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We study the charge parity (CP) violation of the universal seesaw model, especially its quark sector.

The model is based on SUð2ÞL � SUð2ÞR �Uð1ÞY0 . In order to count the number of parameters in the

quark sector, we use the degree of freedom of the weak basis transformation. For the Nð3Þ-generation
model, the number of CP violating phases in the quark sector is identified as 3N2 � 3N þ 1 (19). We also

construct 19 CP violating weak basis invariants of Yukawa coupling matrices and SUð2Þ singlet quark
mass matrices in the three-generation universal seesaw model. The quark interaction terms induced by

neutral currents are given as an exact formula. Both the charged current and the neutral current are

expressed in terms of the mass basis by finding the transformations from the weak basis to the mass basis.

Finally, we calculate the mixing matrix element approximately, assuming that the SUð2ÞR breaking scale

vR is much larger than the electroweak breaking scale vL.
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I. INTRODUCTION

The universal seesaw mechanism [1–7] based on
SUð3ÞC � SUð2ÞR � SUð2ÞL �Uð1ÞY0 gauge symmetry
is considered for fermion mass hierarchy with
SUð2ÞR � SUð2ÞL isosinglet fermion masses. The ordinary
fermion and the singlet fermion mix at the tree level after
spontaneous symmetry breaking SUð3ÞC � SUð2ÞR �
SUð2ÞL �Uð1ÞY0 ! SUð3ÞC �Uð1ÞEM. The universal see-
sawmechanism provides us a clue for the mystery: why are
ordinary fermions much lighter than the electroweak scale
except for top quark [8,9]? When this mechanism works,
all of the strength of the Yukawa couplings can be taken
order of unity. The doublet quark and singlet quark are
transformed by SUð3ÞC � SUð2ÞR � SUð2ÞL �Uð1ÞY0 as
follows:

qL �
�
3; 1; 2;

1

6

�
; qR �

�
3; 2; 1;

1

6

�
;

U�
�
3; 1; 1;

2

3

�
; D�

�
3; 1; 1;� 1

3

�
;

where Q ¼ T3
R þ T3

L þ Y0.
A sophisticated discussion of CP violation using weak

basis (WB) invariants is given by Jarlskog in Ref. [10] and
by Bernabeu et al. in Ref. [11]. See also Ref. [12] for a
review and Ref. [13] for WB invariants in the framework of
the left-right symmetric model.

The gauge boson mass matrix in the universal seesaw
model is identical to the left-right symmetric model studied
in Ref. [14], except that the left-right symmetric model
includes the SUð2ÞR � SUð2ÞL bidoublet Higgs. One can
find the gauge boson mass matrix in the present model by
taking the limit where the vacuum expectation value of the
bidoublet Higgs vanishes. The possibility that the universal

seesaw mechanism resolves the strong CP problem
is explained by Babu and Mohapatra in Ref. [15].
Embedding the universal seesaw in the grand unified the-
ory scenario is discussed by Cho in Ref. [16], Koide in
Ref. [17], and Mohapatra in Ref. [18].
In this paper, we focus on the CP violation of the quark

sector. Phenomenological aspects of the CP violation have
been studied in Refs. [19,20]. In the literature [20], CP
violation of the present model is studied with an additional
assumption: left-right symmetry. We study the CP viola-
tion and the flavor mixing as general as possible so that one
can study the phenomenology of the present model to the
full extent. The recent study on mixings of the vectorlike
quarks can be also found in Ref. [21].
Our paper is organized as follows. We count the number

of the parameters in the quark sector in Sec. II. In Sec. III,
we construct WB invariants of the quark sector. In Sec. IV,
we propose a parametrization for the three-generation
model by minimizing the numbers of the parameters with
weak basis transformation (WBT). The relation between
the WB invariant and CP violation parameters in the
specific parametrization is discussed. The exact formulas
for the mixing matrices are obtained in the mass basis in
Sec. V. Finally, in Sec. VI, we carry out the diagonalization
of 6� 6mass matrices with some approximation and write
down the mixing matrix elements. Section VII is devoted
to the summary.

II. COUNTING THE NUMBER OF REAL AND
IMAGINARY PARAMETERS IN THE QUARK

SECTOR OF THE UNIVERSAL SEESAW MODEL

In this section, by using the freedom of WBT, we
minimize the number of real and imaginary parts of
Yukawa couplings and singlet quark mass matrices. The
number of imaginary parts which are left after WBT cor-
responds to the number of physical CP violating phases.

*morozumi@hiroshima-u.ac.jp
†umeeda@theo.phys.sci.hiroshima-u.ac.jp

PHYSICAL REVIEW D 88, 033019 (2013)

1550-7998=2013=88(3)=033019(16) 033019-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.033019


We also verify the number of CP violating phases by
counting the independent number of CP invariant condi-
tions in a specific weak basis.

A. WBT of the universal seesaw model

We assume the singlet quark generation number is N,
which is identical to an ordinary quark generation number.
In this model, WBTs on singlet and doublet quarks are
given by

U0
R ¼ VUR

UR; U0
L ¼ VUL

UL; (1)

D0
R ¼ VDR

DR; D0
L ¼ VDL

DL; (2)

q0R ¼ VRqR; q0L ¼ VLqL; (3)

where URðLÞ, DRðLÞ, and qRðLÞ denote the right-handed

(left-handed) uptype singlet quark, downtype singlet
quark, and ordinary doublet quark, respectively. Below,
the matrices with superscript 0 imply the matrices obtained
by changing the WB. Yukawa matrices and mass matrices
of the singlet quarks are transformed as

M0
U ¼ Vy

UL
MUVUR

; M0
D ¼ Vy

DL
MDVDR

;

y0uL ¼ Vy
LyuLVUR

; y0uR ¼ Vy
RyuRVUL

;

y0dL ¼ Vy
LydLVDR

; y0dR ¼ Vy
RydRVDL

;

(4)

where MUðDÞ denotes the N � N uptype (downtype) mass

matrix of a singlet quark, and y is the N � N Yukawa
coupling constant matrix. One chooses the weak basis,
and M0

UðDÞ is given by a real diagonal matrix by carrying

out the suitable biunitary transformation as the WBT.
In the basis, both of the uptype and downtype singlet
mass matrices have N real parameters. Suppose that we
find the biunitary transformation, which diagonalizes the
mass matrices as

~Vy
UL
MU

~VUR
¼ DU; (5)

~Vy
DL
MD

~VDR
¼ DD; (6)

where DU and DD are real diagonal matrices. We note that
real diagonal matrices are invariant under the similarity
transformation PU and PD,

Py
UDUPU ¼ DU; Py

DDDPD ¼ DD; (7)

where PU and PD are given by

PU ¼

eia1

eia2

. .
.

eiaN

0
BBBBBB@

1
CCCCCCA;

PD ¼

eib1

eib2

. .
.

eibN

0
BBBBBB@

1
CCCCCCA:

(8)

Unitary matrices which diagonalize the singlet quark mass
matrices with biunitary transformation are not fixed
uniquely. One can define the new unitary matrices,

VUR
¼ ~VUR

PU; VUL
¼ ~VUL

PU;

VDR
¼ ~VDR

PD; VDL
¼ ~VDL

PD:
(9)

By using VUR
, VUL

, VDR
, and VDL

as WBT, one can also

diagonalize the singlet quark mass matrices. Next we con-
sider the weak basis transformation on Yukawa matrices,

Vy
LyuLVUR

¼ Py
Uð ~Vy

LyuL ~VUR
ÞPU; (10)

Vy
RyuRVUL

¼ Py
Uð ~Vy

RyuR ~VUL
ÞPU; (11)

Vy
LydLVDR

¼ Py
Uð ~Vy

LydL ~VDR
ÞPD; (12)

Vy
RydRVDL

¼ Py
Uð ~Vy

RydR ~VDL
ÞPD: (13)

In Eqs. (10)–(13), we extract the diagonal phase matrix PU

from VL and VR,

VL ¼ ~VLPU; VR ¼ ~VRPU: (14)

We can choose unitary matrix ~VL so that y
0
�uL

¼ ~Vy
LyuL ~VUR

is a lower triangular matrix with real diagonal elements.

One can also choose ~VR so that y0�uR
¼ ~Vy

RyuR ~VUL
is a

lower triangular matrix with real diagonal elements.
Therefore, Eqs. (10) and (11) are rewritten as

Vy
LyuLVUR

¼ Py
Uy

0
�uL

PU ¼ y�uL
;

Vy
RyuRVUL

¼ Py
Uy

0
�uR

PU ¼ y�uR
:

(15)

In the triangular form of the Yukawa couplings y0�uLðRÞ
, one

reduces 1
2NðN � 1Þ real parameters and 1

2NðN þ 1Þ imagi-

nary parameters from N � N complex Yukawa matrices
yuL and yuR, respectively. Therefore, each triangular matrix
includes 1

2NðN þ 1Þ real parts and 1
2NðN � 1Þ imaginary

parts. With PU, one can remove the N � 1 imaginary parts
in y0�uL

. Therefore, with the WBT in Eq. (15), y�uL
includes

1
2NðN þ 1Þ real parts and 1

2 ðN � 1ÞðN � 2Þ imaginary

parts, while y�uR
includes 1

2NðN þ 1Þ real parts and
1
2NðN � 1Þ imaginary parts.
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Next we count the number of the parameters in ydL and
ydR. We can use the similarity transformationPD. Then one
removes N imaginary parts in ydL. Therefore, ydL includes
N2 real parts and N2 � N imaginary parts. Since we have
already used all the freedom of WBT, N2 real parts and N2

imaginary parts are left in ydR.
We summarize the number of degrees of freedom in the

quark sector of the universal seesaw model for N gener-
ations. Table I shows the number of real and imaginary
parameters in the matrices obtained by the WBT. Table II
shows the number of real and imaginary parameters for
specific generation numbers N ¼ 1–4.

B. CP invariant condition

Let us prove the previous derivation of the number ofCP
violating phases with an alternative argument. To count the
numbers of nontrivial CP violating phases, one can study
the numbers of independent CP invariant conditions. The
CP invariant conditions are then

M0
U ¼ M�

U; M0
D ¼ M�

D; (16)

y0uL ¼ y�uL; y0uR ¼ y�uR; (17)

y0dL ¼ y�dL; y0dR ¼ y�dR: (18)

We consider these conditions in a specific weak basis. In
the basis, the singlet quark mass matrices are given by real
diagonal matrices DU and DD. Yukawa coupling matrices
yuL and yuR are given by the lower triangular matrices y0�uL
and y0�uR. Note that the diagonal elements of the triangular

matrix are real. In this basis, CP invariant conditions for
singlet quark mass matrices are written as

Vy
UL
DUVUR

¼ DU; Vy
DL
DDVDR

¼ DD: (19)

To satisfy the conditions given above, Vs are determined as

VUL
¼ VUR

¼ PU; VDL
¼ VDR

¼ PD: (20)

The CP invariant conditions for Yukawa matrices are then

Py
Uy

0
�uL

PU ¼ y0��uL
; (21)

Py
Uy

0
�uR

PU ¼ y0��uR
; (22)

Py
UydLPD ¼ y�dL; (23)

Py
UydRPD ¼ y�dR: (24)

These four relations are also written in terms of the argu-
ment of their matrix element,

arg ðy0�uLij
Þ ¼ arg ðy0�uRij

Þ ¼ ai � aj
2

; (25)

arg ðydLijÞ ¼ arg ðydRijÞ ¼
ai � bj

2
: (26)

We count the nontrivial CP invariant conditions which
cannot be satisfied by adjusting the phases in PU and PD.
Since one can choose the N � 1 phase difference, ai � a1
(i ¼ 1� N) as arg ðy�uLi1Þ ¼ ai�a1

2 , the N � 1 CP

invariant conditions are automatically satisfied.
Therefore, the number of the nontrivial conditions in

Eq. (25) is ðN � 1Þ2 ¼ 2� NðN�1Þ
2 � ðN � 1Þ. As for the

conditions in Eq. (26), bi is chosen as bi ¼ ai �
2 arg ðydLiiÞ so that the N condition of Eq. (26) is satisfied.
Therefore, there are 2N2 � N nontrivial conditions. Then,
in total, we find 3N2 � 3N þ 1 CP invariant conditions,
which are identical to the number of CP violating phases.
It also agrees with the number of the imaginary parts in the
Yukawa matrices obtained with the WBT (see Table I).

III. CP VIOLATING WEAK BASIS INVARIANTS IN
THE THREE-GENERATION MODEL

In this section, we derive theCP violatingWB invariants
for a three-generation model. The use of the WB invariants
including SUð2Þ singlet quarks within the standard model
gauge group is discussed in Ref. [22]. We define the
following Hermitian matrices in order to write down the
WB invariants for CP violation in the universal seesaw
model:

TABLE I. The number of parameters included in quark sector matrices for the N generations
universal seesaw model in a specific WB.

MU MD y�uL y�uR ydL ydR Sum.

Re. N N 1
2NðN þ 1Þ 1

2NðN þ 1Þ N2 N2 3NðN þ 1Þ
Im. 0 0 1

2 ðN � 1ÞðN � 2Þ 1
2NðN � 1Þ NðN � 1Þ N2 3N2 � 3N þ 1

TABLE II. The number of parameters for the specific genera-
tion number N.

N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4

Re. 6 18 36 60

Im. 1 7 19 37
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HU ¼ MUMy
U; HD ¼ MDMy

D; HuL ¼ yuLy
y
uL;

HuR ¼ yuRy
y
uR; HdL ¼ ydLy

y
dL; HdR ¼ ydRy

y
dR;

hU ¼ My
UMU; hD ¼ My

DMD; huL ¼ yyuLyuL;

huR ¼ yyuRyuR; hdL ¼ yydLydL; hdR ¼ yydRydR:

(27)

In the case that the singlet quark generation number is 3,
identical to the ordinary quark generation number, the 19
CP violating WB invariants in the quark sector of the
universal seesaw model are then

I1 ¼ Imtr½huL; hU�3; (28)

I2 ¼ ImtrðMUhUhuLM
y
UhuRÞ; (29)

I3 ¼ ImtrðMUh2UhuLM
y
UhuRÞ; (30)

I4 ¼ ImtrðMUh2UhuLHUM
y
UhuRÞ; (31)

I5 ¼ Imtr½hdL; hD�3; (32)

I6 ¼ ImtrðMDhDhdLM
y
DhdRÞ; (33)

I7 ¼ ImtrðMDh2DhdLM
y
DhdRÞ; (34)

I8 ¼ ImtrðMDh2DhdLHDM
y
DhdRÞ; (35)

I9 ¼ Imtr½HuL;HdL�3; (36)

I10 ¼ Imtr½HuR;HdR�3; (37)

I11 ¼ ImtrðMUyyuLydLM
y
DyydRyuRÞ; (38)

I12 ¼ ImtrðMUyyuLydLM
y
DHDy

y
dRyuRÞ; (39)

I13 ¼ ImtrðMUyyuLydLM
y
DH2

Dy
y
dRyuRÞ; (40)

I14 ¼ ImtrðMUhUy
y
uLydLM

y
DyydRyuRÞ; (41)

I15 ¼ ImtrðMUhUy
y
uLydLM

y
DHDy

y
dRyuRÞ; (42)

I16 ¼ ImtrðMUhUy
y
uLydLM

y
DH2

Dy
y
dRyuRÞ; (43)

I17 ¼ ImtrðMUhUy
y
uLydLM

y
DyydRyuRÞ; (44)

I18 ¼ ImtrðMUhUy
y
uLydLM

y
DHDy

y
dRyuRÞ; (45)

I19 ¼ ImtrðMUhUy
y
uLydLM

y
DH2

Dy
y
dRyuRÞ: (46)

We briefly explain how to construct the CP violating WB
invariants in Eqs. (28)–(46). First, we can construct theWB

invariance which does not vanish trivially by considering
the trace of the cube of the commutator,

I1 ¼ Imtr½huL; hU�3: (47)

Note that the real part of the trace of the cube of the
commutator does vanish. The nonzero value of the trace
of the cubic commutator signals CP violation, and the
proof follows in the same way as the Jarlskog invariant
[10] and the CP violating WB invariant [11] for the
Kobayashi-Maskawa model [23]. Next we consider the
WB invariant with the form,

tr ðMUhUhuLM
y
UhuRÞ: (48)

When CP is conserved, the imaginary part of Eq. (48)
vanishes,

tr ðM�
Uh�Uh�uLMT

Uh�uRÞ ¼ ½trðMUhUhuLM
y
UhuRÞ��: (49)

Therefore, the imaginary I2 ¼ ImtrðMUhUhuLM
y
UhuRÞ is

a CP violating WB invariant. By inserting some Hermitian
matrices, we can also construct the other CP violating WB
invariants.

IV. A PARAMETRIZATION OF THE YUKAWA
SECTOR IN THE THREE-GENERATION MODEL

In Sec. II, we introduced a specific WB; i.e., the uptype
Yukawa matrices are given by the triangular matrices and
the singlet quark matrices are real diagonal. This WB is
obtained by fully utilizing the freedom of the WBT. Then
the number of the real parts and imaginary parts included
in the parameters of the Yukawa sector is minimized and
should be equal to the number of independent physical
parameters. In this section, we introduce a parametrization
of the Yukawa sector for the three-generation model which
is associated with the WB in Table I. The parametrization
includes the same number of the real and imaginary
parameters with that of the WB for N ¼ 3. The Yukawa
terms for the quarks in the WB are given by the following
Lagrangian:

L Yukawa ¼ y�uLijq
i
L
~�LU

j
R þ y��uRjiU

i
L
~�y
Rq

j
R

þUi
LD

i
UU

i
R þ H:c:þ ydLijq

i
L�LD

j
R

þ y�dRjiD
i
L�

y
Rq

j
R þDi

LD
i
DD

i
R þ H:c:; (50)

where i, j ¼ 1–3. After the symmetry breaking of SUð2ÞL
and SUð2ÞR, the doublet Higgses �L and �R acquire the
vacuum expectation values vL and vR, respectively. Then
the mass matrix for six up (down) quarks are generated as

uL UL

� �
MU

uR

UR

 !
; �d0L DL

� �
MD

0
d0R

DR

 !
;

(51)

where, MU and M0
D are given as
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MU ¼ 0 y�uLvL

yy�uRvR DU

� �
; (52)

MD
0 ¼ 0 ydLvL

yydRvR DD

� �
: (53)

DU and DD are singlet quark mass matrices which are real
diagonal,

DU ¼
MU 0 0

0 MC 0

0 0 MT

0
BB@

1
CCA; DD ¼

MD 0 0

0 MS 0

0 0 MB

0
BB@

1
CCA;

(54)

where the diagonal elements satisfy the following order,
MU >MC >MT and MD >MS >MB, in order to acquire
the light quark mass spectrum mu < mc < mt and md <
ms < mb. Applying the result in Table I to the three-
generation model, the uptype Yukawa matrices y�uL and
y�uR are given as triangular matrices,

y�uL ¼
yuL1 0 0

yuL21 yuL2 0

yuL31 yuL32 yuL3

0
BB@

1
CCA;

y�uR ¼
yuR1 0 0

yuR21 yuR2 0

yuR31 yuR32 yuR3

0
BB@

1
CCA;

(55)

where yuL32 and yuRijði > jÞ are complex and the other

elements are real. Two phases of yuL21 and yuL31 are
removed by using the freedom of the similarity transfor-
mation PU in Eq. (10). The downtype Yukawa couplings
are given by 3� 3 matrices. According to Table I, ydL
includes nine real parts and six imaginary parts. They can
be parametrized as

ydL ¼ ULy�dL; (56)

where y�dL is a lower triangular matrix [ðy�dLÞij ¼ 0, for

(i < j)] which includes six real parts and only one imagi-
nary part in ðy�dLÞ32. It is parametrized exactly the same as
that of y�uL,

y�dL ¼
ydL1 0 0

ydL21 ydL2 0

ydL31 ydL32 ydL3

0
BB@

1
CCA: (57)

UL includes three angles and five phases as

UL ¼ Pð�L1; �L2; 0ÞVð�L1; �L2; �L3; �LÞPð�L1; �L2; 0Þ;
(58)

Pð�1; �2; �3Þ ¼
ei�1 0 0

0 ei�2 0

0 0 ei�3

0
BB@

1
CCA: (59)

In UL, V denotes the Kobayashi-Maskawa-type parametri-
zation of the unitary matrix which includes three mixing
angles �Li (i ¼ 1–3) and a single CP violating phase
�L [see Eq. (C4) in Appendix C for the explicit form for
V]. There are four more CP violating phases, �Li, �Li (i ¼
1, 2), which are parametrized in the diagonal phase matrix
in Pð�1L; �2L; 0Þ and Pð�L1; �L2; 0Þ in Eq. (59). Next we
parametrize the down-quark Yukawa coupling ydR. Since
ydR is a completely general 3� 3 complex matrix, it has
three more CP violating phases compared with ydL.
Therefore, one can parametrize it as the product of a
unitary matrix and triangular matrix as

ydR ¼ URy�dR: (60)

In the parametrization given in Eq. (60), the unitary matrix
UR includes six phases [see Eq. (C3)],

UR ¼ Pð�1R; �2R; �3RÞVð�1R; �2R; �3R; �RÞPð�R1; �R2; 0Þ:
(61)

y�dR has the same form as that of y�uR,

y�dR ¼
ydR1 0 0

ydR21 ydR2 0

ydR31 ydR32 ydR3

0
BB@

1
CCA; (62)

where ydRijði > jÞ are complex and ydRiði ¼ 1; 2; 3Þ are real.
We show how the 19 CP violating WB invariants I1–I19

in Eqs. (28)–(46) can bewritten in the specificWB inwhich
the singlet quark mass matrices are real diagonal and the
Yukawa couplings are parametrized by Eqs. (55), (56), and
(60). Then one can relate theCP violatingWB invariants to
the CP violating parameters defined by the specific WB.
We first show that the first eight WB invariants I1–I8 can be
written in terms of the CP violating phases of the Yukawa
couplings of the triangular matrices. Note that there are also
eight CP violating phases in the triangular matrices of the
Yukawa couplings. By taking the real diagonal mass
matrices for the singlet quarks, one can show I1 is written
in terms of a combination of the Yukawa coupling y�uL,

I1 3 Im½huL12huL23huL31�; (63)

where huL ¼ yy�uLy�uL. Because ImðyuL32Þ is the only CP
violating phase in y�uL, I1 corresponds to the CP violating
phase ImðyuL32Þ. One can also show that I2, I3, and I4 are
written by linear combinations of the following quantities:

�ij
u ¼ ImðhuLijhuRjiÞ; ði; jÞ ¼ ð1; 2Þ; ð2; 3Þ; ð3; 1Þ; (64)

where huR ¼ yy�uRy�uR. I2, I3, and I4 depend on ImðyuRijÞ
(i > j) and ImðyuL32Þ. All the four CP violating phases in
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uptype Yukawa couplings y�uL and y�uR can be found in
the WB invariants I1–I4. Similarly, the four WB invariants
I5–I8 are related to the four CP violating phases in the
triangular matrices of the down quark sector. I5 is related to
ImðydL32Þ since I5 is proportional to

I5 3 ImðhdL12hdL23hdL31Þ; (65)

where hdL ¼ yy�dy�d. I6–I8 are written in terms of three

combinations of Yukawa couplings �12
d , �23

d , and �31
d . They

are defined by

�ij
d ¼ ImðhdLijhdRjiÞ; ði; jÞ ¼ ð1; 2Þ; ð2; 3Þ; ð3; 1Þ; (66)

where hdRji ¼ yy�dRy�dR. They are related to Imðy�dRijÞ
(i > j) and ImðydL32Þ.

So far, all the CP violating phases in the triangular
matrices in the Yukawa couplings are identified in the
WB invariants I1–I8. Next, we show how the other 11
WB invariants are related to the rest of the CP violating
phases in UL and UR. Although I9–I19 depend on the CP
violating phases of the triangular matrices, we focus on
their dependence on the CP violation of unitary matrices
UL and UR. I9 depends on UL and I10 depends on UR.
There are still four CP violating phases in UL and five CP
violating phases which are not identified yet in the WB
invariants. One can easily see I11–I19 can be written in
terms of

Im ðyy�uLULy�dRÞijðyy�dRUy
Ry�uRÞji: (67)

They depend on the 11 CP violating phases in UL and UR.
Now we carry out the following unitary transformations

on the downtype quarks d0L and d0R,

d0L ¼ ULdL; (68)

d0R ¼ URdR: (69)

With the new basis given in Eqs. (68) and (69), only the
form of charged currents changes as

uL��d
0
L ¼ uL��ULdL; uR��d

0
R ¼ uR��URdR: (70)

The neutral currents keep their diagonal form as

uL��uL; uR��uR; dL��dL; dR��dR: (71)

In terms of the new basis, the downtype mass matrixMD
0

is changed into

MD ¼ Uy
L 0
0 1

� �
MD

0 UR 0
0 1

� �

¼ 0 y�dLvL

yy�dRvR DD

� �
: (72)

Note that in the new basis, the downtype Yukawa matrices
are given by the triangular matrices. To summarize, at this
stage the mass terms of the quarks are

uL UL

� �
MU

uR
UR

� �
; dL DL

� �
MD

dR
DR

� �
: (73)

V. DIAGONALIZATION OF THE MASS MATRICES

In the previous section, we performed the unitary trans-
formation on SUð2Þ doublet fields. In this section, we carry
out the diagonalization of the 6� 6 mass matrices MU
and MD. Therefore, by the unitary transformation, dou-
blet and singlet quarks are mixed in the mass eigenstates.
Now we diagonalize the mass matrices given in Eqs. (52)
and (72),

Vy
uLMUVuR ¼ du 0

0 ~DU

� �
: (74)

Note that du is a diagonal mass matrix for light uptype
quarks and ~DU denotes that for heavy quarks. The down-
type mass matrix is diagonalized as

Vy
dLMDVdR ¼ dd 0

0 ~DD

� �
; (75)

where dd is a diagonal mass matrix for light downtype
quarks and ~DD is that for heavy quarks. In terms of the
mass eigenstates, charged currents and neutral currents are
written as

uLi��ULijdLj ¼ V L��u
m
L���d

m
L�; (76)

uRi��URijdRj ¼ V R��u
m
R���d

m
R�; (77)

uLi��uLi ¼ ZuL��u
m
L���u

m
L�; (78)

uRi��uRi ¼ ZuR��u
m
R���u

m
R�; (79)

dLi��dLi ¼ ZdL��d
m
L���d

m
L�; (80)

dRi��dRi ¼ ZdR��d
m
R���d

m
R�; (81)

where um� and dm� ð� ¼ 1; . . . ; 6Þ denote the mass
eigenstates.
We parametrize VqL and VqR (q ¼ u, d) with 3� 3

submatrices as

VqL ¼ KqL RqL

SqL TQL

� �
; VqR ¼ KqR RqR

SqR TQR

� �
: (82)

The 6� 6 mixing matrices V L and V R for the charged
currents in Eqs. (76) and (77) are written as

V L ¼ Ky
uLULKdL Ky

uLULRdL

Ry
uLULKdL Ry

uLULRdL

0
@

1
A; (83)

V R ¼ Ky
uRURKdR Ky

uRURRdR

Ry
uRURKdR Ry

uRURRdR

0
@

1
A: (84)
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The mixing matrices for the neutral currents in
Eqs. (78)–(81) are given by

ZuL ¼ Ky
uLKuL Ky

uLRuL

Ry
uLKuL Ry

uLRuL

0
@

1
A;

ZuR ¼ Ky
uRKuR Ky

uRRuR

Ry
uRKuR Ry

uRRuR

0
@

1
A;

(85)

ZdL ¼ Ky
dLKdL Ky

dLRdL

Ry
dLKdL Ry

dLRdL

0
@

1
A;

ZdR ¼ Ky
dRKdR Ky

dRRdR

Ry
dRKdR Ry

dRRdR

0
@

1
A:

(86)

The quark interaction terms induced by neutral currents are
written in terms of mass eigenstate quark fields and mass
eigenstate gauge fields as follows:

�LNC ¼þ2

3
e �um� 6Aum� � 1

3
e �dm� 6Adm� � 2

3
g1ðcRsWc	 þ sRs	Þ �um� 6Zum� þ 1

3
g1ðcRsWc	þ sRs	Þ �dm� 6Zdm�

þ 2

3
g1ðsWcRs	� sRc	Þ �um� 6Z0um� � 1

3
g1ðsWcRs	� sRc	Þ �dm� 6Z0dm�

þ
�
1

2
ZuL��ðgLcWc	þg1ðcRsWc	þ sRs	ÞÞ

�
�umL� 6ZumL� þ

�
�1

2
ZdL��ðgLcWc	þg1ðcRsWc	þ sRs	ÞÞ

�
�dmL� 6ZdmL�

þ
�
1

2
ZuR��ðgRðcRs	� sRsWc	Þþ g1ðcRsWc	þ sRs	ÞÞ

�
�umR� 6ZumR� þ

�
�1

2
ZdR��ðgRðcRs	 � sRsWc	Þ

þg1ðcRsWc	 þ sRs	ÞÞ
�
�dmR� 6ZdmR� þ

�
1

2
ZuL��ð�gLcWs	 þg1ðsRc	� cRsWs	ÞÞ

�
�umL� 6Z0umL�

þ
�
�1

2
ZdL��ð�gLcWs	 þg1ðsRc	� cRsWs	ÞÞ

�
�dmL� 6Z0dmL� þ

�
1

2
ZuR��ðgRðcRc	þ sRsWs	Þ

þg1ðsRc	� cRsWs	ÞÞ
�
�umR� 6Z0umR� þ

�
�1

2
ZdR��ðgRðcRc	þ sRsWs	Þþg1ðsRc	 � cRsWs	ÞÞ

�
�dmR� 6Z0dmR�: (87)

In Eq. (87), we used the notation of the mass eigenstates of neutral gauge fields,

A

Z

Z0

0
BB@

1
CCA ¼

cWcR sW cWsR

�ðsWcRc	 þ sRs	Þ cWc	 cRs	 � sWsRc	

sWcRs	 � sRc	 �cWs	 cRc	 þ sWsRs	

0
BB@

1
CCA

B

W3
L

W3
R

0
BB@

1
CCA; (88)

where the mixing angles of the neutral gauge bosons
satisfy the following equations:

gLtW ¼ g1cR; gRtR ¼ g1;

tan 2	 ¼ � s2R sin 2�Rv
2
L

sW½v2
R þ ðs4R � sin 22�R

sin 22�W
Þv2

L�
:

(89)

They are derived by taking the vacuum expectation value
of the bidoublet Higgs field zero in the formulas of
Ref. [14]. In order to acquire the derivation of the relation
(88) and the definition of mixing parameters sW , sR, s	, and
e, see Ref. [14].

VI. THE APPROXIMATE FORMULAS FOR THE
MIXING MATRICES

So far, we derive the exact formulas for the mixing

matrices. In this section, we carry out the diagonalization

of the mass matrices and determine the unitary matrices for

the diagonalization. In Appendix B, we show the procedure

of the diagonalization and the approximation. We have

determined the submatrices of the unitary matrices VqL

and VqR in Eqs. (74), (75), and (82). The approximate

formulas on KuL in Eq. (B25) and RuL in Eq. (B6) are

given as
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KuL ¼
1

MCyuL1y
�
uR21

MUyuL2yuR2

MTyuL1y
�
uR31

MUyuL3yuR3

�MCyuL1yuR21
MUyuL2yuR2

1
MTyuL2y

�
uR32

MCyuL3yuR3

MT

MU

yuL1ðyuR32yuR21�yuR2yuR31Þ
yuR2yuL3yuR3

�MTyuL2yuR32
MCyuL3yuR3

1

0
BBBBB@

1
CCCCCA; (90)

RuL ¼

vL

MU
yuL1 0 0

vL

MU
yuL21

vL

MC
yuL2 0

vL

MU
yuL31

vL

MC
yuL32

vLMT

D2
T

yuL3

0
BBB@

1
CCCA; (91)

where DT denotes the mass eigenvalue of the lightest state of the heavy uptype quarks and the definition can be found in
Eq. (B4). Similarly, the downtype mixing matrices KdL, RdL have following forms:

KdL ¼
1

MSydL1y
�
dR21

MDydL2ydR2

MBydL1y
�
dR31

MDydL3ydR3

�MSydL1ydR21
MDydL2ydR2

1
MBydL2y

�
dR32

MSydL3ydR3

MB

MD

ydL1ðydR32ydR21�ydR2ydR31Þ
ydR2ydL3ydR3

�MBydL2ydR32
MSydL3ydR3

1

0
BBBBB@

1
CCCCCA; (92)

RdL ¼

vL

MD
ydL1 0 0

vL

MD
ydL21

vL

MS
ydL2 0

vL

MD
ydL31

vL

MS
ydL32

vL

MB
ydL3

0
BBB@

1
CCCA: (93)

The approximate forms for KuR, RuR, KdR, and RdR are also derived using the formulas

KqR ¼ yqRvRSqL=dq; RqR ¼ yqRvRTQL= ~DQ; (94)

where Eq. (94) is derived using Eq. (A1). By substituting the approximate formulas for SqL and TQL given in Eqs. (B7) and
(B5), KqR and RqR are given as

KuR ¼ �y�uR
DU

D2
0U

yy�uLKuL

vLvR

du

¼ �

1 MC

MU

yuR1y
�
uL21

yuL2yuR2

DT

MU

yuR1y
�
uL31

yuL3yuR3

MT

MC

y�
uL32

ðyuR21yuR32�yuR2yuR31Þ
yuR1yuL3yuR3

� MC

MU

yuR21yuR21y
�
uL21

yuR1yuL2yuR2
1 DT

MC

yuR2y
�
uL32

yuL3yuR3�
1� M2

T

D2
T

�
yuR2yuR31�yuR21yuR32

yuR1yuR2

�
1� M2

T

D2
T

�
yuR32
yuR2

MT

DT
þ DT

MC

y�
uL32

yuR32
yuL3yuR3

0
BBBBBB@

1
CCCCCCA; (95)

RuR ¼ y�uR
vR

D0U

¼

vR

MU
yuR1 0 0

vR

MU
yuR21

vR

MC
yuR2 0

vR

MU
yuR31

vR

MC
yuR32

vR

DT
yuR3

0
BBB@

1
CCCA; (96)

KdR ¼ �y�dR
1

DD

yy�dLKdL

vLvR

dd
¼ �

1 MS

MD

ydR1y
�
dL21

yL2ydR2

MB

MD

ydR1y
�
dL31

ydL3ydR3

�KdR21 1 MB

MS

ydR2y
�
dL32

ydL3ydR3

�KdR31
MS

MD

y�
dL21

ydR31
ydL2ydR2

� MB

MS

y�
dL32

ydR32ydR32
ydR2ydL3ydR3

1

0
BBBBB@

1
CCCCCA; (97)
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KdR21 ¼ �MB

MS

y�dL32ðydR21ydR32 � ydR2ydR31Þ
ydR1ydL3ydR3

þ MS

MD

y�dL21ydR21ydR21
ydR1ydL2ydR2

;

KdR31 ¼ �MB

MS

y�dL32ðydR21ydR32ydR32 � ydR2ydR31ydR32Þ
ydR1ydR2ydL3ydR3

þ MS

MD

y�dL21ydR21ydR31
ydR1ydL2ydR2

;

RdR ¼ y�dR
vR

DD

¼

vR

MD
ydR1 0 0

vR

MD
ydR21

vR

MS
ydR2 0

vR

MD
ydR31

vR

MS
ydR32

vR

MB
ydR3

0
BBB@

1
CCCA;

(98)

where the definition of D0U can be found in Eq. (B3).
We summarize the results of the mixing matrices. The left-handed charged current V L is determined in a good

approximation as follows:

V L ’ UL ULRuL

Ry
dLUL Ry

dLULRuL

 !
; (99)

where we ignore the corrections suppressed by heavy quark masses by setting KuL ’ KdL ’ KdR ’ 1. The
3� 3 submatrix, which corresponds to light quark mixings, is mostly determined by the 3� 3 unitary matrix UL.
In our parametrization, UL includes five CP violating phases �L1, �L1, �L, �L1, �L2. The mixing between the light quark
and heavy quark is suppressed by a factor of vL

D0Uii
� 1 or vL

DDi
� 1. The mixing among heavy quarks is suppressed by a

factor of the product
v2
L

D0UiiDDj
. One finds that the mixing of the heavy uptype quarks and the light downtype quarks

corresponding toV R6i (i ¼ 1–3) is large. The large mixing occurs because the component of RuR33 is not suppressed. This
phenomenon is related to the enhancement mechanism of the top quark mass as shown in Refs. [8,9].

The flavor changing neutral current (FCNC) for up quarks is determined by ZuL, ZuR in Eq. (85). We first show the
approximate formulas for the FCNC among the light uptype quarks, ZuLij (i, j ¼ 1–3). They are derived using the relation,

ZuLij ¼ ðKy
uLKuLÞij ’ �ij � ðSyuLSuLÞij,

ZuL11 ’ 1�
�
mu

vR

�
2
�X2
k¼1

ðy�1
�uRÞ�k1ðy�1

�uRÞk1 þ
�
MT

DT

�
4jðy�1

�uRÞ31j2
�
;

ZuL12 ’ �mumc

v2
R

�
ðy�1

�uRÞ22ðy�1
�uRÞ�21 þ

�
MT

DT

�
4ðy�1

�uRÞ31ðy�1
�uRÞ32

�
;

ZuL13 ’ mumc

v2
R

�
1

yuL2
ðy�1

�uRÞ�21ðy�1
�uRÞ32ðy�1

�uRÞ�33
�
�mumt

v2
R

�
MT

DT

�
3ðy�1

�uRÞ31ðy�1
�uRÞ33;

ZuL22 ’ 1�
�
mc

vR

�
2
�
ðy�1

�uRÞ222 þ
�
MT

DT

�
4jðy�1

�uRÞ31j2
�
;

ZuL23 ’ �
�
mc

vR

�
2 y�uL32
y2uR2yuL2

�mcmt

v2
R

�
MT

DT

�
3ðy�1

�uRÞ�32ðy�1
�uRÞ�1

33 ;

ZuL33 ’ 1�
�
mc

vR

�
2 jyuL32j2
y2uL2y

2
uR2

�
�
mt

vR

�
2
�
MT

DT

�
ðy�1

�uRÞ233:

(100)

We note that the CP violation of the tree-level FCNC for the left-handed current is determined by the CP violating phases
in the right-handed Yukawa couplings yuRijði > jÞ and left-handed Yukawa coupling yuL32. The strength of the FCNC is
naturally suppressed by the SUð2ÞR breaking scale. The FCNC of the left-handed current between the light uptype quarks
and the heavy ones can be written as

Ky
uLRuL ’

mu

vR

1
yuR1

� mu

vR

y�
uR21

yuR1yuR2

�
MT

DT

�
2
mu

vR

y�
uR21

y�
uR32

�yuR2y
�
uR31

yuR1yuR2yuR3

mu

vR

yuL21
yuR1yuL1

mc

vR

1
yuR2

�
�
MT

DT

�
2
mc

vR

y�
uR32

yuR2yuR3

mu

vR

yuL31
yuL1yuR1

mc

vR

yuL32
yuL2yuR2

�
MT

DT

�
mt

vR

1
yuR3

0
BBBBBBBBB@

1
CCCCCCCCCA
: (101)
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The strength of the FCNC between the heavy left-handed uptype quark and the light uptype quark is suppressed by the
SUð2ÞR breaking scale. We also note that CP violation is determined by the phases of yL32 and yRij, (i > j). The FCNC of
the left-handed current among the heavy uptype quarks is given as

Ry
uLRuL ’

�
mu

vR

�
2 y2

uL1
þjyuL21j2þjyuL31j2

y2
uL1

y2
uR1

mumc

v2
R

yuL2y
�
uL21

þy�
uL31

yuL32
yuL1yuL2yuR1yuR2

MT

DT

mumt

v2
R

y�
uL31

yuL1yuR1yuR3

mumc

v2
R

yuL2yuL21þyuL31y
�
uL32

yuL1yuL2yuR1yuR2

�
mc

vR

�
2 y2

uL2
þjyuL32j2

y2
uL2

y2
uR2

MT

DT

mcmt

v2
R

y�uL32
yuL2yuR2yuR3

MT

DT

mumt

v2
R

yuL31
yuL1yuR1yuR3

MT

DT

mcmt

v2
R

yuL32
yuL2yuR2yuR3

�
MT

DT

�
2 m2

t

v2
R

1
y2
uR3

0
BBBBBBB@

1
CCCCCCCA
: (102)

All the components are suppressed by a factor of 1
v2
R

. The CP violation of the FCNC is determined by the left-handed
Yukawa coupling yuL32. Similarly, the FCNCs for the light right-handed uptype quarks are given as

Z uRij ¼ ðKy
uRKuRÞij ’ �ij � ðSyuRSuRÞij ’ �ij �mi

um
j
u

v2
L

X
k�i;j

ðy�1
�uLÞ�kiðy�1

�uLÞkj; ðfor i; j ¼ 1; 2; 3Þ: (103)

Note that the flavor diagonal coupling ZuR33 of the right-handed top quark current tmR��t
m
R is suppressed,

ZuR33 ’ 1� m2
t

y2uL3v
2
L

: (104)

The suppression of the FCNC for the right-handed current is weaker than that of the left-handed one. It is suppressed

by a factor of 1
v2
L

. The CP violation of the FCNC in Eq. (103) is determined by a phase of yuL32. We note that the same

phase appears in the FCNC of the left-handed current among the heavy uptype quarks. Below we show all the components
of the FCNC couplings for the right-handed currents between the light uptype quark and the heavy uptype quark:

ZuR14 ¼ �mu

vL

1

yuL1y
2
uR1yuR2

�
y2uR1yuR2 þ

�
1�

�
mtMT

vLvR

�
2 1

y2uL3y
2
uR3

�
ðyuR2jyuR31j2 � y�uR21yuR31y

�
uR32Þ

�
;

ZuR15 ¼ mc

vL

�
1�

�
mtMT

vLvR

�
2 1

y2uL3y
2
uR3

�
yuR32ðy�uR21y�uR32 � yuR2y

�
uR31Þ

yuL2yuR1y
2
uR2

;

ZuR16 ¼ mt

vL

�
1�

�
mtMT

vLvR

�
2 1

y2uL3y
2
uR3

�
y�uR21y

�
uR32 � yuR2y

�
uR31

yuR1yuR2yuL3
;

ZuR24 ¼ �mu

vL

1

yuL1yuR1yuR2

�
yuR2yuR21 þ

�
1�

�
mtMT

vLvR

�
2 1

y2uL3y
2
uR3

�
yuR31y

�
uR32

�
;

ZuR25 ¼ �mc

vL

1

yuL2y
2
uR2

�
y2uR2 þ

�
1�

�
mtMT

vLvR

�
2 1

y2uL3y
2
uR3

�
jyuR32j2

�
;

ZuR26 ¼ �mt

vL

y�uR32
yuR2yuL3

�
1�

�
mtMT

vLvR

�
2 1

y2uL3y
2
uR3

�
;

ZuR34 ¼ �mu

vL

1

yuL1yuR1

�
mc

mt

yuL32ðyuR2yuR21 þ yR31y
�
R32Þ

yuL2yuR2
þmtMT

vLvR

yuR31
yuL3yuR3

�
;

ZuR35 ¼ �mc

vL

1

yuL2yuR2

�
mc

mt

yuL32ðy2uR2 þ jyuR32j2Þ
yuL2yuR2

þmtMT

vLvR

yuR32
yuL3yuR3

�
;

ZuR36 ¼ �mt

vL

1

yuL3

�
mc

mt

yuL32y
�
uR32

yuL2yuR2
þmtMT

vLvR

1

yuL3yuR3

�
:

(105)

We observe that CP violation is determined by the four phases, ImðyuRijÞ (i > j) and ImðyuL32Þ. The FCNC among the
heavy right-handed uptype quarks is given as
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Z uRiþ3;jþ3 ’ ðRy
uRRuRÞij ’ mi

um
j
u

v2
L

1

yuLiyuRiyuLjyuRj

X3
k�i;j

y�uRkiyuRkj: (106)

Note that the flavor diagonal coupling ZuR66 ’ m2
t

y2
uL3

v2
L

is not suppressed, which is in contrast to the coupling ZuR33 in
Eq. (104).

Next we show the FCNC of the down-quark sector in Eq. (86). The approximate formulas for the FCNC for the left-
handed currents is given by

ZdLij ¼ �ij �mi
dm

j
d

v2
R

X3
k�i;j

ðy�1
�dRÞ�kiðy�1

�dRÞkj; ðfor i; j ¼ 1; 2; 3Þ;

Ky
dLRdL ’

md

vR

1
ydR1

� md

vR

y�
dR21

ydR1ydR2

md

vR

y�
dR21

y�
dR32

�ydR2y
�
dR31

ydR1ydR2ydR3

md

vR

ydL21
ydL1ydR1

ms

vR

1
ydR2

� ms

vR

y�
dR32

ydR2ydR3

md

vR

ydL31
ydL1ydR1

ms

vR

ydL32
ydL2ydR2

mb

vR

1
ydR3

0
BBBB@

1
CCCCA;

ðRy
dLRdLÞij ’ mi

dm
j
d

v2
R

1

ydLiydRiydLjydRj

X3
k�i;j

y�dLkiydLkj; ðfor i; j ¼ 1; 2; 3Þ:

(107)

As we can easily see from Eq. (108), the FCNC of the down-quark sector is much simpler than that of the up-quark sector.

The FCNC for the left-handed current among the light downtype quarks is suppressed by a factor of 1
v2
R

. The same

suppression occurs in the FCNC among heavy quarks. The FCNC between the heavy quark and light quark is suppressed

by a factor of 1
vR
. For the right-handed current, the FCNC couplings are given as

ZdRij ¼ ðKy
dRKdRÞij ’ �ij � ðSydRSdRÞij ’ �ij �mi

dm
j
d

v2
L

X3
k�i;j

ðy�1
�dLÞ�kiðy�1

�dLÞkj; ðfor i; j ¼ 1; 2; 3Þ;

ZdR14 ¼ �md

vL

1

ydL1
;

ZdR15 ¼ md

vL

ydL21y
�
dR21ðydR2y�dR21 þ y�dR31ydR32Þ

ydL1y
2
dR1ydL2ydR2

þ m2
s

vLmb

ydL32½y2dR2ðydR2y�dR31 � y�dR21y
�
dR32Þ þ jydR32j2ðydR2y�dR31 � y�dR21y

�
dR32Þ�

ydR1y
2
dL2y

3
dR2

;

ZdR16 ¼ ms

vL

ydL32y
�
dR32ðydR2y�dR31 � y�dR21y

�
dR32Þ

ydR1ydL2y
2
dR2ydL3

þmdmb

msvL

ydL21y
�
dR21y

�
dR31

ydL1y
2
dR1ydL3

;

ZdR24 ¼ �md

vL

ydR21
ydL1ydR1

;

ZdR25 ¼ �ms

vL

1

ydL2
;

ZdR26 ¼ ms

vL

ydL32y
�
dR32y

�
dR32

ydL2y
2
dR2ydL3

�mdmb

msvL

ydL21y
�
dR31

ydL1ydR1ydL3
;

ZdR34 ¼ �md

vL

ydR31
ydL1ydR1

;

ZdR35 ¼ �ms

vL

ydR32
ydL2ydR2

;

ZdR36 ¼ �mb

vL

1

ydL3
;

ðRy
dRRdRÞij ’ mi

dm
j
d

v2
L

1

ydLiydRiydLjydRj

X3
k�i;j

y�dRkiydRkj:

(108)
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The FCNC among the light downtype quarks is suppressed
by a factor of

mdimdj

v2
L

. Since the downtype quarks’ masses
are smaller than vL, the FCNC for the down-quark sector is
naturally suppressed. We observe that the suppression of
the FCNC among the heavy quarks is similar to the light-
quark case. The FCNC from heavy quarks to light quarks
is also suppressed by a factor of 1

vL
, which is weaker than

that for the left-handed current. However, it is much sup-
pressed compared with that of the corresponding up-quark
case. Concerning CP violation, we observe that the CP
violation of the tree-level FCNCs are determined by the
imaginary parts of the triangular matrices of the Yukawa
couplings y�.

VII. CONCLUSION

We study CP violation and flavor mixings in the quark
sector of the universal seesaw model. We find the number
of independent parameters in a specific weak basis. The
basis is obtained using all the freedom of the WBT. There
is no redundancy due to WBT in the parameters left.
Therefore, the number of the parameters in such weak
basis corresponds to the number of independent parameters
of the model. The results of the number of parameters
(real parts and imaginary parts) are summarized in
Table I and in Table II for the case where the singlet quark
generation number is identical to the doublet quark gen-
eration number. The number of CP violating parameters is
also obtained by counting the number of CP invariant
conditions that are nontrivially satisfied, which agrees
with the one in the specific weak basis.

For the three-generation model, the number of CP vio-
lating phases is 19. The corresponding CP violating WB
invariants are constructed in terms of the Yukawa matrices
and singlet quark matrices. To identify the CP violation
and mixings in mass eigenstates of quarks, we study the

unitary matrices VqL, VqRðq ¼ u; dÞ which are used to

diagonalize the 6� 6 mass matrices for the up-quark
sector and down-quark sector. These unitary matrices are
related to the mixing matrices for the charged currents and
neutral currents so that the 3� 6 submatrix of the unitary
matrices in VqL, VqR enters into both charged currentsV L,

V R and the neutral currents ZuL, ZuR, ZdL, and ZdR. The
CP violation of the tree-level FCNC is determined by the
imaginary parts of the triangular matrices. Therefore, we
conclude that the FCNC is determined by the WB invari-
ants I1–I8. The mixing matrices for the charged currents
also depend on the 3� 3 unitary matrices UL and UR

defined by Eqs. (68) and (69).
We obtain the mixing matrix elements by carrying out

the approximate diagonalization so that we have some
insight on the mixings and CP violation in terms of the
mass eigenstates. As discussed in Sec. VI, we identify all
19 CP violating phases for the three-generation model in
the couplings of charged currents and the neutral currents
in terms of the mass eigenstates.
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APPENDIX A: EXACT FORMULAS OF MATRICES
FOR THE DIAGONALIZATION

In this appendix, we give the derivation of the formulas
for Eq. (94). We also collect the formulas that the subma-
trices of VqL satisfy [Eqs. (A4)–(A12)]. The proof of the

formulas is given below. One starts with Eqs. (74) and (75)
for the diagonalization of the mass matrix MQ, which

leads to the following relation:

VqR ¼ My
QVqL

1
dq

0

0 1
~DQ

0
@

1
A ¼

y�qRvRSqL=dq y�qRvRTQL= ~DQ

ðyy�qLvLKqL þDQSqLÞ=dq ðyy�qLvLRqL þDQTQLÞ= ~DQ

0
@

1
A; (A1)

where ðq;Q;QÞ denotes ðu;U;UÞ or ðd;D;DÞ. Equation (A1) leads to the formulas in Eq. (94). Since VqL satisfies the
eigenvalue equation,

Vy
qLMQMy

QVqL ¼ d2q 0

0 ~D2
Q

 !
; (A2)

where

MQMy
Q ¼

y�qLy
y
�qLv

2
L y�qLvLDQ

DQvLy
y
�qL yy�qRy�qRv

2
R þD2

Q

0
@

1
A; (A3)

the submatrices of KqL, SqL, RqL, and TQL satisfy

y�qLy
y
�qLv

2
LKqL þ y�qLvLDQSqL ¼ KqLd

2
q; (A4)
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DQy
y
�qLvLKqL þ ðyy�qRy�qRv2

R þD2
QÞSqL ¼ SqLd

2
q;

(A5)

y�qLy
y
�qLv

2
LRqL þ y�qLvLDQTQL ¼ RqL

~D2
Q; (A6)

DQy
y
�qLvLRqL þ ðyy�qRy�qRv2

R þD2
QÞTQL ¼ TQL

~D2
Q:

(A7)

They also satisfy the unitarity conditions. Vy
qLVqL ¼ 1

leads to

Ky
qLKqL þ SyqLSqL ¼ 1; (A8)

Ry
qLRqL þ Ty

QLTQL ¼ 1; (A9)

Ky
qLRqL þ SyqLTQL ¼ 0: (A10)

VqLV
y
qL ¼ 1 leads to

KqLK
y
qL þ RqLR

y
qL ¼ 1; (A11)

SqLS
y
qL þ TQLT

y
QL ¼ 1; KqLS

y
qL þ RqLT

y
QL ¼ 0:

(A12)

Using the equations above, one can rewrite VqR as

VqR ¼
y�qRvRSqL=dq y�qRvRTQL= ~DQ

1
y�qLvL

KqLdq
1

y�qLvqL
RqL

~DQ

0
@

1
A: (A13)

APPENDIX B: DERIVATION OF THE
APPROXIMATE FORMULAS

In this appendix, we show the derivation for the approxi-
mate formulas Eqs. (90)–(98) for VqL and VqR. The ap-

proximate diagonalization of the mass matrix of the
universal seesaw model has been carried out in the pre-
vious works [9,20]. Compared to the previous works, we
relax the condition imposed on the singlet mass parameter
MT . In this work, we do not assume that the parameter is
very small compared to the SUð2ÞR breaking scale. We also
keep all the CP violating parameters in the approximation
so that we can keep track of the CP violating phases in the
mixing matrices.

We show the derivation for the uptype quark case. The
derivation for the down-quark sector follows in the same
way as that of the up-quark sector. The submatrices ofKuL,
SuL, RuL, and TuL satisfy Eqs. (A4)–(A7). One also notes
that SuL and RuL are smaller than KuL and TuL. Let us start
with the Hermitian matrix,

HU ¼ yy�uRy�uRv
2
R þD2

U: (B1)

By neglecting the small contribution proportional to RuL,
Eq. (A7) is rewritten as

T0y
ULHUT0

UL ¼ ~D2
U; (B2)

where we denote the leading form for TuL as T0
uL and we

use T0y
uLT

0
uL ¼ 1. The dominant term of HU is

HU �D2
0U �

M2
U 0
0 M2

C 0
0 0 D2

T

0
B@

1
CA; (B3)

DT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2uR3v

2
R þM2

T

q
: (B4)

Therefore,

T0
uL ’ 1; ~DU ’ D0U: (B5)

Then one can solve Eq. (A6) for RuL,

RuL ’ y�uLvL

DU

D2
0U

: (B6)

In Eq. (A5), by neglecting the term proportional to d2uL, one
can solve SuL as

SuL ’ � 1

HU
DUy

y
�uLvLKuL: (B7)

Then, VuL is approximately given as

VuL ¼
KuL y�uLvL

DU

D2
0U

� DUvL

D2
0U

yy�uLKuL 1

0
B@

1
CA; (B8)

where we use the approximation HU ’ D2
0U. One can

also substitute SuL in Eq. (B7) and RuL in Eq. (B6) into
Eq. (A13) and obtain VuR,

VuR ¼
�y�uRvR

DU

D2
0U

yy�uLKuL
vL

du
y�uR

vR

D0U

1
y�uLvL

KuLdu
DU

D0U

0
B@

1
CA: (B9)

Both VuL and VuR can be determined once the submatrix
KuL is fixed. The equation which determines KuL is
obtained as

v2
LHKuL ¼ KuLd

2
u; (B10)

where H is defined as

H ¼ y�uL

�
1�DU

1

HU
DU

�
yy�uL: (B11)

When deriving Eq. (B10), Eq. (B7) is substituted into
Eq. (A4). Using the approximation detHU ’
HU11HU22HU33 ’ M2

UM
2
CHU33, HU11 ’ M2

U, HU22 ’
M2

C, and by keeping the leading term in each matrix

element, one obtains
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H =v2
R ¼

y2
uL1

M2
U

�
y2uR1 þ jyuR21j2 þ jMT j2jyuR31j2

D2
T

�
yuL1yuL2
MUMC

�
y�uR21yuR2 þ y�

uR31
yuR32M

2
T

D2
T

�
MT

MU

yuL1yuL3y
�
uR31

yuR3
D2

T

yuL1yuL2
MUMC

�
yuR21yuR2 þ y�

uR32
yuR31M

2
T

D2
T

�
y2
uL2

M2
C

�
y2uR2 þ jyuR32j2M2

T

D2
T

�
MT

MC

yuL2yuL3y
�
uR32

yuR3
D2

T

MT

MU

yuL1yuL3yuR3yuR31
D2

T

MT

MC

yuL2yuL3yuR3yuR32
D2

T

y2uL3y
2
uR3

D2
T

0
BBBBBBBB@

1
CCCCCCCCA
: (B12)

Now we solve the eigenvalue equation for KuL. The eigen-
values of H are related to the up, charm, and top quark
masses squared. We write the eigenvalue equation as

H
u

u3

 !
¼ m2

i

v2
L

u

u3

 !
; (B13)

where uT ¼ ðu1; u2Þ and i ¼ u, c, t. We can rewrite
Eq. (B13) as

H 11 H 12

H �
12 H 22

 !
uþ H 13

H 23

 !
u3 ¼ m2

i

v2
L

u; (B14)

H �
13 H �

23

� 	 	 uþH 33u3 ¼ m2
i

v2
L

u3: (B15)

We first determine the eigenvalue and eigenvector for the

top quark. Because
m2

t

v2
L


 H ijði; j ¼ 1; 2Þ, one can solve

Eq. (B14),

u ¼ v2
L

m2
t

H 13

H 23

 !
u3: (B16)

Since u � u3, the top quark mass is approximately
given as

mt ¼ vL

ffiffiffiffiffiffiffiffiffiffiffi
H 33

q
¼ yuL3vL

yuR3vR

DT

: (B17)

The corresponding eigenvector for the top quark is given as

vt ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jH 13

H 33
j2 þ jH 23

H 33
j2

r
H 13

H 33

H 23

H 33

1

0
BBBB@

1
CCCCA: (B18)

We ignore the correction in the following analysis since the
normalization factor of Eq. (B18) is close to 1. The other
two eigenvectors vu and vc correspond to the eigenvalues

m2
u=v

2
L and m2

c=v
2
L. For the small eigenvalues, Eq. (B15)

can be solved as

u3 ¼ � H �
13 H �

23

� 	 	 u
H 33

: (B19)

Substituting the relation into Eq. (B14), one obtains the
following equation for the up and charm quarks:

h11 h12

h�12 h22

 !
u ¼ m2

i

v2
L

u; (B20)

where i ¼ u, c and hij (i, j ¼ 1, 2) is defined as

hij ¼ H ij �H i3

1

H 33

H 3j: (B21)

The components of h are written explicitly,

h11 ¼ y2uL1v
2
Rðy2uR1 þ jyuR21j2Þ

M2
U

;

h12 ¼ yuL1yuL2v
2
Rðy�uR21yuR2Þ

MUMC

;

h22 ¼ y2uL2v
2
Ry

2
uR2

M2
C

:

(B22)

Then for the up quark, the eigenvalue and the eigenvector
are given as

mu ¼ yuL1yuR1
vLvR

MU

; vu ¼

1

� h�
12

h22

�H �
13�

h�
12

h22
H �

23

H 33

0
BBBB@

1
CCCCA; (B23)

and for charm quark, they are given as

mc ¼ yuL2yuR2
vLvR

MC

;

vc ¼

h12
h22

1

�H �
13

h12
h22

þH �
23

H 33

0
BBBB@

1
CCCCA ’

h12
h22

1

�H �
23

H 33

0
BBB@

1
CCCA:

(B24)

KuL is written in terms of the eigenvectors,

KuL ¼ vu vc vt:
� 	

: (B25)

Similarly, the downtype mixing matrices KdL and RdL are
obtained. The eigenvalues for the quark masses agree with
the ones obtained in Ref. [20].

APPENDIX C: PARAMETRIZATION OF THE
YUKAWA MATRIX IN TERMS OFA PRODUCT

OF THE UNITARY MATRIX AND
TRIANGULAR MATRIX

In this appendix, we give proof of the parametrization
of the general 3� 3 Yukawa matrices in terms of the
product of the unitary matrices and triangular matrices.
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The decomposition and the parametrization are used in
Eqs. (56) and (60). The general 3� 3 complex matrix of
the Yukawa coupling Y with detY � 0 is written in terms
of three independent complex vectors in C3 y0i, (i ¼ 1–3)
as follows:

Y ¼ y01 y02 y03
� 	 ¼ Pð�1; �2; �3Þ y1 y2 y3

� 	
; (C1)

�i ¼ arg ðy03iÞ; (C2)

where Pð�1; �2; �3Þ is a diagonal unitary matrix defined in
Eq. (59), and y3 is a real vector in R

3. Then, we show Y can
be parametrized as

Y ¼ Pð�1; �2; �3ÞVð�1; �2; �3; �ÞPð�;�; 0ÞY�; (C3)

where Vð�1; �2; �3; �Þ is a Kobayashi-Maskawa-type
parametrization for the unitary matrix, and Y� is a lower
triangular matrix with real diagonal elements,

Vð�1; �2; �3;�Þ ¼
cos�3 cos�2 cos�1 þ sin�2 sin�1e

i� cos�3 cos�2 sin�1 � sin�2 cos�1e
i� sin�3 cos�2

cos�3 sin�2 cos�1 � cos�2 sin�1e
i� cos�3 sin�2 sin�1 þ cos�2 cos�1e

i� sin�3 sin�2

� sin�3 cos�1 � sin�3 sin�1 cos�3

0
BB@

1
CCA; (C4)

Y� ¼
y�11 0 0

y�21 y�22 0

y�31 y�32 y�33

0
BB@

1
CCA ¼

cos �21jy1j 0 0

sin �21 cos�31e
i�21 jy1j cos�32jy2j 0

sin �21 sin �31e
i�31 jy1j sin �32e

i�32 jy2j jy3j

0
BB@

1
CCA: (C5)

Equation (C3) shows a well-known result [9]; i.e., the
matrix Y is written as the product of the unitary matrix
and the triangular matrix. Here we show that a particular
form of the parametrization including some phases, angles,
etc., shown in Eq. (C3) is indeed a generic parametrization.
In this parametrization, there are nine real parts con-
structed by six angles,

�1; �2; �3; �21; �32; �31; (C6)

and three norms of the complex vectors jy0i j ¼ jyij, (i ¼ 1,
2, 3). The nine phases are given by

�1; �2; �3; �; �; �;�21; �32; �31: (C7)

Now we prove the parametrization is completely general.
One can start with

Pð��1;��2;��3ÞY ¼ y1 y2 y3
� 	

; (C8)

where y3 is a real vector in R
3. Further, one can take out the

norm of yi as

y1 y2 y3
� 	¼ v1 v2 v3

� 	 jy1j 0

0 jy2j 0

0 0 jy3j

0
BB@

1
CCA: (C9)

Note that vi (i ¼ 1–3) are normalized as vyi 	 vi ¼ 1 but are
not necessarily orthogonal. v3 is a real normalized vector,
which implies

v3 ¼ e3 ¼
sin �3 cos�2

sin �3 sin �2

cos�3

0
BB@

1
CCA: (C10)

We first show the general parametrization for orthonormal
basis vectors e1, e2, which are orthogonal to e3 in complex

C3 satisfying eyi 	 ej ¼ �ij. Since eiði ¼ 1; 2Þ are
orthogonal to e3, both real part and imaginary parts
of ei (i ¼ 1, 2) are orthogonal to e3. Therefore, they are
unitary superpositions of the two real orthogonal vectors e01
and e02,

e1 e2
� 	 ¼ e01 e02

� 	
U;

e01 ¼
cos �3 cos�2

cos�3 sin �2

� sin �3

0
BB@

1
CCA;

e02 ¼
� sin �2

cos �2

0

0
BB@

1
CCA;

(C11)

where the two-by-two unitary matrix denoted by U can be
parametrized as

U � 1 0

0 ei�

 !
cos�1 sin �1

� sin �1 cos �1

 !
ei� 0

0 ei�

 !
: (C12)

Then, one can write e2 and e1 as

e2 ¼
cos�3 cos�2 sin�1 � sin�2 cos�1e

i�

cos�3 sin�2 sin�1 þ cos�2 cos�1e
i�

� sin�3 sin�1

0
BB@

1
CCAei�;

e1 ¼
cos�3 cos�2 cos�1 þ sin�2 sin�1e

i�

cos�3 sin�2 cos�1 � cos�2 sin�1e
i�

� sin�3 cos�1

0
BB@

1
CCAei�:

(C13)
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From v2 one can form the vector that is orthogonal to e3.
This vector can be identified with e2,

v2 � eT3 	 v2e3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jeT3 	 v2j2

q ¼ e2: (C14)

Therefore, one can write v2 with the superposition,

v 2 ¼ eT3 	 v2e3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jeT3 	 v2j2

q
e2;

¼ sin �32e
i�32e3 þ cos�32e2; (C15)

where we set eT3 	 v2 ¼ sin�32e
i�32 . Next, from v1, one can

form the vector that is orthogonal to e3 and e2. This can be
identified as e1,

v1 � eT3 	 v1e3 � ey2 	 v1e2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jeT3 	 v1j2 � jey2 	 v1

q
j2
¼ e1;

v1 ¼ cos �21e1 þ sin �21 cos�31e
i�21e2

þ sin �21 sin�31e
i�31e3; (C16)

where one sets eT3 	 v1 ¼ sin �21 sin �31e
i�31 and ey2 	 v1 ¼

sin�21 cos�31e
i�21 . We summarize the relation ðe1; e2; e3Þ

with ðv1; v2; v3Þ using Eqs. (C15) and (C16),

v1 v2 v3
� 	 ¼ e1 e2 e3

� 	 cos�21 0 0

sin �21 cos �31e
i�21 cos�32 0

sin �21 sin �31e
i�31 sin �32e

i�32 1

0
BB@

1
CCA: (C17)

Note that the unitary matrix ðe1; e2; e3Þ is written in terms of three angles and three phases as

ðe1; e2; e3Þ ¼ Vð�1; �2; �3; �ÞPð�;�; 0Þ: (C18)

We substitute the relation Eq. (C18) into Eq. (C17). Then one obtains

v1 v2 v3
� 	 ¼ Vð�1; �2; �3; �ÞPð�;�; 0Þ

cos�21 0 0

sin �21 cos �31e
i�21 cos �32 0

sin �21 sin�31e
i�31 sin �32e

i�32 1

0
BB@

1
CCA; (C19)

which implies

Pð��1;��2;��3ÞY ¼ Vð�1; �2; �3; �ÞPð�;�; 0ÞY�: (C20)

One can easily derive Eq. (C3) from Eq. (C20).
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