiffi
�

p
is higher than it is in d ¼ 3þ 1; remember

� is the string tension. If the ratio of the glueball masses toffiffiffiffi
�

p
is approximately independent of the dimensionality,

then the contribution of a glueball gas to the energy density
may be more significant near Td in three dimensions than
in four. Such effects from the confined phase are com-
pletely neglected in our model. Ideally, we should develop
an effective theory for the confined phase, and match that
to the matrix model in the deconfined phase. Failing to do
that, we adopt the prescription of the four-parameter fit,
which we admit is an approximation to a more complete
theory.
We then define the transition temperature as the point

where a linear fit to the pressure intercepts the T axis. In
this case, the best estimate of Td is obtained by the inter-
cept of the tangent to the inflection point with the T axis.
The inflection point is the point where the derivative is
maximum, and the second derivative vanishes. As shown
in Fig. 7, the intercept occurs at 0:94Td. This value is
closer to results for the rescaled critical temperature in
the four-parameter fit; see Table I.
Summing up, considering the possible systematic errors,

the four-parameter fit allows us to obtain good agreement
with the lattice results in the entire temperature range
Td 	 T 	 8Td, and well reproduces the peak of the con-
formal anomaly.

D. Polyakov loop

Utilizing the parameters listed in Table I, which are
determined by fitting the lattice data for the pressure, it is
possible to compute the Polyakov loop from Eq. (7).
Figures 8 and 9 show the Polyakov loop for the linear

TABLE I. Parameters which give the best fits to the lattice pressure for different nonperturbative terms. We use the following
notation: ‘‘1 par.’’ for the one-parameter model, ‘‘2 par.’’ for the two-parameter model, and ‘‘4 par.’’ for the four-parameter fit.
Moreover, ‘‘vlin’’ denotes the linear term, ‘‘vdm1’’ the Vandermonde term �T, and ‘‘vdm2’’ the Vandermonde term �T2. The
parameters C2 and C3 are not free, they are a function of C1. In ‘‘1 par.’’ we utilize C1 as the single free parameter to fit the lattice data.
In ‘‘2 par.’’ we add a second free parameter �C3 ¼ C3ðTdÞ � C3ð1Þ, defined in Eq. (55), to include the effects of the bag model
constant B. In ‘‘4 par.’’ we further allow for small shifts in Td, and in the perturbative constant c, in order to encompass other possible
nonperturbative effects not included in our matrix model. Moreover, we also show the results of the �2=dof test for our fits to the lattice
pressure.

Nonpert. V C1 C2 C3 �C3 Td rescale c rescale �2=dof

1 par. vdm1 0.000041 0.999408 0.999940 0 1 1 265.668

2 par. vdm1 0.000000 1.000000 1.000000 0.024311 1 1 202.275

4 par. vdm1 0.003657 0.947923 0.994911 0.010874 0.918032 1.031652 10.8481

1 par. vdm2 0.000030 0.999563 0.999956 0 1 1 285.664

2 par. vdm2 0.000000 0.999998 1.000000 0.025252 1 1 207.833

4 par. vdm2 0.006322 0.909976 0.990921 0.103102 0.855040 0.999717 1.09882

1 par. vlin 0.000035 0.999489 0.999948 0 1 1 258.051

2 par. vlin 0.000001 0.999981 0.999998 0.023831 1 1 199.179

4 par. vlin 0.033310 0.525695 0.952861 �0:16002 0.907484 1.014434 0.54232
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term and for the Vandermonde term �T2 using the
one- and the two-parameter model, as well as the four-
parameter fit. In the one- and in the two-parameter model,
the Polyakov loop grows sharply from 0 to 1 above the
critical temperature. To understand this behavior we
remember that the Polyakov loop is given by l ¼
cos ½�qmin ðTÞ�. Thus, l is only then not equal to one in
the deconfined phase, if the minimum of the effective
potential differs from zero. In the one- and two-parameter
model, however, the condensate, qmin ðTÞ, is only numeri-
cally large in a narrow range close to Td, and then it
effectively vanishes. This implies that the system merges
rapidly from confinement, q ¼ 0, into the perturbative
vacuum, q ¼ 1.
In the four-parameter fit, which perfectly agrees with

the lattice pressure, the condensate is nonvanishing up
to �1:2Td for both nonperturbative terms. Therefore
the Polyakov loop markedly varies from one in this
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FIG. 8 (color online). Left panel: the Polyakov loop obtained using the linear term, in the one-parameter model (dashed line), the
two-parameter model (solid line), and in the four-parameter fit (dotted line). Right panel: the ’t Hooft loop divided by its perturbative
limit, 	

pert
0 ¼ 5:104. The plots of the one- and of the two-parameter model coincide.
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FIG. 7 (color online). We define Td by interpolating the
tangent to the inflection point of the pressure, which occurs at
T ¼ 1:14Td. The point where the tangent hits the T axis defines
the transition temperature: T


d � 0:94.
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FIG. 9 (color online). The Polyakov loop (left panel), and the ’t Hooft loop scaled by its perturbative value, 	
pert
0 ¼ 5:104 (right

panel). The plots are obtained utilizing the Vandermonde term �T2, in the one-parameter model (dashed line), the two-parameter
model (solid line), and in the four-parameter fit (dotted line). For the one- and the two-parameter model the curves essentially coincide.

P. BICUDO, ROBERT D. PISARSKI, AND E. SEEL PHYSICAL REVIEW D 88, 034007 (2013)

034007-12



temperature region. Notably, the width of the transition
range is widely independent of the details of the nonconst-
ant terms discussed in this work.

VI. INTERFACE TENSION

In this section we construct the interface tension for our
model, and present the results for the ’t Hooft loop. In
absence of dynamical quarks the SUðNÞ gauge theories
exhibit a global ZðNÞ symmetry associated with the center
of the gauge group. The confined vacuum is symmetric
under ZðNÞ transformations, whereas in the deconfined
phase the ZðNÞ symmetry is spontaneously broken. If the
system is infinite, then the spontaneous symmetry break-
down is related to the occurrence ofN degenerate vacua. In
a finite volume, however, bubbles of different vacua can
form, which are separated by domain walls. The dynamics
of these bubbles is governed by the action of the domain
walls, which is proportional to the interface tension.

The ZðNÞ interface tension gives the tunneling probabil-
ity between two different vacua of the system. Following
the discussion of Refs. [20,31], we construct the interface
by putting the system in a long tube of length 2L in the z
direction, and of length Lt in the other two spatial direc-
tions, with L � Lt � 
, and L ! 1. The volume in the
directions transverse to z is V tr ¼ 
Lt. To model the
interface tension we assume that the system is in a vacuum
state at both ends, but not in between. This forces a ZðNÞ
interface along the z direction. The action of the interface
is equal to the interface tension 	, times the transverse
volume, V tr

	 ¼ S

V tr

: (56)

To compute the interface tension one first needs to con-
struct the effective action S, which is given by the effective
potential plus a kinetic term

S ¼ V tr

Z
dz½T kinðqÞ þ VeffðqÞ�: (57)

At leading order, for q varying slowly on the scale of 1=T,
it is sufficient to use the kinetic term at tree level, which is
given by the classical action

T kinðqÞ¼1

2
trG2

��¼�2T2

g2

�
dq

dz

�
2
tr�2

3�
T3

2

�
dq

dz0
�
2
; (58)

where we introduce the rescaled coordinate z

z0 ¼ z

�
; � ¼ 2�

g
ffiffiffiffi
T

p : (59)

� is the parameter which controls the width of the domain
wall between the two vacua. Notice, at the classical level
the action reduces to only a kinetic term, since the classical
field of Eq. (4) commutes with itself. This means that
classically there is no difference between the two vacua.

Assuming that the vacua at the two ends of the box, z ¼
�L and z ¼ þL, correspond to the two minima, qi and qf,

the interface tension is connected to the shortest path
between qi and qf, which obeys the equation of motion

T3 d
2q

dz02 ¼
dVeffðqÞ

dq
; (60)

with the boundary conditions qð�LÞ ¼ qi and qðLÞ ¼ qf.

The corresponding energy density is obtained by multi-
plying Eq. (60) by dq=dz0, and integrating over z0

e ¼ T3

2

�
dq

dz0
�
2 � VeffðqÞ: (61)

For any solution to the equation of motion the energy is
conserved, de=dz0 ¼ 0. Therefore, any function qðzÞ
which minimizes the effective action with respect to the
corresponding boundary conditions satisfies

T3

2

�
dq

dz0
�
2 ¼ VeffðqÞ; dq

dz0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VeffðqÞ

T3

s
: (62)

Using the energy conservation in Eq. (62), the effective
action can be written as

S ¼ 2V tr

Z
dzVeffðqÞ

¼ �
ffiffiffiffiffiffi
T3

p
V tr

Z qf

qi

dq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VeffðqÞ

q

¼ 2�

g
TV tr

Z qf

qi

dq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VeffðqÞ

q
: (63)

The general form for the interface tension is then

	 ¼ 	0

ffiffiffiffiffiffi
T5

p

g
; (64)

where we define the dimensionless quantity

	0 ¼ 2�
Z qf

qi

dq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VeffðqÞ

T3

s
: (65)

It is interesting to notice that the factor 1=g2 present at the
classical level in Eq. (58) becomes 1=g. This is because the
effective action acquires a potential only at one-loop order.
Furthermore, from the definition of the rescaled length z0 in
Eq. (59) follows that the relevant distance scale in the

effective action is not 1=T but 1=g
ffiffiffiffi
T

p
. Therefore, if the

coupling constant is small, the effective action varies over
much larger distance scales than 1=T. This implies that in
weak coupling the variation of qðzÞ in space is slow and can
be ignored.

A. The order-order interface tension

Above the deconfinement temperature the theory can be
in one ZðNÞ vacuum, qi ¼ q1min ðTÞ, at one end of the box,

and in a degenerate but inequivalent vacuum, qf ¼
q2min ðTÞ, at the other end. Due to the Zð2Þ symmetry
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q2min ðTÞ ¼ 1� q1min ðTÞ. This is the order-order interface

tension, which is equivalent to a ’t Hooft loop in the
deconfined phase. The associated tunneling probability is
determined by the integral

	0 ¼ 2�
Z q2

min
ðTÞ

q1
min

ðTÞ
dq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VeffðqÞ

T3

s
; (66)

where VðqÞ is the difference between the effective potential
in q and at the minimum

VðqÞ ¼ Veffðq; TÞ � Veff½q1min ðTÞ�: (67)

Figures 8 and 9 show the plots for the ’t Hooft loop

scaled by its perturbative limit, 	pert
o ¼ 5:104. In the one-

parameter model the results are essentially the same when
using the linear term and the Vandermonde term. One can
understand this by remembering that in the one-parameter
model the minimum of the effective potential merges
rapidly from the confined vacuum, qmin ðTdÞ ¼ qc ¼ 0:5,
into the perturbative vacuum, qmin ðT>TdÞ�0. Therefore,
the two degenerate minima are approximately at
q1min ðTÞ � 0 and q2min ðTÞ � 1. Remarkably, unlike the

Polyakov loop, which becomes trivial in the one-parameter
model, for the ’t Hooft loop the details of the matrix
model are relevant in the entire semi-QGP for all models
addressed in this work.

VII. CONCLUSIONS AND OUTLOOK

In this work we utilize a matrix model to study the
deconfinement phase transition in pure SUð2Þ glue theory
in 2þ 1 dimensions. The basic variables of the model are
the eigenvalues of the Wilson line. First we construct the
effective potential as the sum of a perturbative and a non-
perturbative part. The perturbative potential is computed in
the presence of a constant background field for the vector
potential A0 � q. We find that to one-loop order this gives a
trilogarithm function of A0=T. Then, in order to model the
transition to deconfinement, we introduce additional con-
stant and nonconstant nonperturbative terms depending on
T, and on three parameters. For the nonconstant terms,
which are functions of q, we try three different Ansätze:
the linear term �T2Td2�½2 ln 2� �2ðq� 1

2Þ2�, and a

Vandermonde-like term with two different temperature
dependences, �T3��Td

�4� log ½2 sin ð�qÞ�, � ¼ 1, 2.

Imposing two constraints for the phase transition at
T ¼ Td leaves only one free parameter, which is deter-
mined by fitting the lattice pressure. The numerical results
for the pressure and for the interaction measure are pre-
sented and compared to the lattice data of Ref. [10].

The one-parameter model already gives good fits to the
lattice pressure and to the interaction measure at high and
low temperatures. But at intermediate temperatures the
results deviate from the lattice results. The two-parameter
model improves the agreement at intermediate tempera-
tures, and provides overall good fits to the pressure, and to

the interaction measure at all temperatures. However, in
both models there is a clear deviation from the lattice data
at the peak of the interaction measure, while their �2=dof
tests indicate that better fits are possible. Considering
different options to cure this deficiency, the possibility of
constructing a four-parameter fit is discussed. Regarding
possible uncertainties present in our analytical calcula-
tions, due to the applied approximations, as well as on
the lattice, due to glueballs and finite-volume effects, the
two-parameter model is extended by two additional free
parameters: one for Td, and one for the perturbative limit of
the pressure, c. The four-parameter model gives remark-
ably good fits to the lattice pressure and to the interaction
measure for all nonconstant terms discussed in this work. It
also reproduces the correct shape for the peak of the
conformal anomaly. Furthermore, in the four-parameter
fit there is a range in the deconfined phase, where the
condensate is nonzero, and the details of the matrix model
become relevant. The window of this transition region
extends up to �1:2Td. This is similar to the results for
the SUð2Þ matrix model obtained in d ¼ 3þ 1. We
remark, however, that this four-parameter fit should be
considered just as a possible approximation to a more
complete model which involves an underlying effective
theory for the confined phase. Notably, the one- and the
two-parameter model, as well as the four-parameter fit,
exhibits only a mild sensitivity to the details of the non-
constant terms.
Using the parameters determined by fitting the pressure,

we also show the plots for the Polyakov loop and for the
’t Hooft loop. In the one- and in the two-parameter model
the Polyakov loop grows sharply from 0 to 1 above the
critical temperature. This is because in our model the
Polyakov loop differs from one only when the condensate
for q is nonvanishing. In the one- and the two-parameter
model, however, the condensate effectively vanishes rap-
idly above Td. In the four-parameter fit the transition range
where the condensate is nonvanishing and where the
Polyakov loop varies from one extends up to �1:2Td.
The model can be improved in two obvious ways. First,

one can include perturbative corrections at next to leading
order, to �g2. This will presumably correct the deviation
from the lattice data at high temperature. Second, near Td it
is necessary to include an effective theory for the confined
phase. This will describe the increase in the energy density
near Td, and obviate our rather ad hoc prescription for
shifting Td by hand.
Summing up, the one- and the two-parameter matrix

models work reasonably well for the pressure and for the
interaction measure. They also provide reasonable predic-
tions for the ’t Hooft loop. The four-parameter fit agrees
perfectly with the lattice data even very close to Td.
Moreover, it provides reasonable results for the Polyakov
loop. This is closely related to the width of the transition
region, in which the model exhibits a nontrivial minimum.
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So far, the behavior of the Polyakov loop and of the
’t Hooft near Td in d ¼ 2þ 1 has not been computed on
the lattice. These results could provide important tests of
our model.
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