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We calculate the annihilation decay widths of spin-singlet heavy quarkonia hc, hb and �b into light

hadrons with both QCD and relativistic corrections at order Oð�sv
2Þ in nonrelativistic QCD. With

appropriate estimates for the long-distance matrix elements by using the potential model and operator

evolution method, we find that our predictions of these decay widths are consistent with recent

experimental measurements. We also find that the Oð�sv
2Þ corrections are small for b �b states but

substantial for c �c states. In particular, the negative contribution of Oð�sv
2Þ correction to the hc decay can

lower the decay width, as compared with previous predictions without the Oð�sv
2Þ correction, and thus

result in a good agreement with the recent BESIII measurement.
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I. INTRODUCTION

The inclusive annihilation decay of heavy quarkonium is
one of the important issues in heavy quarkonium physics. It
is widely accepted that the heavy quarkonium inclusive
annihilation decay can be described by nonrelativistic
QCD (NRQCD) factorization [1]. In this framework, the
long-distance effects that cannot be calculated perturba-
tively are described by the long-distance matrix elements
(LDMEs), which are classified in the order of v, the
relative velocity of heavy quarks in quarkonium. As v is
small in the heavy quarkonium system, we need to keep
only a finite number of LDMEs in the calculation.
Recently, more precise measurements for heavy quark-
onium decay widths and branching ratios became available
[2–12]. Thus, it is necessary to provide more precise
theoretical predictions to compare with the data.

For charmonium, the c �c system, the inclusive annihilation
hadronic decay (into gluons and light quark pairs) widths for
S-, P-, and D-wave states are all calculated up to Oð�sÞ in
NRQCD [13–19]. Particularly, for the S-wave state �c, the
Oð�sv

2Þ corrections have recently been carried out [20],
which means the short-distance coefficients of Oðv2Þ
LDMEs are calculated perturbatively to next-to-leading or-
der (NLO) in �s. After taking the Oð�sv

2Þ corrections into
account, the measurements of �c decay can be described
much better in NRQCD. For the P-wave state hc, the earlier
theoretical result atOð�sÞ predicts the hadronic decaywidth

of hc to be about 0.72MeV [17], which is a factor of 2 larger
than the latest measurements by BESIII, where the central
value of the total width is about 0.73 MeVand the hadronic
decay branching ratio is about 50% [5]. Thus it is necessary
to study higher order in v corrections to examine whether
the gap between theoretical predictions and experimental
measurements can be explained. It will be an interesting
test for the validity of NRQCD factorization for the char-
monium system.
For bottomonium, the b �b system, the value of v2 is about

0.1, which is much smaller than v2 � 0:3 for charmonium.

It is then expected that the v2 expansion should be better

for bottomonium, thus the study of bottomonium is

more solid to check NRQCD factorization. Recently, the

process hbð1PÞ ! �bð1SÞ� was measured by the Belle

Collaboration [8]. It was found that the �b decay width

was about 12.4 MeV, and the decay branching fraction of

B½hbð1PÞ ! �bð1SÞ�� ¼ 49:2� 5:7þ5:6
�3:3%. It is tempting

to try to explain these data in NRQCD.
In this paper, we will perform the Oð�sv

2Þ calculations
for the spin-singlet P-wave charmonium hc and bottomo-
nium hb, and also for the spin-singlet S-wave bottomonium
�b. We find these corrections are important to understand
the measured data. The rest of this paper is organized
as follows. In Sec. II we briefly introduce the NRQCD
factorization formalism in heavy quarkonium annihilation
decays. Then we describe some technical method in cal-
culating Oð�sv

2Þ short-distance coefficients in Sec. III.
The results for S-wave and P-wave states including real
and virtual contributions are presented in Sec. IV. With
these results and appropriate estimates of the LDMEs, we
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discuss the related phenomenology in Sec. V. In
Appendix A, we calculate the evolution of LDMEs at
Oð�sv

2Þ. In Appendix B, we describe our factorization
scheme choice and show how to eliminate higher twist
operators. Finally, we give a brief summary in Sec. VI.

II. NRQCD FACTORIZATION FOR
QUARKONIUM DECAY

In this section, we introduce the NRQCD factorization
formula for the rates of spin-singlet heavy quarkonium
(�c;b and hc;b) decays to light hadrons. The inclusive

annihilation decay width of heavy quarkonium can be
factorized by the following formula [1],

�ðHÞ ¼ X
n

2 Imfnð��Þ
mdn�4

Q

hHjOnð��ÞjHi; (1)

where Imfnð��Þ is the short-distance (SD) coefficient
that can be perturbatively calculated using the full QCD
Lagrangian. The LDMEs hHjOnð��ÞjHi involve nonper-
turbative effects and are classified by the relative velocity v
between Q and �Q, according to power counting in
Refs. [1,21–24].

The NRQCD Lagrangian can be derived by integrating
out the degrees of freedom of order mQ, the mass of the

heavy quark, from the QCD Lagrangian, which gives

LNRQCD ¼ Llight þLheavy þ �L: (2)

The heavy part of the Lagrangian describes the motions of
(anti-)heavy quark in spacetime and is given by

Lheavy ¼ c y
�
iDt þ D2

2mQ

�
c þ �y

�
iDt � D2

2mQ

�
�; (3)

where c ð�Þ denotes the Pauli spinor field that annihilates
(creates) a heavy (anti-)quark, and DtðDÞ is the time
(space) component of the gauge-covariant derivative D�.
The light piece of the Lagrangian reads

Llight ¼ � 1

2
TrG��G�� þ

X
nf

�q i 6Dq; (4)

where G�� is the gluon field strength tensor, q is the Dirac
spinor field of light quarks, and nf is the number of light

flavors. The bilinear Lagrangian term which contains the
order v2 correction is

�Lbilinear¼ c1
8m3

Q

c yðD2Þ2c þ c2
8m2

Q

c yðD �gE�gE �DÞc

þ c3
8m2

Q

c yðiD�gE�gE� iDÞ ��c

þ c4
2mQ

c yðgB ��Þc þcharge conjugate terms;

(5)

where Ei ¼ G0i and Bi ¼ 1
2 �

ijkGjk are the electric and

magnetic components of the gluon field strength tensor
G��, and ci ¼ 1þOð�sÞ, i ¼ 1, 2, 3, 4 are the dimen-
sionless coefficients corresponding to each operator.
In order to describe the annihilation decay of

quarkonium, a set of local four-fermion operatorsOi which
appear in Eq. (1) are needed. For example, the operator

c y��yc can annihilate a Q �Q pair in the 1S½1�0 configura-

tion. In our case, for the Oð�sv
2Þ calculation of spin-

singlet quarkonium decay, the power counting rules [1]
give the following seven operators and LDMEs in Eq. (1):
for S-wave quarkonium,

Oð1S½1�0 Þ ¼ c y��yc ; (6a)

P ð1S½1�0 Þ ¼ 1

2
c y��y

�
� iD

$

2

�
2
c þ H:c:; (6b)

for P-wave quarkonium,

Oð1S½8�0 Þ¼ c yTa��yTac ; (7a)

P ð1S½8�0 Þ¼1

2
c yTa��yTa

�
�iD

$

2

�
2
c þH:c:; (7b)

Oð1P½1�
1 Þ¼ c y

�
�iD

$

2

�
� ��y

�
�iD

$

2

�
c ; (7c)

P ð1P½1�
1 Þ¼1

2
c y

�
�iD

$

2

�
� ��y

�
�iD

$

2

�
3
c þH:c:;

(7d)

T 1�8ð1S0;1P1Þ¼
1

2
c ygE� ��yD

$
c þH:c:; (7e)

and

hOð2Sþ1L½1;8�
J ÞiH � hHjOð2Sþ1L½1;8�

J ÞjHi; (8a)

hP ð2Sþ1L½1;8�
J ÞiH � hHjP ð2Sþ1L½1;8�

J ÞjHi: (8b)

Note that, choosing different power counting rules, one
may get a different set of operators. For example, in the
power counting rule of Ref. [24], mQ and v are homoge-

neous, which gives that the chromomagnetic field gB
scales as ðmQvÞ2. While that field scales as m2

Qv
4 in

Ref. [1], which is further suppressed by v2. As a result,
many operators considered in Ref. [24] disappear in our
calculation, leaving the above seven. These seven matrix
elements are all independent with each other, i.e. they
cannot be eliminated by field redefinition or Poincare
invariance [24].
Using the seven operators, we give the explicit form of

Eq. (1) for 1S0 and
1P1 states,
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�ðHð1S0Þ ! LHÞ ¼ Fð1S½1�0 Þ
m2

Q

hOð1S½1�0 Þi1S0 þ
Gð1S½1�0 Þ
m4

Q

hP ð1S½1�0 Þi1S0 ; (9a)

�ðHð1P1Þ ! LHÞ ¼ Fð1S½8�0 Þ
m2

Q

hOð1S½8�0 Þi1P
1
þGð1S½8�0 Þ

m4
Q

hP ð1S½8�0 Þi1P
1
þFð1P½1�

1 Þ
m4

Q

hOð1P½1�
1 Þi1P

1
þGð1P½1�

1 Þ
m6

Q

hP ð1P½1�
1 Þi1P

1
: (9b)

Note that we omit a term of
Tð1S

0
;1P

1
Þ

m5
Q

hT 1�8ð1S0; 1P1Þi1P1
in

Eq. (9b) to simplify our theoretical framework, although

the LDME hT 1�8ð1S0; 1P1Þi1P1
is of the same order in v as

hP ð1P½1�
1 Þi1P

1
. There are two reasons that lead us to do this

simplification. Numerically, this contribution is small,

which is because Tð1S0; 1P1Þ vanishes at leading order

(LO) in �s due to the charge parity conservation.
Theoretically, and more importantly, this contribution is
finite, that is, no infrared (IR) poles are needed to cancel
between this channel and the other four channels in
Eq. (9b). It is then impossible to distinguish this finite
contribution from the renormalization scheme or factori-
zation scheme choice of other operators, such as

hOð1P½1�
1 Þi1P1

or hOð1S½8�0 Þi1P1
. Therefore, by ignoring this

operator in the hadronic decay width, it is equivalent that
we choose a specific renormalization scheme or factoriza-
tion scheme for other operators. In Appendix B, we will
give an explicit definition of our factorization scheme to

absorb the term
Tð1S

0
;1P

1
Þ

m5
Q

hT 1�8ð1S0; 1P1Þi1P1
. Although our

scheme is in principle distinguished from the MS scheme,
as we will discuss in Appendix B, there is no difference
between these two schemes for our purpose in this work.

As a result, we will pretend to use the MS scheme in the
following.

Through the above factorization formula, one can match
full QCD with NRQCD to get the short-distance (SD)
coefficients F and G perturbatively. The skeleton of the
matching procedure is given by

ImMðQ �Q ! Q �QÞjpert QCD
¼ X

n

2 Imfnð��Þ
mdn�4

Q

hQ �QjOnð��ÞjQ �QijNRQCD: (10)

The determination of SD coefficients will be discussed in
detail in the next section.

III. DETAILS IN FULL QCD CALCULATION

A. Kinematics

Wework in the rest frame of the heavy quarkonium. It is
customary to decompose the momenta of Q and �Q as

pQ ¼ 1

2
Pþ q; (11a)

p �Q ¼ 1

2
P� q; (11b)

where P is the total momentum and q is half of the relative
momentum, which satisfies the relation P � q ¼ 0. The
explicit four-vector forms of P and q in the rest frame are

P ¼ ð2Eq; 0Þ; (12a)

q ¼ ð0;qÞ; (12b)

with Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q þ q2
q

.

The treatment of final state phase space integration at
the Oð�sv

2Þ level is slightly different from ordinary cal-
culations (i.e., leading order of v calculation). To make it
simpler, we use the following rescaling transformation for
all external momenta [20,25],

P ! P0 Eq

mQ

; (13a)

kf ! k0f
Eq

mQ

; (13b)

but keep the relative momentum q and loop integral
momentum l unchanged. Once we take such a trick, the
q2 dependence in both phase space and current factor
[i.e., 1=ð2MÞ where M is the quarkonium mass] can be
absorbed into the amplitude, then we can safely take q ! 0
in these terms and only expand q, q0 at the amplitude level,
where q0 is half of the relative momentum between theQ �Q
pair on the complex conjugate side. (Note that jqj ¼ jq0j,
but their direction does not need to be the same, so in
general q � q0). It should be kept in mind that this trick
can only work in the case where all final state partons
are massless (i.e., gluons and light quarks), because, in the
case of massive partons, the on-shell relation does not
hold under rescaling, which will break the QCD gauge
invariance.

B. Covariant projection method in D dimension

Instead of using the matching method directly, we use an
equivalent but more efficient method, i.e., the covariant
projection method, to calculate the imaginary part of the
SD coefficients in Eqs. (9a) and (9b). In order to get spin-
singlet Q �Q decay amplitudes, we take the following spin
and color projectors onto Q �Q quark lines [26]:

�0 ¼ 1

2
ffiffiffi
2

p ðEq þmQÞ
� 6P
2
þ 6qþmQ

�

� ð6Pþ 2EqÞ�5ð�6Pþ 2EqÞ
8E2

q

� 6P
2
� 6q�mQ

�
; (14)
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and

C1 ¼ 1ffiffiffiffiffiffi
Nc

p ; (15a)

C8 ¼
ffiffiffi
2

p
Ta: (15b)

We do Taylor expansion of the projected amplitudes in
powers of q to the required order,

MðqÞ¼Mð0Þþ@MðqÞ
@q�

��������q¼0
q�þ 1

2!

@2MðqÞ
@q�@q	

��������q¼0
q�q	

þ 1

3!

@3MðqÞ
@q�@q	@q�

��������q¼0
q�q	q�þ��� ; (16)

and then make the replacement,

q�q	! q2

D�1
��	; (17a)

q�q
0
	!

q �q0

D�1
��	; (17b)

q�q	q�q
0

!

q2q �q0

Dþ1
ð��	��
þ����	
þ��
��	Þ;

(17c)

to project them to definite states, where

��	 ¼ �g�	 þ P0
�P

0
	

4m2
Q

; (18)

with P0 the rescaled heavy quarkonium momentum.
For example, the third derivative term of M convolutes
with the first derivative term of My, giving the squared
amplitudes term,

1

3!

@3MðqÞ
@q�@q	@q�

��������q¼0

@Myðq0Þ
@q0


��������q0¼0
q�q	q�q0


! 1

3!

q2q � q0

Dþ 1
ð��	��
 þ����	
 þ��
��	Þ

� @3MðqÞ
@q�@q	@q�

��������q¼0

@Myðq0Þ
@q0


��������q0¼0
; (19)

which contributes to the SD coefficient of Gð1P½1�
1 Þ in

Eq. (9b).

IV. PERTURBATIVE QCD RESULTS OF
SHORT-DISTANCE COEFFICIENTS

We generate Feynman diagrams and amplitudes by
FEYNARTS [27,28], and then calculate the squared ampli-

tudes by self-written MATHEMATICA codes. The phase
space integrals are done analytically using the method
presented in Ref. [16]. Ultraviolet (UV) and IR divergences
are both regularized by dimensional regularization. The
renormalizations for heavy quark mass mQ, heavy quark

field c Q, light quark field c q, and gluon field A� are in the

on-mass-shell scheme (OS), and that for the QCD coupling

constant gs is in the MS scheme,

�ZOS
mQ

¼ �3CF

�s

4�
N�

�
1

�UV
þ 4

3

�
; (20a)

�ZOS
2 ¼ �CF

�s

4�
N�

�
1

�UV
þ 2

�IR
þ 4

�
; (20b)

�ZOS
2l ¼ �CF

�s

4�
N�

�
1

�UV
� 1

�IR

�
; (20c)

�ZOS
3 ¼ �s

4�
N�

�
ð	0 � 2CAÞ

�
1

�UV
� 1

�IR

��
; (20d)

�ZMS
g ¼ �	0

2

�s

4�
N�

�
1

�UV
þ ln

m2
Q

�2
r

�
; (20e)

where N�ðmQÞ ¼ ð4��2
r

m2
Q

Þ��ð1þ �Þ is an overall factor, and

�r is the renormalization scale. 	0 ¼ 11
3 CA � 4

3TFnf is the

one-loop coefficient of the 	 function, nf is the active

quark flavors, which we set to be 3 for charmonium and
4 for bottomonium.

A. Short-distance coefficients of S-wave
quarkonium hadronic decay

Leading order in �s calculations give the Born-level
decay width and its relativistic correction, respectively, as

�Bornð1S½1�0 ! ggÞ ¼ 4

3
ð4��sÞ2 �

4�
r

m2
Q

�ð2Þð1� �Þð1� 2�Þ

�
hOð1S½1�0 ÞiBorn1S0

2Nc

; (21a)

�ðv2Þ
Bornð1S½1�0 ! ggÞ ¼ � 2ð2� �Þ

3� 2�

q2

m2
Q

�Bornð1S½1�0 ! ggÞ;

(21b)

where �ð2Þ ¼ 1
8� ð4�M2Þ� �ð1��Þ

�ð2�2�Þ is the total two-body

phase space in D dimension, and M ¼ 2mQ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

m2
Q

q
is the

quarkonium mass including the relativistic correction. The
two Born diagrams are illustrated in Fig. 1.
The next-to-leading order calculations include real and

virtual corrections. For S-wave Fock states (i.e., 1S½1�0 and
1S½8�0 ), UV divergences will be canceled by counterterm

diagrams, and most IR divergences will be canceled
between real and virtual corrections, leaving some residue
divergences at Oðv2Þ. The cancellation of such residue
divergences will be presented in the next section by
calculating NRQCD LDMEs at the one-loop level. The
contribution of virtual plus counterterm corrections is

FIG. 1. Born-level Feynman diagrams for 1S½1�0 , 1S½8�0 ! gg.
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�Virtualð1S½1�0 ! ggÞ ¼ 3�s

�
�Bornð1S½1�0 ! ggÞf�ðmQÞ

��
� 1

�2
� 1

6
	0

1

�
þ 1

36

�
�6	0 ln

�4m2
Q

�2
r

�
þ 19�2 � 44

��

þ q2

m2
Q

�
4

3

1

�2
� 4nf � 97

27

1

�
� 1

324

�
�72	0 ln

�4m2
Q

�2
r

�
þ 8nf þ 267�2 � 280

���
; (22)

where f�ðmQÞ ¼ ð��2
r

m2
Q

Þ��ð1þ �Þ. Some selected Feynman diagrams are shown in Fig. 2.
The real correction contains two sets, where one set is the final states with ggg and the other one with q �qg. Some typical

Feynman diagrams are shown in Fig. 3 and 4 and the contributions to decay width are

�ð1S½1�0 !gggÞ¼3�s

�
�Bornð1S½1�0 !ggÞf�ðmQÞ

��
1

�2
þ11

6

1

�
þ 1

72
ð724�69�2Þ

�
þ q2

m2
Q

�
�4

3

1

�2
�3

�
�437�42�2

27

��
; (23a)

�ð1S½1�0 !q �qgÞ¼nf
2

�s

�
�Bornð1S½1�0 !ggÞ f�ðmQÞ

�ð1þ�Þ�ð1��Þ
�
�2

3

1

�
�16

9
þ q2

m2
Q

�
8

9

1

�
þ86

27

��
: (23b)

Combining Eqs. (21)–(23), we obtain the hadronic decay width with both QCD radiative and relativistic corrections at
NLO of 1S0 heavy quarkonium,

�QCDð1S0 ! LHÞ ¼ �Bornð1S½1�0 ! ggÞ
��
1þ �s

�
f�ðmQÞ 1

72

�
�36	0 ln

�4m2
Q

�2
r

�
� 64nf � 93�2 þ 1908

��

� 4

3

q2

m2
Q

�
1þ �s

�
f�ðmQÞ

�
� 4

3

1

�
þ 1

144

�
�72	0 ln

�4m2
Q

�2
r

�
� 164nf � 237�2 þ 4964

����
: (24)

We note that our results agree with the previous work for
Oð�sv

2Þ correction [20] and Oð�sÞ correction [16,19].
Comparing our results with Ref. [20], a slight difference
of two-body phase space�2 between them can be found. In
Ref. [20] �2 is defined so as to remove the q2 dependence

into the coefficients, so our individual virtual and real parts,
Eqs. (22) and (23), look different from the results in
Ref. [20], but essentially they are equivalent. The total
NLO result Eq. (24) is explicitly the same, independent of
the definition of �2. The correct repetition of the hadronic
decay SD coefficients of 1S0 heavy quarkonium enables us

FIG. 2. Virtual correction Feynman diagrams for 1S½1�0 , 1S½8�0 ! gg. The crossed diagrams have been suppressed.

FIG. 4. Real correction Feynman diagrams for 1S½1�0 , 1S½8�0 !
q �qg. The crossed diagrams have been suppressed.

FIG. 3. Real correction Feynman diagrams for 1S½1�0 , 1S½8�0 ,
1P½1�

1 ! ggg. The crossed diagrams have been suppressed. The

second diagram vanishes in 1P½1�
1 .
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to extend discussion from charm quark system to bottom
quark system (i.e. �b) and also partly checks our codes
when dealing with P-wave heavy quarkonium.

B. Short-distance coefficients of P-wave
quarkonium hadronic decay

The procedure in calculating the 1P1 heavy quarkonium

is similar to 1S0, although more complicated. Additional

simplification can be taken by imposing C (charge) parity
conservation of QCD to constrain Feynman diagrams.
A straightforward result is that C parity conservation pro-

hibits 1P½1�
1 Fock state, which has C ¼ �1, to decay to two

gluons, whose C ¼ þ1, whether they are real or virtual.

By tedious but straightforward calculation, we get the
results as follows.
At the Born level,

�Bornð1S½8�0 ! ggÞ ¼ 5

12
ð4��sÞ2 �

4�
r

m2
Q

�ð2Þð1� �Þð1� 2�Þ

� hOð1S½8�0 ÞiBorn1P
1

; (25a)

�ðv2Þ
Bornð1S½8�0 ! ggÞ ¼ � 2ð2� �Þ

3� 2�

q2

m2
Q

�Bornð1S½8�0 ! ggÞ:

(25b)

For NLO corrections,

�Virtualð1S½8�0 ! ggÞ ¼ 3�s

�
�Bornð1S½8�0 ! ggÞf�ðmQÞ

��
� 1

�2
þ nf � 21

9

1

�
þ 1

72

�
�12	0 ln

�4m2
Q

�2
r

�
þ 29�2 � 16

��

þ q2

m2
Q

�
4

3

1

�2
� 4nf � 115

27

1

�
� 1

628

�
�144	0 ln

�4m2
Q

�2
r

�
þ 16nf þ 345�2 � 992

���
; (26)

�ð1S½8�0 ! gggÞ ¼ 3�s

�
�Bornð1S½8�0 ! ggÞf�ðmQÞ

��
1

�2
þ 7

3

1

�
� �2 þ 104

9

�
þ q2

m2
Q

�
� 4

3

1

�2
� 4

�
� 554� 45�2

27

��
; (27)

�ð1S½8�0 ! q �qgÞ ¼ nf
2

�s

�
�Bornð1S½8�0 ! ggÞ f�ðmQÞ

�ð1þ �Þ�ð1� �Þ
�
� 2

3

1

�
� 16

9
þ q2

m2
Q

�
8

9

1

�
þ 86

27

��
; (28)

�ð1P½1�
1 ! gggÞ ¼ 40�3

s

27
f�ðmQÞð8��2Þ

��
� 1

�
þ 7�2

24
� 5

3

�
þ q2

m2
Q

�
29

15

1

�
þ 4216� 555�2

900

�� hOð1P½1�
1 ÞiBorn1P

1

2Ncm
4
Q

: (29)

Summing over the above results, we get the total hadronic decay width,

�QCDð1P1 ! LHÞ ¼ �Bornð1S½8�0 ! ggÞ
��
1þ �s

�
f�ðmQÞ

�
� 1

2
	0 ln

�4m2
Q

�2
r

�
� 8

9
nf � 43�2

24
þ 34

�

� 4

3

q2

m2
Q

�
1þ �s

�
f�ðmQÞ

�
� 7

12

1

�
þ 1

288

�
�144	0 ln

�4m2
Q

�2
r

�
� 328nf � 735�2 þ 12304

����

þ 40�3
s

27
f�ðmQÞð8��2Þ

��
� 1

�
þ 7�2

24
� 5

3

�
þ q2

m2
Q

�
29

15

1

�
þ 4216� 555�2

900

�� hOð1P½1�
1 ÞiBorn1P1

2Ncm
4
Q

: (30)

C. Evaluating NRQCD LDMEs and
matching full QCD results

In Eqs. (24) and (30), there exist explicit IR divergences.
To cancel these divergences, we need to evaluate LDMEs
at the loop level. By replacing all the Born LDMEs appear-
ing in Eqs. (24) and (30) by one-loop LDMEs, all IR
divergences should be canceled and the final results will
be infrared-safe quantities.

The self-energy contributions that connect Born
LDMEs to their corresponding relativistic ones are first
calculated in Ref. [1]. The intersecting diagrams that

describe the E1 transition between 1S½8�0 and 1P½1�
1 states

atOð�sv
2Þ in this work are new. The detailed calculation is

presented in Appendix A. Here we give the relevant results

in dimensional regularization with MS renormalization
scheme,
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hOð1S½1�0 ÞiBorn1S0
! hOð1S½1�0 Þið��Þ

1S0

�
1� 4

3

q2

m2
Q

4�s

3�
f�ðmQÞ

�
1

�
� ln

�
�2

�

4m2
Q

���
; (31a)

hOð1S½8�0 ÞiBorn1P1

! hOð1S½8�0 Þið��Þ
1P1

�
1� 4

3

q2

m2
Q

7�s

12�
f�ðmQÞ

�
1

�
� ln

�
�2

�

4m2
Q

���
þ 16�s

9�
f�ðmQÞ

��
1

�
� ln

�
�2

�

4m2
Q

��

þ 3q2

5m2
Q

�
� 1

�
þ ln

�
�2

�

4m2
Q

��� hOð1P½1�
1 ÞiBorn1P

1

2Ncm
2
Q

; (31b)

hP ð1S½8�0 ÞiBorn1P1

! hP ð1S½8�0 Þið��Þ
1P1

þ 16�s

9�
f�ðmQÞ

�
1

�
� ln

�
�2

�

4m2
Q

�� hP ð1P½1�
1 ÞiBorn1P

1

2Ncm
2
Q

; (31c)

where �� is the factorization scale. Substituting them into Eqs. (24) and (30), and considering the relation

hP ð1S½1�0 ÞiBorn1S0
¼ q2hOð1S½1�0 ÞiBorn1S0

; (32a)

hP ð1S½8�0 ÞiBorn1P
1

¼ q2hOð1S½8�0 ÞiBorn1P
1

; (32b)

hP ð1P½1�
1 ÞiBorn1P

1

¼ q2hOð1P½1�
1 ÞiBorn1P

1

; (32c)

we get the SD coefficients for heavy quarkonium hadronic decay of S-wave and P-wave states by matching full QCD and
NRQCD,

Fð1S½1�0 Þ ¼ 4��2
s

9

�
1� �s

�

1

72

�
36	0 ln

�4m2
Q

�2
r

�
þ 64nf þ 93�2 � 1908

��
; (33a)

Gð1S½1�0 Þ ¼ � 4

3

4��2
s

9

�
1� �s

�

1

144

�
192 ln

�
�2

�

4m2
Q

�
þ 72	0 ln

�4m2
Q

�2
r

�
þ 164nf þ 237�2 � 4964

��
; (33b)

Fð1S½8�0 Þ ¼ 5��2
s

6

�
1� �s

�

1

72

�
36	0 ln

�4m2
Q

�2
r

�
þ 64nf þ 129�2 � 2448

��
; (33c)

Gð1S½8�0 Þ ¼ � 4

3

5��2
s

6

�
1� �s

�

1

288

�
168 ln

�
�2

�

4m2
Q

�
þ 144	0 ln

�4m2
Q

�2
r

�
þ 328nf þ 735�2 � 12304

��
; (33d)

Fð1P½1�
1 Þ ¼ 5�3

s

486

�
7ð�2 � 16Þ � 24 ln

�
�2

�

4m2
Q

��
; (33e)

Gð1P½1�
1 Þ ¼ �3

s

3645

�
1740 ln

�
�2

�

4m2
Q

�
� 555�2 þ 9236

�
; (33f)

where F’s and G’s are defined in Eqs. (9a) and (9b).

The SD coefficients of 1S½1�0 agree with those in

Refs. [1,16,19,20,25], and that of 1S½8�0 and 1P½1�
1 at leading

order in v2 also agree with the previous results in Ref. [16].

The relativistic corrections Gð1S½8�0 Þ and Gð1P½1�
1 Þ are

primarily new results in this work. Based on these results,
we will analyze the decay of 1S0 and 1P1 heavy quark-

onium into light hadrons.

V. PHENOMENOLOGICAL DISCUSSIONS

A. Estimating NRQCD LDMEs

To get the numerical result, we also need to know the
value of LDMEs. For 1S0 quarkonium there are two

LDMEs, and for 1P1 there are four. In Ref. [20] the
LDMEs of �c are determined by combining the Cornell

potential [29] with one experimental measurement,
�LHð�cÞ or ���ð�cÞ [30], and then one can predict other
quantities. In the present work, since there are not enough
experimental inputs to determine all involved LDMEs, we
will estimate them by other methods.
For �b, the situation is similar to Ref. [20], but lacking

the experimental input of the decay width to two photons

���ð�bÞ. In this case we will determine hOð1S½1�0 Þi�b
from

the potential model. Here we use the Buchmüller-Tye
(B-T) potential model [31] and Cornell (Corn) potential
model [29] results as input, which give [32,33]

hOð1S½1�0 ÞiB-T�b
¼ Nc

2�
jRB-T

S ð0Þj2 ¼ 3:093 GeV3; (34a)

hOð1S½1�0 ÞiCorn�b
¼ hOð3S½1�1 ÞiCorn�ð1SÞ ¼ 3:07þ0:21

�0:19 GeV3: (34b)
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In Eq. (34b) we use the heavy quark spin symmetry
(HQSS) to relate LDMEs of �b with that of �ð1SÞ. As
the B-T model and Cornell model give almost the same
result, we will only use the B-T model in the following.

In order to determine hP ð1S½1�0 Þi�b
, we define [20,25]

hv2i�b
� hP ð1S½1�0 Þi�b

m2
bhOð1S½1�0 Þi�b

: (35)

Although hv2i�b
cannot be understood as the expectation

value of v2 in the potential model, it can be estimated from
the Gremm-Kapustin relation [34]

hv2iG-K�b
¼ m�b

� 2mpole

mpole

: (36)

Choosing mpole ¼ 4:6 GeV for b quark and m�b
¼

9:391 GeV [30], we get hv2i�b
¼ 0:042, which is close

to the potential model estimated value v2 � 0:05–0:1.
Combining these results, we get the value of redefined
LDMEs in the B-T model as

h �Oð1S½1�0 Þi�b
� hOð1S½1�0 Þi�b

2Ncm
2
b

¼ 24:36þ1:09
�1:03 MeV;

h �P ð1S½1�0 Þi�b
� hP ð1S½1�0 Þi�b

2Ncm
4
b

¼ hv2i�b
h �Oð1S½1�0 Þi�b

¼ 1:01þ0:05
�0:04 MeV; (37)

where the uncertainties are introduced by choosing
mb ¼ 4:6� 0:1 GeV.

For hc, we need to determine four LDMEs hOð1P½1�
1 Þihc ,

hOð1S½8�0 Þihc , hP ð1P½1�
1 Þihc , and hP ð1S½8�0 Þihc . hOð1P½1�

1 Þihc is
determined by the B-T potential model [32] and

hP ð1P½1�
1 Þihc�hv2ihcm2

chOð1P½1�
1 Þihc�hv2i�c

m2
chOð1P½1�

1 Þihc ;
(38)

where hv2i�c
¼ 0:228 is taken from Ref. [20]. Here we

have tentatively assumed hv2ihc � hv2i�c
. The remaining

two-color octet LDMEs are determined by the operator
evolution method (OEM) [1,34,35]. From Eq. (A10) we get
the evolution equations,

�2
�

dhOð1S½8�0 Þi
d�2

�

¼ � 7�s

9�

hP ð1S½8�0 Þi
m2

Q

þ 16�s

9�

hOð1P½1�
1 Þi

2Ncm
2
Q

� 16�s

15�

hP ð1P½1�
1 Þi

2Ncm
4
Q

;

�2
�

dhP ð1S½8�0 Þi
d�2

�

¼ 16�s

9�

hP ð1P½1�
1 Þi

2Ncm
2
Q

: (39)

Knowing the values of hOð1P½1�
1 Þi and hP ð1P½1�

1 Þi, the
above differential equations will determine the values of

hOð1S½8�0 Þi and hP ð1S½8�0 Þi by evolving from initial values at

�� ¼ ��0
. Using the two-loop running of �s, we get

hOð1S½8�0 Þið��Þ ¼ 64

9	0

A
hOð1P½1�

1 Þi
2Ncm

2
Q

� 64

3	0

A

�
1

5
þ 14

27	0

A

�

� hP ð1P½1�
1 Þi

2Ncm
4
Q

� 28

9	0

A
hP ð1S½8�0 Þið��0

Þ

m2
Q

þ hOð1S½8�0 Þið��0
Þ;

hP ð1S½8�0 Þið��Þ ¼ 64

9	0

A
hP ð1P½1�

1 Þi
2Ncm

2
Q

þ hP ð1S½8�0 Þið��0
Þ; (40)

where A � ln �sð��0Þ
�sð��Þ � ln 1þ�sð��0Þ	1=	0

1þ�sð��Þ	1=	0
with	1¼ð17C2

A�
nfTRð10CAþ6CFÞÞ=ð6�Þ. Choosing ��0

¼ mcv� 0:8�
0:2 GeV, the OEM assumes that the values of hOð1S½8�0 Þi
and hP ð1S½8�0 Þi evaluated at �� � 2mc can be estimated

by the evolution term only, i.e., neglecting initial values
at ��0

. Setting mc to be its pole mass, 1:5� 0:1 GeV,

LDMEs at �� ¼ 2mc are

h �Oð1P½1�
1 Þihc �

hOð1P½1�
1 Þihc

2Ncm
4
c

¼ 3:537þ1:124
�0:805 MeV;

h �P ð1P½1�
1 Þihc �

hP ð1P½1�
1 Þihc

2Ncm
6
c

¼ 0:806þ0:256
�0:183 MeV;

h �Oð1S½8�0 Þihc �
hOð1S½8�0 Þihc

m2
c

¼ 2:040þ1:208
�0:704 MeV;

h �P ð1S½8�0 Þihc �
hP ð1S½8�0 Þihc

m4
c

¼ 0:561þ0:350
�0:197 MeV:

(41)

The errors are estimated by varying mc and ��0
, among

which, the uncertainty of ��0
dominates the errors for the

two S-wave LDMEs.
Using the same method we can determine the LDMEs

for hb,

h �Oð1P½1�
1 Þihb ¼ 0:7555þ0:0694

�0:0623 MeV;

h �P ð1P½1�
1 Þihb ¼ 0:0314þ0:0029

�0:0026 MeV;

h �Oð1S½8�0 Þihb ¼ 0:3959þ0:0611
�0:0503 MeV;

h �P ð1S½8�0 Þihb ¼ 0:0169þ0:0026
�0:0022 MeV:

(42)

Here we choose mb ¼ 4:6� 0:1 GeV, ��0
¼ mbv�

1:5� 0:2 GeV, and set hv2ihb � hv2i�b
, similar to the

assumption for hc.
Note that another method to determine the value of the

color-octet LDME hOð1S½8�0 Þihc at leading order in v is

provided in Ref. [36], where LDMEs are further factorized
by potential-NRQCD factorization, and they are then
expressed in terms of gluonic vacuum condensation factor
Eð�Þ. In Ref. [36] they gave both its evolution equation and
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the initial value at the scale �0 ¼ 1 GeV. We evolve this
factor from the initial scale to 2mc and find that the value of

h �Oð1S½8�0 Þihc through this method is about 3.5MeV,which is a

little larger than our result. However, the derivation is
reasonable sincewe include the relativistic corrections which
essentially decrease the value at leading order in v [see the
second term at the right- hand of the first line in Eq. (40)].

B. �ð�b ! LHÞ
We now discuss the hadronic decay width of �b based

on the values of LDMEs given above. Let’s first fix both the
renormalization scale �r and factorization scale �� to be
2mb and consider the uncertainty introduced by LDMEs.
For this choice of scales, the decay width can be written as

�ð�b ! LHÞ ¼ 427:4þ5:9
�5:7 � 10�3h �Oð1S½1�0 Þi�b

� 641:4þ8:8
�9:2 � 10�3h �P ð1S½1�0 Þi�b

; (43)

where errors are estimated by varying mb ¼ 4:6�
0:1 GeV, and LDMEs h �Oð1S½1�0 i�b

and h �P ð1S½1�0 iÞ�b
are

given by Eq. (37). As the coefficients for h �Oð1S½1�0 i�b
and

h �P ð1S½1�0 iÞ�b
are at the same order, the smallness of

h �P ð1S½1�0 iÞ�b
means the relativistic correction can only

change the total decay width by about 5%, which is not
important as expected. Considering also the correlation
between errors, we get the hadronic decay width of �b

with the choice of �r ¼ �� ¼ 2mb,

�ð�b ! LHÞ ¼ 9:76þ0:58
�0:54 MeV: (44)

We find the �� dependence is much weaker than the �r

dependence, thus we only discuss the �r dependence here.
By varying the �r, we get the �r dependence of hadronic
decay width in Fig. 5. It is clear that the NLO calculation
significantly reduces the �r dependence. Varying �r from
mb to 2mb, we get the decay width �ð�b ! LHÞ �
�totalð�bÞ � 9:5–12 MeV. This value is consistent with
the experimental data �expð�bÞ ¼ 10:8þ4:0þ4:5

�3:7�2:0 MeV [8].

C. �ðhc ! LHÞ
The numerical values of the SD coefficients for hadronic

decay width of hc are

�ðhc ! LHÞ ¼ 328:7þ26:1
�21:8 � 10�3h �Oð1S½8�0 Þihc

� 39:6þ3:1
�3:8 � 10�3h �Oð1P½1�

1 Þihc
� 446:0þ29:7

�35:5 � 10�3h �P ð1S½8�0 Þihc
þ 92:4þ8:8

�7:3 � 10�3h �P ð1P½1�
1 Þihc ; (45)

where both the renormalization scale �r and factorization
scale�� are set to be 2mc. The redefined LDMEs and their
values are given in Eq. (41). With these results we then
investigate the effects of the QCD corrections and relativ-
istic corrections.
Let us first analyze the partial widths of the four chan-

nels in Table I. Among the four, the hOð1S½8�0 Þihc channel is
positive and it dominates the total width. Contributions of

the hOð1P½1�
1 Þihc channel and hP ð1S½8�0 Þihc channel are nega-

tive and compatible, although the latter one is suppressed

by v2. This is because, as we mentioned before, the 1P½1�
1

Fock state cannot couple with two gluons, and its SD
coefficient is suppressed by �s. It is the balance between
�s and v

2 that results in the two partial decay widths being

compatible. The last term, hP ð1P½1�
1 Þihc channel, is sup-

pressed by both �s and v2, and it gives the smallest
contribution. Summing up the first two channels we

get the decay width at leading order in v, �ðv0Þ ¼
0:53þ0:40

�0:23 MeV, which is consistent with the previous

work [17]. However, we will show later that the experi-
mental data favor a smaller value. Including also the
relativistic corrections, the total decay width will decrease
by about 1=3. Next we list the partial widths order by order
in �s and v in Table II. We find the QCD correction, �1

sv
0

contribution, is as large as the leading order contribution.
Detailed study reveals that the large correction mainly

comes from the 1S½8�0 channel. In Ref. [37], the authors

5 6 7 8 9

8

10

12

14

r GeV

b
L

H
M

eV

NLO

NLO

LO

FIG. 5. �r dependence of �ð�b ! LHÞ. LO represents values
without QCD and relativistic corrections, NLO* includes QCD
corrections but only at leading order in v, and NLO takes into
account all contributions up to Oð�sv

2Þ. The LDMEs are taken
from the B-T potential model and the Gremm-Kapustin relation.
Here we set �� ¼ 2mb, and mb ¼ 4:6 GeV.

TABLE I. �ðhc ! LHÞ expressed with the contributions of each LDME.

hOð1S½8�0 Þihc hOð1P½1�
1 Þihc hP ð1S½8�0 Þihc hP ð1P½1�

1 Þihc Total

�ð2Sþ1L½c�
J ! LHÞ (MeV) 0:67þ0:43

�0:25 �0:14þ0:04
�0:06 �0:25þ0:10

�0:17 0:07þ0:03
�0:02 0:35þ0:25

�0:15
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pointed out that the large correction for the 1S½1�0 channel,

similar to the 1S½8�0 channel, is due to the existence of

renormalons, and they also proposed a resummation
method to deal with the renormalons. Nevertheless, resum-

mation of this kind for the 1S½8�0 channel is beyond the

scope of this work, and we will leave it as a future study. In
our work, as both the �0

sv
2 contribution and the �1

sv
2

contribution are negative, they can balance the enhance-

ment by QCD correction of the 1S½8�0 channel. Moreover,

we find our complete NLO correction improves the nor-
malization and factorization scale dependence compared
with the NLO* results, which are shown in Fig. 6.

In order to compare with the experiment data [5], we
also need the E1 transition decay width�ðhc ! �c þ �Þ up
to the v2 order, because this is another important decay
channel of hc. Reference [17] estimated the transition
decay widths but only at leading order in v by using
HQSS between the spin-singlet and triplet P-wave
charmonia,

�ðhc!��cÞ¼ðEhc
� Þ3
9

X2
J¼0

ð2Jþ1Þ�ð�cJ!�J=c Þ
ðE�cJ

� Þ3 : (46)

And the obtained E1 width is 615� 29 keV using the PDG
data [30]. This result is consistent with the potential model

calculations at leading order in v [38]. However, if the v2

corrections are considered, HQSS will not hold any more.
Reference [38] showed that the width of hc ! ��c can
be reduced from 650 to 385 keV by relativistic effects.
Subsequent studies using various potential models
[39–41] also observed similar relativistic effects, resulting
in E1 transition width at the range of 354–323 keV. In this
paper we choose the value �ðhc ! ��cÞ ¼ 385 keV from
Ref. [38].
Combining the LH and ��c decay channels of hc,

we get the predictions for total decay width �thðhcÞ ¼
0:74þ0:25

�0:15 MeV and the branching ratioBthðhc!�cþ�Þ¼
52�13%. Our predictions are consistent with the
new experimental data �expðhcÞ ¼ 0:73þ0:45

�0:28 MeV and

Bexpðhc ! �c þ �Þ ¼ 54:3� 6:7� 5:2% measured by
the BESIII Collaboration [5]. However, if we ignore the
relativistic corrections to the hadronic decaywidth, the total
width will increase to 0.92 MeV and the E1 transition
branching ratio will be decreased to 42%. Therefore, it is
evident that the relativistic corrections play an important
role in the hc decay and they can lead to a better agreement
between theoretical prediction and the experimental data.

D. �ðhb ! LHÞ
Similar to hc, we get the decay width for hb,

�ðhb ! LHÞ ¼ 145:9þ2:1�2:0 � 10�3h �Oð1S½8�0 Þihb
� ð15:3� 0:3Þ � 10�3h �Oð1P½1�

1 Þihb
� ð196:0� 3:0Þ � 10�3h �P ð1S½8�0 Þihb
þ ð35:8� 0:6Þ � 10�3h �P ð1P½1�

1 Þihb : (47)

TABLE II. �ðhc ! LHÞ expressed with contributions at
various orders of �s and v.

�0
sv

0 �1
sv

0 �0
sv

2 �1
sv

2 Total

�ðhc ! LHÞ
(MeV)

0:32þ0:21
�0:12 0:21þ0:20

�0:11 �0:12þ0:04
�0:08 �0:06þ0:04

�0:08 0:35þ0:25
�0:15

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

r GeV

L
O

h c
L

H
M

eV

LO

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
0.0
0.2
0.4
0.6
0.8
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FIG. 6. �r and �� dependence of �ðhc ! LHÞ. The upper plots are for �r and lower ones for ��. From left to right the plots are
shown for LO, NLO*, and NLO, respectively, where NLO* includes Oð�sÞ but excludes Oð�sv

2Þ corrections.
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The �r and �� dependence are plotted in Fig. 7, where
again we find the complete NLO correction largely reduces
the scale dependence. From the partial decay width of each
contribution in Tables III and IV, it is clear that the v2

correction effect is much smaller for hb than that for
hc, while QCD correction is still important. The E1 tran-
sition decay width for hb is evaluated in the NR [42], GI
[41], and screened-potential models [43], and the results
are listed in Table V. Compared with the experiment
data Bexpðhbð1PÞ!�bð1SÞ�Þ¼49:2�5:7þ5:6

�3:3% [8], our

prediction using the NR model fits it very well, and
predictions using the other three models are also within
the error band.

VI. SUMMARY

We have calculated order �sv
2 corrections for the anni-

hilation hadronic decay widths of spin-singlet heavy quar-
konia �b, hc, and hb within the framework of NRQCD.
The short-distance coefficients are calculated by covariant
projection method, and the LDMEs are estimated by using
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FIG. 7. �r and�� dependence of �ðhb ! LHÞ. From left to right the three plots represent LO, NLO,* and NLO, respectively, where
NLO* includes Oð�sÞ but excludes Oð�sv

2Þ corrections.

TABLE III. �ðhb ! LHÞ expressed with contributions of each LDME.

hOð1S½8�0 Þihb hOð1P½1�
1 Þihb hP ð1S½8�0 Þihb hP ð1P½1�

1 Þihb Total

�ð2Sþ1L½c�
J ! LHÞ (keV) 57:78þ9:42

�7:79 �11:58þ1:13
�1:29 �3:32þ0:45

�0:54 1:12þ0:12
�0:11 44:00þ8:23

�6:73

TABLE IV. �ðhb ! LHÞ expressed with various orders of �s and v.

�0
sv

0 �1
sv

0 �0
sv

2 �1
sv

2 Total

�ðhb ! LHÞ (keV) 33:41þ5:39
�4:46 12:78þ3:39

�2:72 �1:91þ0:26
�0:31 �0:29þ0:15

�0:19 44:00þ8:23
�6:73

TABLE V. �ðhb ! �b þ �Þ and Bðhb ! �b þ �Þ in NR, GI, and screened-potential models
(SNR0 is calculated using the zeroth-order wave functions and SNR1, using the first-order
relativistically corrected wave functions).

NR GI SNR0 SNR1

�ðhb ! �b þ �Þ (keV) 41.8 37.0 55.8 36.3

�totalðhbÞ (keV) 85.8 81.0 100.0 80.3

Bðhb ! �b þ �Þ 48.7% 45.7% 55.9% 45.2%
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the potential model and operator evolution methods. For
the hc decay, we find that Oðv2Þ and Oð�sv

2Þ corrections
contribute large and negative values to the decay width,
which substantially reduce the decay width calculated in
the leading order in v2. It shows that relativistic corrections
play an important role in hadronic decays of the c �c system,
and can improve the theoretical results as compared
with experimental data. Our calculated total decay
width �thðhcÞ ¼ 0:74þ0:25

�0:15 MeV and branching ratio

Bthðhc ! �c þ �Þ ¼ 52� 13% are consistent with the
measurements by BESIII [5]. For �b and hb decays,
we have calculated their hadronic decay widths and found
that �ð�b ! LHÞ ¼ 9:76þ0:58

�0:54 MeV and �ðhb ! LHÞ ¼
44:00þ8:23

�6:73 keV. We conclude that for the b �b system

Oð�sv
2Þ corrections are not as important as in the c �c

system. We have also compared our theoretical results
with experimental data [5,8] and found that in general
our calculations are consistent with data within theoretical
and experimental uncertainties.
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APPENDIX A: EVOLUTION OF NRQCD MATRIX
ELEMENTS Oð1S½8�

0 Þ AND P ð1S½8�
0 Þ AT Oð�sv

2Þ
In order to cancel the infrared divergence in short-

distance coefficients of the 1P½1�
1 Fock state, we need to

evaluate the NRQCD four-fermion operators Oð1S½8�0 Þ and
P ð1S½8�0 Þ to sufficient order.

The Oð�sÞ correction diagrams include the following
three sets: self-energy diagrams which are related to
self-energy corrections of external heavy (anti-)quarks;
Coulomb diagrams, where the gluon is connected with
both initial or final heavy quark and antiquark; and the
intersecting diagrams,where the gluon is related to an initial
heavy (anti-)quark and a final (anti-)quark. The results of
the first two sets have been given in Refs. [20,44], and here
we only calculate the intersecting diagrams that relate
to the transition from S wave to P wave.
Using the Lagrangian shown in Eqs. (3) and (5), we can

write the amplitudes of diagrams in Fig. 8 as (other crossed
diagrams are not shown)

Iaþbþc ¼ ig2s
Z dDl

ð2�ÞD
q � q0 � ðq � lÞðq0 � lÞ=l2

m2
Qðl20 � l2 þ i�Þ

1� q2=2m2
Q � q02=2m2

Q

½q0 � l0 � ðq�lÞ2
2mQ

þ i��½q00 � l0 � ðq0�lÞ2
2mQ

þ i��
; (A1a)

Id ¼ ig2s
Z dDl

ð2�ÞD
�1

½q0 � l0 � ðq�lÞ2
2mQ

þ i��½q00 � l0 � ðq0�lÞ2
2mQ

þ i��
; (A1b)

where q ¼ ðq0; qÞ is the heavy quark external momentum and l ¼ ðl0; lÞ is the loop integral momentum. Since there is no
pole on the upper half of the l0’s complex plane, the second integral Id yields zero. Contour integrating the first integral
over l0 around the l0 ¼ jlj � i� pole, we find

Iaþbþc ¼ g2s
Z dD�1l

ð2�ÞD�1

q � q0 � ðq � lÞðq0 � lÞ=l2
2m2

Qjlj
1� q2=2m2

Q � q02=2m2
Q

½�jlj � l2

2mQ
þ q�l

mQ
þ i��½�jlj � l2

2mQ
þ q0�l

mQ
þ i�� : (A2)

Before further performing the integration, we will expand the relative momentum in the denominator [45]. Assuming that
q � l=mQ, q

0 � l=mQ, and l2=mQ are far smaller than jlj, we get the required expansion,

FIG. 8. The one-loop NRQCD diagrams which involve the Feynman rules up to Oðv2Þ. The Coulomb interactions and the cross
diagrams have been suppressed.
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Iaþbþc ¼ g2s
2m2

Q

Z dD�1l

ð2�ÞD�1

q � q0 � ðq � lÞðq0 � lÞ=l2
jlj3 ð1� q2=2m2

Q � q02=2m2
QÞ
�
1þ

�
q � l
jljmQ

�
2 þ

�
q0 � l
jljmQ

�
2
�

þ ðhigh order or irrelevant expansionsÞ: (A3)

This integral can be reduced by taking the following substitution,

lilj ! 1

D� 1
�ijl2; (A4a)

liljlklr ! 1

ðD� 1ÞðDþ 1Þ ð�
ij�kr þ �ik�jr þ �ir�kjÞl4; (A4b)

where �ij is the D� 1 dimensional Euclidean delta symbol. The integral yields

Iaþbþc ¼ ��ðbÞ
s

2m2
Q

q � q0
�2

D� 2

D� 1

�
1�D� 1

Dþ 1

1

2m2
Q

ðq2 þ q02Þ
��

1

�UV
� 1

�IR

�
: (A5)

Summing up all the diagrams we get

I ¼ 2�ðbÞ
s

�m2
Q

D� 2

D� 1
q � q0

�
1

�UV
� 1

�IR

��
1�D� 1

Dþ 1

1

2m2
Q

ðq2 þ q02Þ
��

CF

1 	 1

2Nc

þ BFT
a 	 Ta

�
Oð1S½8�0 Þ: (A6)

Recalling the definitions of Oð1P½1�
1 Þ and P ð1P½1�

1 Þ, we can write

hHjOð1S½8�0 ÞjHi¼ hHjOð1S½8�0 ÞjHiBornþ2ðD�2Þ�ðbÞ
s

ðD�1Þ�m2
Q

�
1

�UV
� 1

�IR

��
CF

hHjOð1P½1�
1 ÞjHi

2Nc

� D�1

ðDþ1Þm2
Q

CF

hHjP ð1P½1�
1 ÞjHi

2Nc

�
;

(A7a)

hHjP ð1S½8�0 ÞjHi¼ hHjP ð1S½8�0 ÞjHiBornþ2ðD�2Þ�ðbÞ
s

ðD�1Þ�m2
Q

�
1

�UV
� 1

�IR

�
CF

hHjP ð1P½1�
1 ÞÞjHi

2Nc

; (A7b)

where we have omitted terms for Oð1P½8�
1 Þ and P ð1P½8�

1 Þ, since they are irrelevant in our work. The presence
of UV divergence indicates that the LDMEs need renormalization. The relevant counterterm in the MS scheme can be
chosen as

hHjOð1S½8�0 ÞjHi¼��2�
�

�
hHjOð1S½8�0 ÞjHið��Þþ 4�s

3�m2
Q

�
1

�UV
þ ln4���E

��
CF

hHjOð1P½1�
1 ÞjHi

2Nc

� 3

5m2
Q

CF

hHjP ð1P½1�
1 ÞjHi

2Nc

��
;

(A8a)

hHjP ð1S½8�0 ÞjHi¼��2�
�

�
hHjP ð1S½8�0 ÞjHið��Þþ 4�s

3�m2
Q

�
1

�UV
þ ln4���E

�
CF

hHjP ð1P½1�
1 ÞjHi

2Nc

�
; (A8b)

where �� is the NRQCD renormalization scale. Combining Eqs. (A7) and (A8), we find

hHjOð1S½8�0 ÞjHiBorn ¼ ��2�
� hHjOð1S½8�0 ÞjHið��Þ þ 4�s

3�m2
Q

�
1

�IR
þ ln 4�� �E

��
�

��

�
2�

�
�
CF

hHjOð1P½1�
1 ÞjHi

2Nc

� 3

5m2
Q

CF

hHjP ð1P½1�
1 ÞjHi

2Nc

�
; (A9a)

hHjP ð1S½8�0 ÞjHiBorn ¼ ��2�
� hHjP ð1S½8�0 ÞjHið��Þ þ 4�s

3�m2
Q

�
1

�IR
þ ln 4�� �E

��
�

��

�
2�
CF

hHjP ð1P½1�
1 ÞjHi

2Nc

: (A9b)

Considering also the self-energy contribution [see Eq. (B14) in Ref. [1]], we get the total loop corrections of NRQCD
LDMEs,
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hHjOð1S½8�0 ÞjHiBorn ¼ ��2�
� hHjOð1S½8�0 ÞjHið��Þ þ 4�s

3�m2
Q

�
1

�IR
þ ln 4�� �E

��
�

��

�
2�

�
�
CF

hHjOð1P½1�
1 ÞjHi

2Nc

� 3

5m2
Q

CF

hHjP ð1P½1�
1 ÞjHi

2Nc

� N2
c � 2

4Nc

hHjP ð1S½8�0 ÞÞjHi
�
; (A10a)

hHjP ð1S½8�0 ÞjHiBorn ¼ ��2�
� hHjP ð1S½8�0 ÞjHið��Þ þ 4�s

3�m2
Q

�
1

�IR
þ ln 4�� �E

��
�

��

�
2�
CF

hHjP ð1P½1�
1 ÞjHi

2Nc

: (A10b)

APPENDIX B: SCHEME CHOICE AND ABSORPTION OF hT 1�8ð1S0;
1P1Þi1P1

In this appendix, we define the factorization scheme that we use in this work, and we will show that there is no
contribution from hT 1�8ð1S0; 1P1Þi1P1

in our scheme. Let’s begin with the factorization formula for �ðHð1P1Þ ! LHÞ in
the MS scheme,

�ðHð1P1Þ ! LHÞ ¼ Fð1S½8�0 ÞMS

m2
Q

hOð1S½8�0 ÞiMS
1P

1

þGð1S½8�0 ÞMS

m4
Q

hP ð1S½8�0 ÞiMS
1P

1

þ Fð1P½1�
1 ÞMS

m4
Q

hOð1P½1�
1 ÞiMS

1P
1

þGð1P½1�
1 ÞMS

m6
Q

hP ð1P½1�
1 ÞiMS

1P
1

þ Tð1S0; 1P1ÞMS

m5
Q

hT 1�8ð1S0; 1P1ÞiMS
1P

1

; (B1)

where an explicit MS is marked for any LDME and SD coefficient. There are many scheme choices to eliminate the last
term in Eq. (B1). Our choice is to define the factorization scheme of hOð1S½8�0 Þi1P

1
by the following relation,

�ðHð1P1Þ ! LHÞ ¼ Fð1S½8�0 ÞMS

m2
Q

hOð1S½8�0 ÞiLT1P1

þGð1S½8�0 ÞMS

m4
Q

hP ð1S½8�0 ÞiMS
1P

1

þ Fð1P½1�
1 ÞMS

m4
Q

hOð1P½1�
1 ÞiMS

1P
1

þGð1P½1�
1 ÞMS

m6
Q

hP ð1P½1�
1 ÞiMS

1P
1

; (B2)

where, to distinguish from the MS scheme, we denote it as the leading twist scheme (LT). Note that the relation in
Eq. (B2) should be understood to be valid only at �s order, that is, Tð1S0; 1P1ÞLT can be nonzero at higher order in�s. From
Eqs. (B1) and (B2), we get the scheme transformation relation,

hOð1S½8�0 ÞiLT1P
1

� hOð1S½8�0 ÞiMS
1P1

¼ Tð1S0; 1P1ÞMS

m3
QFð1S½8�0 ÞMS

hT 1�8ð1S0; 1P1ÞiMS
1P1

: (B3)

According to the �s expansion of SD coefficients,

Fð1S½8�0 ÞMS ¼ Fð1S½8�0 Þð0Þ þ �sFð1S½8�0 Þð1ÞMS þOð�2
sÞ; (B4a)

Tð1S0; 1P1ÞMS ¼ �sTð1S0; 1P1Þð1ÞMS þOð�2
sÞ; (B4b)

we rewrite the difference as

hOð1S½8�0 ÞiLT1P
1

� hOð1S½8�0 ÞiMS
1P

1

¼ �s

Tð1S0; 1P1Þð1ÞMS

m3
QFð1S½8�0 Þð0Þ hT 1�8ð1S0; 1P1ÞiMS

1P
1

þOð�2
sÞ: (B5)

It is clear that the difference is suppressed by Oð�sv
2Þ,

Eq. (B2) does not determine the scheme choice of
hT 1�8ð1S0; 1P1Þi1P1

, and one can still choose MS or other
schemes. The reason is that the scheme dependence
of hT 1�8ð1S0; 1P1Þi1P1

is at higher order in �s, which
is irrelevant to our calculation. Note that the relation
between our scheme and the MS scheme here is similar
to the relation between the DIS scheme and MS scheme

definition for the F2 structure function of virtual � deep
inelastic scattering (see Refs. [46,47], for example).
An important consequence of Eq. (B5) is that the evo-

lution equations for hOð1S½8�0 Þi1P
1
in both the MS and LT

scheme at Oð�sÞ are exactly the same, which follows from

the fact that the factorization scale dependence of both

Tð1S0; 1P1Þð1ÞMS and hT 1�8ð1S0; 1P1ÞiMS
1P

1

are at Oð�sÞ.
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Therefore, although we calculate evolution equations for

LDMEs in theMS scheme in Appendix A, these results are
unchanged for the LT scheme.

Especially, the estimated hOð1S½8�0 Þi1P
1
in Sec. VA using

OEM is the same for both the LT scheme and MS scheme.
This seems to be questionable at first glance, as Eq. (B5)
may imply its value is different under the two different

schemes. However, remember that the OEM picks
up only the evolution terms in the LDMEs and
disregards all other terms. Although Eq. (B5) tells us

that hOð1S½8�0 Þi1P1
is different under the two schemes, the

difference only changes the initial value, which is ignored
in the OEM. As a result, in the OEM this difference is
ignored.
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