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Quark sector CP violation of the universal seesaw model
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We study the charge parity (CP) violation of the universal seesaw model, especially its quark sector.
The model is based on SU(2); X SU(2)g X U(1)y:.. In order to count the number of parameters in the
quark sector, we use the degree of freedom of the weak basis transformation. For the N(3)-generation
model, the number of CP violating phases in the quark sector is identified as 3N> — 3N + 1 (19). We also
construct 19 CP violating weak basis invariants of Yukawa coupling matrices and SU(2) singlet quark
mass matrices in the three-generation universal seesaw model. The quark interaction terms induced by

neutral currents are given as an exact formula. Both the charged current and the neutral current are
expressed in terms of the mass basis by finding the transformations from the weak basis to the mass basis.
Finally, we calculate the mixing matrix element approximately, assuming that the SU(2) breaking scale
vp is much larger than the electroweak breaking scale v, .
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I. INTRODUCTION

The universal seesaw mechanism [1-7] based on
SUB)e X SUQR)g X SUQ2);, X U(1)yr gauge symmetry
is considered for fermion mass hierarchy with
SU((2)g X SU(2), isosinglet fermion masses. The ordinary
fermion and the singlet fermion mix at the tree level after
spontaneous symmetry breaking SU(3)c X SU2)g X
SUQ2); X U(1)y — SUQB)¢ X U(1)gy. The universal see-
saw mechanism provides us a clue for the mystery: why are
ordinary fermions much lighter than the electroweak scale
except for top quark [8,9]? When this mechanism works,
all of the strength of the Yukawa couplings can be taken
order of unity. The doublet quark and singlet quark are
transformed by SU(3)c X SUQ2)g X SUQ2); X U(1)y as

follows:
1 1
~ 3) 1,'2)_) ~ 3)2’ 1)_)
" ( 6) o ( 6)

2 1
U~13113) D~131,1—)
(i) 2=(r)

where Q = T3 + T; + Y.

A sophisticated discussion of CP violation using weak
basis (WB) invariants is given by Jarlskog in Ref. [10] and
by Bernabeu et al. in Ref. [11]. See also Ref. [12] for a
review and Ref. [13] for WB invariants in the framework of
the left-right symmetric model.

The gauge boson mass matrix in the universal seesaw
model is identical to the left-right symmetric model studied
in Ref. [14], except that the left-right symmetric model
includes the SU(2)r X SU(2); bidoublet Higgs. One can
find the gauge boson mass matrix in the present model by
taking the limit where the vacuum expectation value of the
bidoublet Higgs vanishes. The possibility that the universal
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seesaw mechanism resolves the strong CP problem
is explained by Babu and Mohapatra in Ref. [15].
Embedding the universal seesaw in the grand unified the-
ory scenario is discussed by Cho in Ref. [16], Koide in
Ref. [17], and Mohapatra in Ref. [18].

In this paper, we focus on the CP violation of the quark
sector. Phenomenological aspects of the CP violation have
been studied in Refs. [19,20]. In the literature [20], CP
violation of the present model is studied with an additional
assumption: left-right symmetry. We study the CP viola-
tion and the flavor mixing as general as possible so that one
can study the phenomenology of the present model to the
full extent. The recent study on mixings of the vectorlike
quarks can be also found in Ref. [21].

Our paper is organized as follows. We count the number
of the parameters in the quark sector in Sec. II. In Sec. I,
we construct WB invariants of the quark sector. In Sec. IV,
we propose a parametrization for the three-generation
model by minimizing the numbers of the parameters with
weak basis transformation (WBT). The relation between
the WB invariant and CP violation parameters in the
specific parametrization is discussed. The exact formulas
for the mixing matrices are obtained in the mass basis in
Sec. V. Finally, in Sec. VI, we carry out the diagonalization
of 6 X 6 mass matrices with some approximation and write
down the mixing matrix elements. Section VII is devoted
to the summary.

II. COUNTING THE NUMBER OF REAL AND
IMAGINARY PARAMETERS IN THE QUARK
SECTOR OF THE UNIVERSAL SEESAW MODEL

In this section, by using the freedom of WBT, we
minimize the number of real and imaginary parts of
Yukawa couplings and singlet quark mass matrices. The
number of imaginary parts which are left after WBT cor-
responds to the number of physical CP violating phases.
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We also verify the number of CP violating phases by
counting the independent number of CP invariant condi-
tions in a specific weak basis.

A. WBT of the universal seesaw model

We assume the singlet quark generation number is N,
which is identical to an ordinary quark generation number.
In this model, WBTs on singlet and doublet quarks are
given by

u;e = VURUR’ 'U’L - VULUL’ (1)
Dy = Vp, D, D} =Vp, Dy, ()
q% = Vrar q1 = Viqy, 3)

where Ug(.), Dg(r), and ggq, denote the right-handed
(left-handed) uptype singlet quark, downtype singlet
quark, and ordinary doublet quark, respectively. Below,
the matrices with superscript / imply the matrices obtained
by changing the WB. Yukawa matrices and mass matrices
of the singlet quarks are transformed as

My =V} MyVy,,  Mp=V) MpVp,,

Yir = VivurVu,, (4)

Yar = ngdRVDL,

y;L = V[TyuLVURy
Yar = szdLVDRy

where M;p) denotes the N X N uptype (downtype) mass
matrix of a singlet quark, and y is the N X N Yukawa
coupling constant matrix. One chooses the weak basis,
and MIu(D) is given by a real diagonal matrix by carrying
out the suitable biunitary transformation as the WBT.
In the basis, both of the uptype and downtype singlet
mass matrices have N real parameters. Suppose that we
find the biunitary transformation, which diagonalizes the
mass matrices as

Vi MyVy, = Dy, 5)

V}BLMDVDR = Dp, (6)
where Dy; and Dp, are real diagonal matrices. We note that

real diagonal matrices are invariant under the similarity
transformation P;; and P,
PiDyPy = Dy, PLDpP, = Dy, (7

where Py and Pp are given by
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Unitary matrices which diagonalize the singlet quark mass
matrices with biunitary transformation are not fixed
uniquely. One can define the new unitary matrices,

VUL = VULPU’
VDL = VDLPD'

VUR = VURPU’
VDR = VDRPD’

9

By using Ve Yu,» Vg and Vp, as WBT, one can also
diagonalize the singlet quark mass matrices. Next we con-
sider the weak basis transformation on Yukawa matrices,

szuLVUR = PZ(VD’MLVUR)PU, (10)
V;;yuRVUL = P(Jr](V;re)’uRVUL)PU’ (11)
szdLVDR = PI}(VIydLVDR)PD) (12)
VivarVo, = PHViyaV,)Pp. (13)

In Eqgs. (10)—(13), we extract the diagonal phase matrix Py,
from V; and Vg,

VL = VLPUr VR = VRPU' (14)

We can choose unitary matrix V; so that y’AuL = VI VuL VUR
is a lower triangular matrix with real diagonal elements.
One can also choose Vj so that y’A“R = V,EyuRVUL is a
lower triangular matrix with real diagonal elements.
Therefore, Egs. (10) and (11) are rewritten as

VivaVu, = Py Py =ya, as)
V;yuRVUL = szy’A“RP U= Yo

In the triangular form of the Yukawa couplings y’AuL(R), one
reduces %N (N — 1) real parameters and%N (N + 1) imagi-
nary parameters from N X N complex Yukawa matrices
v, and y,, respectively. Therefore, each triangular matrix
includes %N (N + 1) real parts and %N (N — 1) imaginary
parts. With P, one can remove the N — 1 imaginary parts
in y’AML. Therefore, with the WBT in Eq. (15), y, , includes
%N(N + 1) real parts and %(N — 1)(N — 2) imaginary
parts, while y, . includes JN(N + 1) real parts and
IN(N — 1) imaginary parts.
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TABLE 1.
universal seesaw model in a specific WB.

PHYSICAL REVIEW D 88, 033019 (2013)

The number of parameters included in quark sector matrices for the N generations

My Mp YAuL YAur Yar Ydr Sum.
Re. N N IN(N +1) IN(N +1) N? N? 3N(N + 1)
Im. 0 0 IN-DWN-2 INWN-1) NN-1 N> 3N*-3N+1

Next we count the number of the parameters in y,;; and
Vvqr- We can use the similarity transformation Pp. Then one
removes N imaginary parts in y,; . Therefore, y,; includes
N? real parts and N> — N imaginary parts. Since we have
already used all the freedom of WBT, N? real parts and N?
imaginary parts are left in y .

We summarize the number of degrees of freedom in the
quark sector of the universal seesaw model for N gener-
ations. Table I shows the number of real and imaginary
parameters in the matrices obtained by the WBT. Table II
shows the number of real and imaginary parameters for
specific generation numbers N = 1-4.

B. CP invariant condition

Let us prove the previous derivation of the number of CP
violating phases with an alternative argument. To count the
numbers of nontrivial CP violating phases, one can study
the numbers of independent CP invariant conditions. The
CP invariant conditions are then

My =My,  Mpy=M, (16)
Yur = Yurs ViR = Yip> )
Yar = Yar Yar = Yag- (18)

We consider these conditions in a specific weak basis. In
the basis, the singlet quark mass matrices are given by real
diagonal matrices D;; and Dp. Yukawa coupling matrices
yur and y,g are given by the lower triangular matrices y, ,,
and y!y .. Note that the diagonal elements of the triangular
matrix are real. In this basis, CP invariant conditions for
singlet quark mass matrices are written as

19

v}, DyVy, = Dy, V) DpVp, = Dp.

To satisfy the conditions given above, Vs are determined as

Vy, = Vy, = Py, Vp, = Vp, = Pp. (20)

R

TABLE II. The number of parameters for the specific genera-
tion number N.

N=1 N=2 N=3 N=4
Re. 6 18 36 60
Im. 1 7 19 37

The CP invariant conditions for Yukawa matrices are then

Phyy Py=y"y 1)
PZ/J’/A,,RPU =Y A (22)
PTUydLPD = Vi (23)
PlysPp = Vigr- (24)

These four relations are also written in terms of the argu-
ment of their matrix element,

a; aj

2 ’

arg (y/AuLi.j) = arg (ylA“Rl‘j) = (25)

ai_bj

> (26)

arg (ydLij) = arg (ydRij) =

We count the nontrivial CP invariant conditions which
cannot be satisfied by adjusting the phases in Py and Pp.
Since one can choose the N — 1 phase difference, a; — a;
(i=1—-N) as arg(yaui) =“5", the N—1 CP
invariant conditions are automatically satisfied.
Therefore, the number of the nontrivial conditions in
Eq. (25) is (N — 1) = 2 X Y¥=D — (N — 1). As for the
conditions in Eq. (26), b; is chosen as b; =a; —
2 arg (v,z.i;) so that the N condition of Eq. (26) is satisfied.
Therefore, there are 2N? — N nontrivial conditions. Then,
in total, we find 3N2 — 3N + 1 CP invariant conditions,
which are identical to the number of CP violating phases.
It also agrees with the number of the imaginary parts in the
Yukawa matrices obtained with the WBT (see Table I).

III. CP VIOLATING WEAK BASIS INVARIANTS IN
THE THREE-GENERATION MODEL

In this section, we derive the CP violating WB invariants
for a three-generation model. The use of the WB invariants
including SU(2) singlet quarks within the standard model
gauge group is discussed in Ref. [22]. We define the
following Hermitian matrices in order to write down the
WB invariants for CP violation in the universal seesaw
model:
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Hy = MyML,  Hp=MpMl, — Hy, =y.yl,
HuR = yuRyZR’

hy = MMy,

Hy = ydLysz! Hgg = J’dRy;Ry

hD = MfDMD’ huL = ylLyqu
hag = y;RydR'

(27)

hug = YZR)’MR, hg, = y:SL)’dLr

In the case that the singlet quark generation number is 3,
identical to the ordinary quark generation number, the 19
CP violating WB invariants in the quark sector of the
universal seesaw model are then

I, = Imtt[h,;, hy P, (28)

I, = Imte(Mqghyhy ME hg), (29)

I3 = Imte(Myh h, ME hg), (30)

1, = Imtr(M i b HyM Y ), (31)
Is = Imtt[hy;, hp T, (32)

Iy = Imtr(Mphpha M hag), (33)

I; = Imtr(M phyhg M hag), (34)

Iy = Imtr(M phy by HpM b hag), (35)
Iy = Imt{H,;, H; |, (36)

Lo = Imtr{H g, Hig P, (37

Iy = Imte(Myy! ya M5y ey ), (38)
Iy = Imte(Mqy!, yu ML HpY evar), (39)
Iy = Imte(Myy! ya MEER Y evur), (40)
Iy = Imtr(M’uhUyILydLMTDy;RyuR)r (41)

Iis = Imtr(Myhyyl ya M HpY pyar),  (42)

Lie = Imte(Myhyy! ya MEHRY eyag), (43)
17 = ImteMyhyy!, y My oy 2) (44)
17 miriMyhyy, 1 YarM pYarYur )

Iig = Imtr(MUhU)’IL)’dLM%HD)’}RyuR): (45)

Lo = Imtr(Mqhyy!, ya ML HAY vup). (46)

We briefly explain how to construct the CP violating WB
invariants in Egs. (28)—(46). First, we can construct the WB
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invariance which does not vanish trivially by considering
the trace of the cube of the commutator,

I, = Imtt{h,p, hy . (47)

Note that the real part of the trace of the cube of the
commutator does vanish. The nonzero value of the trace
of the cubic commutator signals CP violation, and the
proof follows in the same way as the Jarlskog invariant
[10] and the CP violating WB invariant [11] for the
Kobayashi-Maskawa model [23]. Next we consider the
WB invariant with the form,

tr (Mahyh, M) (48)

When CP is conserved, the imaginary part of Eq. (48)
vanishes,

tr (M b e ME R ) = [e(M g hyhy M )T (49)

u

Therefore, the imaginary I, = Imtr(MuhUhuLMLhuR) is
a CP violating WB invariant. By inserting some Hermitian
matrices, we can also construct the other CP violating WB
invariants.

IV. A PARAMETRIZATION OF THE YUKAWA
SECTOR IN THE THREE-GENERATION MODEL

In Sec. II, we introduced a specific WB; i.e., the uptype
Yukawa matrices are given by the triangular matrices and
the singlet quark matrices are real diagonal. This WB is
obtained by fully utilizing the freedom of the WBT. Then
the number of the real parts and imaginary parts included
in the parameters of the Yukawa sector is minimized and
should be equal to the number of independent physical
parameters. In this section, we introduce a parametrization
of the Yukawa sector for the three-generation model which
is associated with the WB in Table I. The parametrization
includes the same number of the real and imaginary
parameters with that of the WB for N = 3. The Yukawa
terms for the quarks in the WB are given by the following
Lagrangian:

L Yukawa yAuLijQid;L u;e + yZuRjiui(l;IEQ;?
+‘ijii)bql% +-}LC'+-ydLUaE}ﬁL2)§
+ yirii DL b kak + DLDL Dy + He., (50)

where i, j = 1-3. After the symmetry breaking of SU(2);
and SU(2)g, the doublet Higgses ¢; and ¢ acquire the
vacuum expectation values v; and vy, respectively. Then
the mass matrix for six up (down) quarks are generated as

( —>:]\/l ( 123 ) (_O 7):]\4 0( d% )
ur LlL u U ’ al I L D @ ’
(51)

where, M4, and MY, are given as

033019-4



QUARK SECTOR CP VIOLATION OF THE UNIVERSAL ...

0 ya LUL)
My = ( wwV) 52
U \vleve Dy ©2)
M 0 — ( 1_0 ydLvL ) (53)
D YarVR Dp

Dy and Dp are singlet quark mass matrices which are real
diagonal,

My 0 0 M, 0 0

py=|0 M. 0| Dp,=|0 My 0|
0 0 M, 0 0 M,

(54)

where the diagonal elements satisfy the following order,
My>Mqc> My and My, > Mg > Mp, in order to acquire
the light quark mass spectrum m, < m, <m, and m,; <
my < my,. Applying the result in Table I to the three-
generation model, the uptype Yukawa matrices y,,; and
Yaug are given as triangular matrices,

(yuLl 0 0 \
YauL = | Yur2t  Yurz 0 |

\Yur3t Yurzz Yur3 )

(yuRl 0 0 \ (55)
Yaur = | Yur2t  Yurz 0 |

\yuksl YuR32 yuRS)

where y,;3, and y,g;;(i > j) are complex and the other
elements are real. Two phases of y,;,; and y,;3; are
removed by using the freedom of the similarity transfor-
mation Py in Eq. (10). The downtype Yukawa couplings
are given by 3 X 3 matrices. According to Table I, y,;
includes nine real parts and six imaginary parts. They can
be parametrized as

Yar = Uryaar, (56)
where y, 4, is a lower triangular matrix [(ya,.);; = 0, for
(i < j)] which includes six real parts and only one imagi-
nary part in (y, 4z )s,. It is parametrized exactly the same as
that of ya,1,

Ydri 0 0
0o | 57

YdL3

YAdL = | Yar21  Ydr2

Ydr31  Ydir32

U, includes three angles and five phases as

Uy = P(aLl’ aro, O)V(eu, 012, 013, 5L)P(:BL1: Bra 0),
(58)
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el 0 0
P(p1, b p3) =] 0 €% 0 (59)
0 0 ¢

In U;, V denotes the Kobayashi-Maskawa-type parametri-
zation of the unitary matrix which includes three mixing
angles 6;; (i =1-3) and a single CP violating phase
6, [see Eq. (C4) in Appendix C for the explicit form for
V]. There are four more CP violating phases, a;;, B;; (i =
1, 2), which are parametrized in the diagonal phase matrix
in P(alL, dyy, 0) and P(BLI’ BLZ’ 0) in Eq (59) Next we
parametrize the down-quark Yukawa coupling y . Since
Yar 18 a completely general 3 X 3 complex matrix, it has
three more CP violating phases compared with y,; .
Therefore, one can parametrize it as the product of a
unitary matrix and triangular matrix as

Yar = URYadr- (60)

In the parametrization given in Eq. (60), the unitary matrix
Uy includes six phases [see Eq. (C3)],

Ur = P(alR’ QopR, a3R)V(‘91RJ 02k, O3k 5R)P(BRI: Bro» 0).

(61)
Yaqr has the same form as that of ya g,
Ydr1 0 0
Yadr = | Yaret Yarz 0 | (62)
Ydr31 YdR32 YdR3

where y g;;(i > j) are complex and y (i = 1, 2, 3) are real.
We show how the 19 CP violating WB invariants /;—/ ;g
in Egs. (28)—(46) can be written in the specific WB in which
the singlet quark mass matrices are real diagonal and the
Yukawa couplings are parametrized by Egs. (55), (56), and
(60). Then one can relate the CP violating WB invariants to
the CP violating parameters defined by the specific WB.
We first show that the first eight WB invariants I;—Ig can be
written in terms of the CP violating phases of the Yukawa
couplings of the triangular matrices. Note that there are also
eight CP violating phases in the triangular matrices of the
Yukawa couplings. By taking the real diagonal mass
matrices for the singlet quarks, one can show [; is written
in terms of a combination of the Yukawa coupling yu,; .,

Iy 2 Im[hyp 2k 03h0051 ], (63)

where h,; = yZuLyAML' Because Im(y,;3,) is the only CP
violating phase in y,,;, I; corresponds to the CP violating
phase Im(y,;3,). One can also show that I,, I3, and I, are
written by linear combinations of the following quantities:

i = Im(hypijhur;). (G J) = (1,2),(2,3), 3, 1), (64)

where h,z = yZuRyAuR' I, I3, and 1, depend on Im(y,;;)
(i > j) and Im(y,;3,). All the four CP violating phases in
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uptype Yukawa couplings y,,; and y,,r can be found in
the WB invariants /,—1,. Similarly, the four WB invariants
Is—Ig are related to the four CP violating phases in the
triangular matrices of the down quark sector. /5 is related to
Im(y,z3,) since I5 is proportional to

Is 2 Im(hyp12har03hars), (65)

where h,;; = yZ Yaa- Ie—Ig are written in terms of three
combinations of Yukawa couplings x'?, x4, and x3'. They
are defined by

Xi =Im(hghas), () =(1,2),(2,3),(3,1), (66)

where g = yZdRyMR. They are related to Im(yagg;;)
(i > j) and Im(y4.37)-

So far, all the CP violating phases in the triangular
matrices in the Yukawa couplings are identified in the
WB invariants /,—Iz. Next, we show how the other 11
WB invariants are related to the rest of the CP violating
phases in U; and Uy. Although Iy—I9 depend on the CP
violating phases of the triangular matrices, we focus on
their dependence on the CP violation of unitary matrices
U; and Ug. Iy depends on U; and I}, depends on Ug.
There are still four CP violating phases in U; and five CP
violating phases which are not identified yet in the WB
invariants. One can easily see I1;—/;9 can be written in
terms of

Im (yZuLULyAdR)ij(yZdRU};yAuR)ji- (67)

They depend on the 11 CP violating phases in U; and Uy.
Now we carry out the following unitary transformations
on the downtype quarks d9 and d%,

dg - ULdL’ (68)

4% = Ugdp. (69)

With the new basis given in Egs. (68) and (69), only the
form of charged currents changes as

ury,d) =ury,Urdy, UgY dy = Ugy,Urdg. (70)
The neutral currents keep their diagonal form as
dpyudg. (1)

In terms of the new basis, the downtype mass matrix IMDO
is changed into

:UTO ofUr O
Mo (oL 1)MD<0 |

0 YadLVL )
= . 72
()’Z[m Ugr Dp (72)

Note that in the new basis, the downtype Yukawa matrices
are given by the triangular matrices. To summarize, at this
stage the mass terms of the quarks are

Uy, URY ulrs dry,dr,

PHYSICAL REVIEW D 88, 033019 (2013)

(@ )M ) (a0 D)Mo 75 ) 73

V. DIAGONALIZATION OF THE MASS MATRICES

In the previous section, we performed the unitary trans-
formation on SU(2) doublet fields. In this section, we carry
out the diagonalization of the 6 X 6 mass matrices M q,
and M p. Therefore, by the unitary transformation, dou-
blet and singlet quarks are mixed in the mass eigenstates.
Now we diagonalize the mass matrices given in Egs. (52)
and (72),

d 0
Vi MyVig = ( 0” by ) (74)
Note that d, is a diagonal mass matrix for light uptype
quarks and Dy; denotes that for heavy quarks. The down-
type mass matrix is diagonalized as

d 0
Vi MoV = (¢ 5 ) 15)
where d,; is a diagonal mass matrix for light downtype
quarks and Dy, is that for heavy quarks. In terms of the
mass eigenstates, charged currents and neutral currents are
written as

upy Urijdy; = VLaB@degy (76)

URi Y uUrijdrj = VRQB%’yud%‘B) (77

UpiYuUr = ZuLaBEVM”ZlB: (78)

URTY wlRi = ZuRapUiaY ulip (79)

dpiy,dy = ZdLaB@'yudzlﬁ; (80)

driYudri = ZdRaﬁdTga?’Mdgﬁ’ (8D

where u” and d"(a =1,...,6) denote the mass
eigenstates.

We parametrize V,; and V,r (¢ = u, d) with 3 X3

submatrices as
K R K R

Vi =( 2 ) Vg = ( ak AR ) 82

at (SqL Tor w\ S Tor (82)

The 6 X 6 mixing matrices V; and Vj for the charged
currents in Egs. (76) and (77) are written as

_ K:IL ULKdL KILULRdL (83)
L - )
RILULKdL RIL ULRdL

K UK, Kl .UxR
VR=< :R RIMdR :R R dR). (84)
RuRURKdR RuRURRdR
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The mixing matrices for the neutral currents in
Egs. (78)—(81) are given by

Z . = (KIILKML KILRuL>
ul s

RlLKuL RZLRuL (85)
Z = KJIRKMR KJIRRuR
WR\ ot t ’
RMRKMR RMRRMR

PHYSICAL REVIEW D 88, 033019 (2013)

Kl Ky K} Ry
Za =\ i '
Ry Kin Ry Rar

KixKar  KlgpRar
ZdR - + + .
RirKir  RirRar

(86)

The quark interaction terms induced by neutral currents are
written in terms of mass eigenstate quark fields and mass
eigenstate gauge fields as follows:

2 1 - 2 1 -
—Lnc = + el Auly — —ediAdy — ggl(CRchf + spsg)in Luly + ggl(Cstcg + sgse)dufdy

3 3

2 _ 1 -
+ §gl(SWCRS§ — sgeg)in ' uly — ggl(sWCRsf — sgeg)dyZ'dy

[1
[1

2

_ 1 _
+ gi(sgeg — CRSWS§))]M§'QZ'M?§3 + [_ EZdRa,B(gR(cRcf + sgswse) T gi(spee — CRSWng))]dZ’aZ'd%ﬂ-

_ 1 _
+ EZuLa,B(gLCWC.f + g1(cpsweg + Sng))]uZ”aZuZ”ﬁ + [_ EZdLaﬂ(chwcf + g1(cgsweg + Sng))]dTaZdT,g
_ 1
+ EZuRaB(gR(cRsf — SpSweg) T g1(cpsweg + Sng))iIM}?aZM}?B + [_ izdRaB(gR(cRsf — SRSWCg)

_ 1 _
+ gi(cpsweg + Sng)):Id}?aZd;?g + [— Zurap(—8rcwse + 81(sgee — CRSWng))]MTaZ/MZ’B

2

1 - 1
+ _EZdLaB(_gLCst + g1(sgee — CRSWSg)):Id'L"aZ/er"ﬁ + [_ZuRaB(gR(CRC§ + SgSwS¢)

(87)

In Eq. (87), we used the notation of the mass eigenstates of neutral gauge fields,

A CwCR
—(swegeg + Sgsg)

VA SwCRSg — SRC

where the mixing angles of the neutral gauge bosons
satisfy the following equations:

8RR = 81>
5% sin 20 v7

sin220g\. 27"
sin226W)vL:|

8Liw = 81k

(89)

tan2& = —

swlvg + (sk —

They are derived by taking the vacuum expectation value
of the bidoublet Higgs field zero in the formulas of
Ref. [14]. In order to acquire the derivation of the relation
(88) and the definition of mixing parameters sy, Sg, ¢, and
e, see Ref. [14].

Cch

—CWS§

Sw CwSR B

CRS¢ — SWSRC¢ Wz , (88)

CRCg T SwSpS¢ W13e

VI. THE APPROXIMATE FORMULAS FOR THE
MIXING MATRICES

So far, we derive the exact formulas for the mixing
matrices. In this section, we carry out the diagonalization
of the mass matrices and determine the unitary matrices for
the diagonalization. In Appendix B, we show the procedure
of the diagonalization and the approximation. We have
determined the submatrices of the unitary matrices V.
and Vg in Egs. (74), (75), and (82). The approximate
formulas on K,; in Eq. (B25) and R,; in Eq. (B6) are
given as
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1 MeYur1Yogo MrYuL1Yigs
Myyuroyura Myyursyurs
’ Moy, 1oy
K, = _ Mcyuiyura 1 TYuL2YyRr3) , 90
ulL Myyur2yura Mcyur3yurs (0)
My yuriGurzaYurot =YureYurs1) — — MrYyuroYursn 1
My Yur2YuL3YuR3 Mcyur3yurs
v
M, YuLl 0 0
YL YL
Ry = | M, YuL2t  3q;YuL2 0 , on

VL VL v My
M, YuL31 3. YuL32 D2 YuL3

where Dy denotes the mass eigenvalue of the lightest state of the heavy uptype quarks and the definition can be found in
Eq. (B4). Similarly, the downtype mixing matrices K ;;, R;; have following forms:

1 Mgyar )’,*,Rz] Mpyar )’ZR_; 1
Mpyairayara Mpyar3yars
- ) Mpyarayy
K, = — Msyar1yara 1 BYdL2Y 4r3y 92
dL Mpyaroyara Msyasyars |’ ©2)
Mg yar1(VarsoYarot —YaroYars) — _ MpYaroYarsn 1
Mp Yar2YdL3YdR3 Mgyar3yars
vy
M, YLl 0 0
— | X YL
Ry = | m,Yarat  y;Yarz 0 . (93)

A%YdLm ;%)’dmz ﬁ;ydm
The approximate forms for Kz, R,z, K4z, and R are also derived using the formulas
K, = Y;rVRS g/ dy R,z = yrvrTor/Do. 94)

where Eq. (94) is derived using Eq. (A1). By substituting the approximate formulas for S,; and T, given in Egs. (B7) and
(B5), K g and Ry are given as

K= — Dy t UL VR
uR — yAuRD2 YaurBuL d
ou u
1 & yuRlyzLZI & yuRlyzlgl
My yuayura My yur3yurs
My y:L;Q(yuRZl,VMR327YMR2yuR3l) _ Mc Yur21Yur21Y 121 1 Dy yMRZy;L}Q
- 7| Mc Yur1YuL3YuR3 My YuriYur2Yur2 Mc Yur3Yurs ’ 95)
2 2 .
1— M7\ yuroYurs1 —Yuro1 Yurz2 1— M7\ yurzy My + Dy Yur3Yur32
D3 YuR1YuR2 DY) yure  Dr  Mc Yur3Vurs
VR
M, YuR1 0 0
Ugr VR UR
R.,r = yA”RD— = | m,Yur2l  37;YuR2 0 , (96)
ov VR VR VR
My YuR31 3 YuR32 D, YuR3
1 Mg Ydr1 Y101 Mp Ydr1Y 131
Mp  yraYar2 Mp yar3yars
K = _yAdRin Kﬂw . 1 Mp Yar2Ygip (97)
R21 Mo )
Dp AdL dg d ) . Ms yarzyars |
K Mg Yaro1Yarst _ Mp Yar30YdR32YdR32 1
dR31 My, yauoyare Mg yaraYar3Yars
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_ My Yar2Vara1Yar32 ~ YaraYar31) + My Yar21Ydr21YdR21

Kara1 = .
M Yar1Ydr3Ydr3 Mp  Yar1Yar2Yar2
K _ Mp YZL32(YdR21ydR32)’dR32 - )’dRz)’dR31)’dR32) + Mg yZLZIydR21ydR31
drR31 = — 7. —
My YdRr1YdR2YdL3YdR3 Mp  Yari1Yar2Yare 98)
1;—2)’[11%1 0 0
— YR _ | » vy 0
Rair = Yaar Do | Yar21 7, YdRr2 ,
D

UR UR UR
M, YdR31 3 YdR32 37, YdR3

where the definition of Dg;; can be found in Eq. (B3).
We summarize the results of the mixing matrices. The left-handed charged current V; is determined in a good

approximation as follows:
U U,R
VL=< frr ot ) (99)
RL, U, RLUR,

where we ignore the corrections suppressed by heavy quark masses by setting K,; = K, = K ;z = 1. The
3 X 3 submatrix, which corresponds to light quark mixings, is mostly determined by the 3 X 3 unitary matrix Uj.
In our parametrization, U, includes five CP Violating phases ar1, ar1, 61, Bris Bro- The mixing between the light quark
<< 1. The mixing among heavy quarks is suppressed by a

factor of the product W One finds that the mixing of the heavy uptype quarks and the light downtype quarks

corresponding to Ve, (i = 1-3) is large. The large mixing occurs because the component of R, 35 is not suppressed. This
phenomenon is related to the enhancement mechanism of the top quark mass as shown in Refs. [8,9].

The flavor changing neutral current (FCNC) for up quarks is determined by Z,;, Z,r in Eq. (85). We first show the
approximate formulas for the FCNC among the light uptype quarks, Z,; ;; (i, j = 1-3). They are derived using the relation,

ZuLij = (KIILKML)ij = 5ij - (SILSML)ij’

m\ [, _ . M
Zyn =1-— (J> I:Z(yA,iR)ld(yAuR)kl ( T) |(yAuR)31| ]
Vr/ Lo
m,m. — - * M
ZuLlZ = U2 [(yALER)ZZ(yAthR)Ql + < ) (yAuR)31(yAMR %2],
R
m,m e 1o m,m, (M+\3
Zuurs =" (o O35 OO h5 ) — " (3) Oaledsi O le)ss
Ur \YuL2 Ur Dy
m, M\4 (100)
Zym=1-— ( ) I:(yA“R » (—T) |(yAL,R)31| ]
Ugr
m\2 v mem; (My
z :—<—C) uLz . ’( >(y )3V aur)33
ul23 y%RzyuLZ U% DT AuR’32\Y AuR’33

m:\2 |y L32|2 m\2(Mr\, _
SN Y S 0 AT
vr) V202 \wg) \Dg ) AR

We note that the CP violation of the tree-level FCNC for the left-handed current is determined by the CP violating phases
in the right-handed Yukawa couplings y,g;;(i > j) and left-handed Yukawa coupling y,3,. The strength of the FCNC is
naturally suppressed by the SU(2)y breaking scale. The FCNC of the left-handed current between the light uptype quarks
and the heavy ones can be written as

. 2 e
my 1 _my  Yuran My \™ my YurorYurzr ~YuR2Y g3
UR YuR1 UR YuR1YuR2 Dy UR YuR1YuR2YuR3
2
KT R, = m, Yo m. 1 M\ me Vurm (101)
ul"u VR Yur1YuLl VR Yur2 Dr | vr yur2Yur3
My Yurai Me _ Yurz Mr\m; 1
VR YuL1YuR1 VR YuL2Yur2 Dy Jvr yurs
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The strength of the FCNC between the heavy left-handed uptype quark and the light uptype quark is suppressed by the
SU(2)g breaking scale. We also note that CP violation is determined by the phases of y; 3, and yg;;, (i > j). The FCNC of
the left-handed current among the heavy uptype quarks is given as

m, 2y§L|+|yuL2]|2+|yuL3]|2 mymg Yur2Ywo Tz Yur2 My m,m, Yiian
UR yi“yim U%{ YuL1YuL2YuR1YuR2 Dy Ui YuL1YuR1YuR3
RT R, =~ mym, Yur2Yur21 TYar31Yy s me 2}‘ﬁL27+|y"L32|2 My m.m, VL ) (102)
ultul Ufe YuL1YuL2YuR1YuR2 UR y;LZyrzzRZ Dy qu YuL2YuR2YuR3
My m,m, YuL3i My mem, Yur32 My 2”_1? 1
Dy v:  VurlYur1Yurs Dy v Yur2Yur2Yur3 Dy | vy 2,

All the components are suppressed by a factor of Ul, The CP violation of the FCNC is determined by the left-handed
Yukawa coupling y,;3,. Similarly, the FCNCs for the light right-handed uptype quarks are given as

mi,m, o .
Z urij = (KJRKMR)ij ~ 6 — (SIRSMR)ij ~ 6 — v—% Z Oal)aOal g, (for i, j=1,2,3). (103)
=i

Note that the flavor diagonal coupling Z, 33 of the right-handed top quark current 7y ulR 18 suppressed,

my

ZMR33 ~]— > - (104)
Yur3VL

The suppression of the FCNC for the right-handed current is weaker than that of the left-handed one. It is suppressed
by a factor of vl—z The CP violation of the FCNC in Eq. (103) is determined by a phase of y,;3,. We note that the same
L

phase appears in the FCNC of the left-handed current among the heavy uptype quarks. Below we show all the components
of the FCNC couplings for the right-handed currents between the light uptype quark and the heavy uptype quark:

2
Zugisa = — ’:—Z m[)’ﬁmhm + (1 - (T;f}:) yf,L;yﬁm)(y"Rz'y”mllz - yzRZIYMRSI)’;RQ)]y
Zoris = ﬂl:l _ (thT)2 . 1 . ]yMR32(yZR21yZR32 —zyumy;im,),
vL VLUR/ Yur3Yur3 Yur2YuR1YyuRr2
Zoris = ﬂl:l _ (thT)2 i 1 i :IYZRzl)’Zmz - yuRZyZRSI’
VL VLVUR/ Yur3Yur3 YuR1YuR2YuL3
Zyros = -5 ;[)’mz)’mzl + (1 - (thT)z ) 1 7 )yuR31yZR32:|’
VL YuL1YuR1YuR2 VLUR/ Yur3Yur3
m,. 1 [ mMr\2 1
Zurrs = — A yuTyL%RZ _Y§R2 + (1 - (vaR) yﬁmy%m)bumzp]r (105)
Zoros = M Yurm _1 _ (thT>2 i 12 ]
VL Yur2Yur3 L VLUR/ Yur3Yur3
Zrss = _my, 1 [m, Yur2VuraYur21 T YR31Yg32) + m My Yugsi ])
Vr Yur1Yur1 L1y Yur2Yur2 ULUR YuL3YuR3
Zopes = — e L e yursnOaga + Yurs2l®) L MMy Yurs2 ]
Vp YuL2Yur2 LMy YuL2Yur2 VULUR YuL3YuR3
2= =M 1 [ﬂ Yurs2Yurzy | MMy 1 ]
Vp Yur3 LMy Yur2Yur2 ULUR YuL3YuR3

We observe that CP violation is determined by the four phases, Im(y,;;) (i > j) and Im(y,3,). The FCNC among the
heavy right-handed uptype quarks is given as
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Z (R! Ruz) it ! Z (106)

uRi+3,j+3 = UG p IR = YaurkiYuRkj

! K ! U% yuLlyuRlyuL]yuR] k=i,j uRki g

Note that the flavor diagonal coupling Z,gee = 2 o7 is not suppressed, which is in contrast to the coupling Z,z33 in
Eq. (104). =

Next we show the FCNC of the down-quark sector in Eq. (86). The approximate formulas for the FCNC for the left-
handed currents is given by

m m
— d d L.
Zarij = 8ij — Z D rar)ii O adr)is (for i, j = 1,2,3),
R k=i, j
my 1 _mg Yari my Yaro1 Yars ~Ydr2Y gpay
UR Ydr1 UR Ydr1YdrR2 VR Ydr1YdR2YdR3
K:gLRdL ~ | M _Yan mg 1 _m Yigm , (107)
VR YdL1YdR1 VR Ydr2 VR Ydr2Ydr3
My Yar3i Mg Yarz my 1
VR YdL1YdR1 UR YdL2YdR2 UR YdR3
i) 1
+ - m,my, T
(Rj Rar)ij = —5 Z YarxiYdLkj (for i, j =1,2,3).

Vg  YdLiYdRiYdLjYdRj k=i,j

As we can easily see from Eq. (108), the FCNC of the down-quark sector is much simpler than that of the up-quark sector.
The FCNC for the left-handed current among the light downtype quarks is suppressed by a factor of U% The same
R

suppression occurs in the FCNC among heavy quarks. The FCNC between the heavy quark and light quark is suppressed
by a factor of ULR For the right-handed current, the FCNC couplings are given as

i)
= T ~ — t ~ _ mgmy —1 \* L.
ZdRij = (KdRKdR)ij = 5ij (SdRSdR)ij = 5ij ) Z (yAdL)ki(yAdL)ky (for i, j =1,2,3),
L k=ij
md l
Zjgia = —— —,
Uy, YdrLi
* * *
z _my ydLZlydR21()’dR2ydR21 + ydR31)’dR32)
drR15 = —— >
v Yar1Yar1YdL2Ydr2
2 2 % I % 2 * I £
+ n ydLSZ[ydRz(ydRzydR31 ydR21ydR32) +'|ydR32| (YdRzydR31 ydR21ydR32)]
2 .3 ’
vpmy Yar1Yar2Yar2
* * * *
Zirie = ms ydL32ydR32(ydR2ydR31 ydR21ydR32) Mgy Yar21Y aro1Y dr31
2 ’
vy )’deyszydRz)’dw mgvr  Yar1Ygr1YdL3
z _ Mg Yar2i
dR24 = — T T
Uy, YdL1Ydri (108)
mg 1
ZdRZS =T T
Uy YdrL2
7 My Yarz2Yar32Yar32 _ Ma"p  Yar21Yar3i
dR26 — T > ,
Vr  Yar2Ygr2YdLr3 mgVy Yar1Ydr1YdL3
Mg Ydr31
Zigyy = —— ——,
Uy, YdL1Ydri
Mg Ydar32
ZdR35 e
Uy YdL2Ydr2
my, 1
Zigzse = —— —,
Uy, YaL3
i 1
t - Mgty
(RirRar)ij = — Z YarkiYdRkj-

UL YdLiYdRiYdLjYdRj ¥=;
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The FCNC among the light downtype quarks is suppressed
by a factor of % Since the downtype quarks’ masses
are smaller than vLL, the FCNC for the down-quark sector is
naturally suppressed. We observe that the suppression of
the FCNC among the heavy quarks is similar to the light-
quark case. The FCNC from heavy quarks to light quarks
is also suppressed by a factor of vi, which is weaker than
that for the left-handed current. HLowever, it is much sup-
pressed compared with that of the corresponding up-quark
case. Concerning CP violation, we observe that the CP
violation of the tree-level FCNCs are determined by the
imaginary parts of the triangular matrices of the Yukawa
couplings y,.

VII. CONCLUSION

We study CP violation and flavor mixings in the quark
sector of the universal seesaw model. We find the number
of independent parameters in a specific weak basis. The
basis is obtained using all the freedom of the WBT. There
is no redundancy due to WBT in the parameters left.
Therefore, the number of the parameters in such weak
basis corresponds to the number of independent parameters
of the model. The results of the number of parameters
(real parts and imaginary parts) are summarized in
Table I and in Table II for the case where the singlet quark
generation number is identical to the doublet quark gen-
eration number. The number of CP violating parameters is
also obtained by counting the number of CP invariant
conditions that are nontrivially satisfied, which agrees
with the one in the specific weak basis.

For the three-generation model, the number of CP vio-
lating phases is 19. The corresponding CP violating WB
invariants are constructed in terms of the Yukawa matrices
and singlet quark matrices. To identify the CP violation
and mixings in mass eigenstates of quarks, we study the

1
" d, 0 yAqRURSqL/dq
Vor = MoV I I t 5
0 o (yAqLULKqL + DyS,.)/d, (yAquLRqL + DyTy.)/Dg
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unitary matrices V,;, V,r(¢ = u, d) which are used to
diagonalize the 6 X 6 mass matrices for the up-quark
sector and down-quark sector. These unitary matrices are
related to the mixing matrices for the charged currents and
neutral currents so that the 3 X 6 submatrix of the unitary
matrices in V,;, V, enters into both charged currents V,,
Vi and the neutral currents Z,;, Z,g> Zy1.» and Z z. The
CP violation of the tree-level FCNC is determined by the
imaginary parts of the triangular matrices. Therefore, we
conclude that the FCNC is determined by the WB invari-
ants I,—Iz. The mixing matrices for the charged currents
also depend on the 3 X 3 unitary matrices U; and Uy
defined by Eqgs. (68) and (69).

We obtain the mixing matrix elements by carrying out
the approximate diagonalization so that we have some
insight on the mixings and CP violation in terms of the
mass eigenstates. As discussed in Sec. VI, we identify all
19 CP violating phases for the three-generation model in
the couplings of charged currents and the neutral currents
in terms of the mass eigenstates.
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APPENDIX A: EXACT FORMULAS OF MATRICES
FOR THE DIAGONALIZATION

In this appendix, we give the derivation of the formulas
for Eq. (94). We also collect the formulas that the subma-
trices of V,; satisfy [Egs. (A4)—(A12)]. The proof of the
formulas is given below. One starts with Eqs. (74) and (75)
for the diagonalization of the mass matrix M 2 which
leads to the following relation:

yAqRURTQL/ﬁQ ) (AD)

where (g, Q, Q) denotes (u, U, U) or (d, D, D). Equation (A1) leads to the formulas in Eq. (94). Since V,, satisfies the

eigenvalue equation,

t t dg 0
ViMeMpVa =y 5 ) (A2)
where
yAquZqul% YaqrVi Do
MoMb = : (A3)
Q D t t 2 4 p2
QVLYAqL  YAqRYAqRVR 0
the submatrices of K,;, S,1, Ry, and Ty satisty
yAquZqu%KqL + yagvrDoS,. = K, d2, (A4)
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DQquLULKqL + (quRyAqu%? + DZQ)SqL =S,.d2,
(A5)

)’AququU%RqL + YaqvDoTor = Ry Dp,  (A6)
DQquLvLRqL + (quRyAqu%e + DZQ)TQL = TQLDNZQ
(AT)

They also satisfy the unitarity conditions. V;LVqL =1
leads to

K} Ky + 5SS, =1, (A8)

RI Ry +ThTor =1, (A9)

Kl Ry + 81 To =0 (A10)
VqLV;L = 1 leads to

KKl +RyR!, =1, (A11)

SqLS;L + TQLTgL =1, KqLS;L + RqLTg,L = 0.

(A12)
Using the equations above, one can rewrite Vg as

YagrVRS L/d YagrVrT, L/D
_ ( q q q q 0] 0 . (A13)

LK, .d
Yagrvr 4L

Vir

RqLDQ

q YAaqLVqL

APPENDIX B: DERIVATION OF THE
APPROXIMATE FORMULAS

In this appendix, we show the derivation for the approxi-
mate formulas Egs. (90)-(98) for V,; and V g. The ap-
proximate diagonalization of the mass matrix of the
universal seesaw model has been carried out in the pre-
vious works [9,20]. Compared to the previous works, we
relax the condition imposed on the singlet mass parameter
M. In this work, we do not assume that the parameter is
very small compared to the SU(2), breaking scale. We also
keep all the CP violating parameters in the approximation
so that we can keep track of the CP violating phases in the
mixing matrices.

We show the derivation for the uptype quark case. The
derivation for the down-quark sector follows in the same
way as that of the up-quark sector. The submatrices of K7,
S..» R, and T,; satisfy Eqs. (A4)—(A7). One also notes
that S,; and R,,; are smaller than K,; and T,; . Let us start
with the Hermitian matrix,

Hy = yZuRyAMRU%? + Dy, (B1)

PHYSICAL REVIEW D 88, 033019 (2013)

By neglecting the small contribution proportional to R, ,
Eq. (A7) is rewritten as
TypHuTy, = Dy, (B2)

where we denote the leading form for T,; as T°, and we
use Tg}_L 79, = 1. The dominant term of Hy is

M 0

Hy~D},=| 0 M. 0 | (B3)
0 0 D?
Dy = ,/yﬁ,%v%e + M3. (B4)
Therefore,

T, ~1, Dy = Dyy. (B5)

Then one can solve Eq. (A6) for R,,;,

D

- (B6)

RuL = YAauLVL D2
ou

In Eq. (A5), by neglecting the term proportional to d2, , one
can solve §,; as

1
Sy = — —DUyZuLULKub

B7
Hy (B7)
Then, V,; is approximately given as
KL YAauLVL 5—53
Vi ={ o 4 . (B3
B DZ, yAuLKML 1

where we use the approximation H 1, =~ D3,,. One can
also substitute S,; in Eq. (B7) and R,; in Eq. (B6) into
Eq. (A13) and obtain V.,

— Dy 1 v v
YAuRVR 2 YaurKur gt Yaurp,;

Vir = (B9)

Dy

YauLVL K”L d“ Doy

Both V,; and V,; can be determined once the submatrix
K,; is fixed. The equation which determines K,; is
obtained as

viHK,, =K, d, (B10)
where H is defined as
1
H = ym<1 — DUH—DU)yZuL. (B11)
u

When deriving Eq. (B10), Eq. (B7) is substituted into
Eq. (A4). Using the approximation detHq =
HynHunHuyss = MgMgHyss, Hup = Mg, Huyp =
MZ, and by keeping the leading term in each matrix
element, one obtains
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y 2 o M Pyuenl?
1L1 <yuR1 + |yuR21| + T D}i R31

2 = M2

= Y LIV L2 ViraaYur3t

H/vi Mo\ Yur21Yury T 5
T

My Yur1Yur3Yur3Yur31
U D?—

Now we solve the eigenvalue equation for K,; . The eigen-
values of HH are related to the up, charm, and top quark
masses squared. We write the eigenvalue equation as

u m? [ u
}[<u3) _U_%<”3)’

(B13)

where u’” = (u;,u,) and i =u, ¢, t. We can rewrite
Eq. (B13) as
Hy Hy Hys m?
u -+ Uy = —u, B14
(}[Tz Hy H, } U% ( )
2
" , m;
(H7, 55) w+ Hus =2 (B15)
L

We first determine the eigenvalue and eigenvector for the

>> Hi,j=

()
i\ 5 )"

Since u < u3, the top quark mass is approximately

given as
_ _ Yur3VR
m; = ULV}[33 = YuL3VL D.

T

top quark. Because 1,2), one can solve

Eq. (B14),

(B16)

(B17)

The corresponding eigenvector for the top quark is given as
}[13
1 5-[33
Hip o (Happ| Mo
N T

(B18)

We ignore the correction in the following analysis since the
normalization factor of Eq. (B18) is close to 1. The other
two eigenvectors v, and v, correspond to the eigenvalues
m?/v? and m?/v?. For the small eigenvalues, Eq. (B15)
can be solved as

(H7, 5{33)'“_
H

Substituting the relation into Eq. (B14), one obtains the
following equation for the up and charm quarks:

hy hip\  om?
RS e
12 22 L

Uy = — (B19)

(B20)

YuL1YuL2 42 YVural) usz My ) uL1Yu12yuR3|me
My M, Yur21Yur2 D My D2

yu |Yumz| M3, My Yur2YuL3YugzoYur3
on (yuRZ + D% ) MZ DTW (B12)
My Yur2Yur3Yur3Yur32 }’12«1_3)’12‘1?3
Mc D3 D
[
where i = u, c and h;; (i, j = 1, 2) is defined as
hij=H,; — 5{,35{ Hs,. (B21)
33
The components of £ are written explicitly,
2 2(.2 2
[ Yer1 Ve War1 + Vurail®)
11 M2 5
U
2 .
h12 — yuLlyuLZUR(yZRzlyuRZ) (B22)

MyMc

2 2.2

h _ YuL2VRYur2

N T TS
M

Then for the up quark, the eigenvalue and the eigenvector
are given as

1
Vi Up - Z_TZ
My = YuL1Yur1 M. V= 2 , (B23)
U . .
_ h;?{
}[3’5
and for charm quark, they are given as
ULUg
Me = YuL2YuR2 3, »
M
¢ (B24)
hp hip
ha) h_22
v, = 1 ~ 1
w h O «
}[13;15'*}[ _ 5'[23
33 Hss
K,; is written in terms of the eigenvectors,
Kyjp=(Va Ve Vi) (B25)

Similarly, the downtype mixing matrices K ; and R,; are
obtained. The eigenvalues for the quark masses agree with
the ones obtained in Ref. [20].

APPENDIX C: PARAMETRIZATION OF THE
YUKAWA MATRIX IN TERMS OF A PRODUCT
OF THE UNITARY MATRIX AND
TRIANGULAR MATRIX

In this appendix, we give proof of the parametrization
of the general 3 X 3 Yukawa matrices in terms of the
product of the unitary matrices and triangular matrices.
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The decomposition and the parametrization are used in
Egs. (56) and (60). The general 3 X 3 complex matrix of
the Yukawa coupling Y with detY # 0 is written in terms
of three independent complex vectors in C3 y°,, (i = 1-3)
as follows:

Y=(y} v ¥3)=Play, ara3)(y1 y2 y3) (CD)

(C2)
|

a; = arg(y3),

PHYSICAL REVIEW D 88, 033019 (2013)

where P(a, oy, a3) is a diagonal unitary matrix defined in
Eq. (59), and yj is a real vector in R>. Then, we show Y can
be parametrized as

Y = P(al, ay, C(3)V(6], 62, 03, 8)P(Ct’, ,8, O)YA, (C3)
where V(6,, 0,, 63, 8) is a Kobayashi-Maskawa-type

parametrization for the unitary matrix, and Y, is a lower
triangular matrix with real diagonal elements,

c0s 05 cos B, cos 6, + sin@,sinf,e’® coshscosB,sinf; — sinf,cosh,e’® sinf;cosf,

V(61, 6,,65,8) = | cosfssinf,cos B, —cosf,sinf,e® cosfssinf,sin@, + cosh,cosf,e® sinfysinf, |, (C4)
—sinf5cos 6 —sinf;sinf, cos 6
yau 0 0 cos 01y 0 0
Ya=|yan Yamn O |=]sin6ycosze®ly]  cosfyly,l 0 (C5)
VA3l YA VA3 sin 6y, sin O3¢'%|y;|  sin 3,6/ y,|  |ys
f
Equation (C3) shows a well-known result [9]; i.e., the C3  satisfying e;r -ej=0;;. Since e;(i=12) are

matrix Y is written as the product of the unitary matrix
and the triangular matrix. Here we show that a particular
form of the parametrization including some phases, angles,
etc., shown in Eq. (C3) is indeed a generic parametrization.
In this parametrization, there are nine real parts con-
structed by six angles,

6]) 92; 63) 92]) 932) 031) (C6)

and three norms of the complex vectors [y?| = |y;l, (i = 1,
2, 3). The nine phases are given by

ay, ay az, @, B, 0, ¢ay, 3, b3y (&)}

Now we prove the parametrization is completely general.
One can start with

P(_al’_a2>_a3)Y:(y1 Y2 y3)’ (CS)

where yj is a real vector in R3. Further, one can take out the
norm of y; as

ly:l ©
(Y1 Y2 v3)=(vi v2 v3)| O Iyl © (C9)
0 0 lysl
‘

Note that v; (i = 1-3) are normalized as v; - v; = 1 butare
not necessarily orthogonal. v3 is a real normalized vector,
which implies

sin 65 cos 6,

vy = e3 = | sinf;sin6, (C10)

cos 0,

We first show the general parametrization for orthonormal
basis vectors ey, e,, which are orthogonal to ez in complex

orthogonal to ez, both real part and imaginary parts
of e; (i =1, 2) are orthogonal to e3. Therefore, they are
unitary superpositions of the two real orthogonal vectors e‘l’

and eY,

(e1r e2)=1(e} e3)U,

( cos 63 cos 6,

e(l) = | cosf;sinf, |, (C11)
\ —sin 6,
( —sin 6,

eg =| cos6, |,

\ ©

where the two-by-two unitary matrix denoted by U can be

parametrized as
sin @, \/[ e*
cos 6, 0

1 0 cos 6,
U= 4 )
0 % )\ —sin6,

Then, one can write e, and e; as

0
o8 | (C12)

[ cos 65 cos 0, sin @, — sin 6, cos 01(3"5\

e; = | cosf;sinf,sinf; + cosh,cos b e’ |eP,
—sin f; sin )
cos 05 cos B, cos @, + sin @, sin O e’ \

e; = | cos@ysinf,cosf; — cosB,sinfe’® |
\ —sinf5cos 6, )
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From v, one can form the vector that is orthogonal to ej.
This vector can be identified with e,,

Vy — eg * V€3 (C14)
= €).
Ji—lel v

Therefore, one can write v, with the superposition,

vy =el - vyes +4/1 — el - v,|2e,,

= sin 032ei¢3ze3 + cos 03292,

(vi v2 v3)=1(e; e, e3)] sinfy cosbz e

PHYSICAL REVIEW D 88, 033019 (2013)

where we set eg - v, = sin f5,e!?2. Next, from vy, one can
form the vector that is orthogonal to e3 and e,. This can be
identified as eq,

vi — el - vie; — el - vie,

V1= led - viP —lef - vif?

Vi = co0s 0,,€; + sin O, cos O3 ¢'P21e,

= ey,

+ sin 021 sin 031€i¢3'e3, (C16)

where one sets X - v; = sin 6,; sin 63¢/% and e] - v, =
sin @, cos 65, e'%2. We summarize the relation (ey, e,, €3)

Note that the unitary matrix (e, e,, €3) is written in terms of three angles and three phases as

We substitute the relation Eq. (C18) into Eq. (C17). Then one obtains

(Vl A\ V3) = V(Hl, 62, 03, a)P(a, B, 0) sin 621 COoS 031€i¢21

which implies

(C15) " with (v, v4, v3) using Egs. (C15) and (C16),
|
cos 65 0 0
cos 03, 0 (C17)
sin 6, sin O3,/ sin f5e'%2 1
(e, €5, €3) = V(6), 6, 65, 5)P(a, B,0). (C18)
cos 65, 0 0
costz 0], (C19)
sin 021 sin 031€i¢3' sin 632ei¢32 1
P(—ay, —ay, —a3)Y = V(6,, 0,, 03, 5)P(a, B, 0)Y,. (C20)

One can easily derive Eq. (C3) from Eq. (C20).
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