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Assuming the Majorana nature of neutrinos, we recently performed a scan of leptonic mixing patterns

derived from finite discrete groups of order less than 1536. Here we show that the 3 groups identified there

as giving predictions close to experiment also contain another class of Abelian subgroups that predict an

interesting leading-order quark mixing pattern where only the Cabibbo angle is generated at leading order.

We further broaden our study by assuming that neutrinos are Dirac particles and find 4 groups of order up

to 200 that can predict acceptable quark and leptonic mixing angles. Since large flavor groups allow for a

multitude of leading-order mixing patterns, we define a measure that is suitable to compare the

predictivity of a given flavor group, taking this fact into account. We give the result of this measure

for a wide range of discrete flavor groups and identify the group ðZ18 � Z6Þ 2S3 as being most predictive

in the sense of this measure. We further discuss alternative measures and their implications.
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I. INTRODUCTION

With the discovery of a Higgs-like resonance at
126 GeV, the Standard Model appears to be complete,
and from a purely phenomenological standpoint, no new
physics seems to be required up to a very large scale, e.g.,
up to the Planck scale. While the description of gauge
interactions in the Standard Model is quite economical
(requiring only 3 parameters), the fact that there are three
generations of fermions is not explained in the Standard
Model and necessitates the introduction of many additional
parameters into the model. Furthermore, these flavor pa-
rameters show certain structures that may suggest a deeper
explanation: the quark sector exhibits a strongly hierarch-
ical mass spectrum and small mixing angles, while the
lepton sector is less hierarchical and has larger mixing
angles.

There have been many attempts in the literature to try
and explain these structures using symmetries that act on
the different families. Here we focus on models with non-
Abelian discrete flavor symmetries, which are known to be
able to describe the large mixing angles of the lepton
sector. The general setup of such models is as follows: a
discrete flavor group is broken to different subgroups in
the charged lepton and neutrino sectors, and the mismatch
between the two subgroups allows one to predict the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
(up to permutations of rows and columns of the matrix)
[1–6]. It should be noted that these predictions will in
general be slightly perturbed by the inclusion of higher-
dimensional operators and renormalization group running
of parameters, which we will subsume under next-to-
leading order (NLO) effects.

Recently, we performed a comprehensive scan of lep-
tonic mixing parameters that can be obtained from remnant

symmetries which form a group of size smaller than 1536
[7]. We identified the groups �ð6 � 102Þ, ðZ18 � Z6Þ 2S3,
and �ð6 � 162Þ as being the only ones that may reproduce
the experimentally favored mixing angles. All three groups
are either of the form �ð6 � n2Þ [8] or a subgroup of such a
group (see Ref. [9] for a recent study of these symmetry
groups).
In this work, we study the question if also the quark

mixing angles may be obtained to leading order (LO) as a
result of mismatched remnant symmetries of non-Abelian
discrete groups. Since the Cabibbo angle �c is roughly of
similar size as the reactor mixing angle

�13 ’ �cffiffiffi
2

p ’ 9:2�;

it would be interesting to obtain patterns in which all
leptonic angles plus the Cabibbo angle are produced at
leading order as a result of remnant symmetries. Since the
other angles are smaller, it is prudent to assume them to be
a result of NLO corrections. It turns out that if one assigns
the left-handed quarks to the same 3-dimensional repre-
sentations (of the same groups) that were found to be
interesting for leptonic mixing, such an interesting quark
mixing pattern may be derived. Especially, the group
ðZ18 � Z6Þ 2S3 seems particularly promising, giving a
Cabibbo angle of sin �c ¼ 0:259. In this setup the origin
of the different patterns for the leptonic and quark sectors
thus stems from the different remnant symmetries to which
the original group is broken in the respective sectors, as is
depicted in Fig. 1. The subgroups that give rise to an
acceptable LO Cabibbo angle can be systematically pa-
rametrized, and we discuss some group theoretical aspects
of the remnant group structure. We then broaden our dis-
cussion by giving up on the assumption that neutrinos
should be Majorana particles, for which case we perform
a scan of finite discrete groups up to the order of 200 with
the help of the computer algebra program GAP [10–13].
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In the final section of the paper, we discuss the useful-
ness of large flavor groups more generally. It should be
clear that if one considers a very large flavor group, vir-
tually any mixing pattern may be realized. If one would
break the group SU(3) down to discrete remnant groups,
for example, the requirement of a breakdown to subgroups
loses all predictivity. The question one might now ask
oneself is the following: which setup is more predictive,
the case of a small group (such as A4 [14–20] or S4 [1–3])
with large NLO corrections or a larger group with smaller
NLO corrections. Under the assumption that NLO correc-
tions are randomly drawn (which seems fine for many
models), statistical arguments (à la anarchy) lead us to
propose a measure of the predictive power of a chosen
group.

II. PMNS AND CKM MATRICES FROM
REMNANT SYMMETRIES

Here we briefly review the setup we are using to obtain
the mixing matrices from remnant symmetries.

Lepton mixing can be obtained from a flavor symmetry
group via its breaking to remnant symmetries in the
charged lepton and neutrino masses, respectively. The
Cabibbo-Kobayashi-Maskawa (CKM) matrix can be de-
rived in an analogous way using this method. The only
difference is that usually different remnant symmetries are
left of the up- and down-type quarks mass matrices. This is
usually achieved in concrete models via spontaneous sym-
metry breaking of flavon fields in some vacuum alignment
configurations. As in Ref. [7], we do not consider the
breaking mechanisms or models to achieve such a vacuum
configuration, but rather we want to find discrete symmetry
groups that contain the residual symmetry groups that can
give rise to LO prediction of PMNS and CKM matrices.

In this section we first assume that neutrinos are
Majorana particles. The PMNS and CKM matrices are
defined as

UPMNS ¼ Vy
e V�; UCKM ¼ Vy

d Vu; (1)

where the unitary matrices Vs and V� diagonalize the mass
matrices

VT
s MsM

y
s V�

s ¼ diagðm2
I ; m

2
II; m

2
IIIÞ (2)

and

VT
�M�V� ¼ diagðm1; m2; m3Þ: (3)

We denote the symbol s 2 fe; d; ug and the numeral
I 2 fe; d; ug, II 2 f�; s; cg, and III 2 f�; b; ug. The mass
matrices are defined as L ¼ eTMee

c þ 1
2�

TM��þ
dTMdd

c þ uTMuu
c. We assume that there is a discrete

symmetry group Gf under which the left-handed lepton

doublets L ¼ ð�; eÞ transform under a faithful unitary
3-dimensional representation �: Gf ! GLð3;CÞ:

L ! �ðgÞL; g 2 Gf: (4)

Analogously we assume that there is a discrete symmetry
group GQ under which the left-handed quark doublets
Q ¼ ðu; dÞ transforms:

Q ! �ðgÞQ; g 2 GQ: (5)

Since all the quark and lepton masses are different, these
flavor symmetries have to be broken into 2 sets of differ-
ent subgroups, i.e., fGe;G�g for the leptonic sector and
fGd;Gug for the quark sector. In general the generators of
Gd and Gu only generate the group GQ, which is a proper
subgroup of Gf; hence, we only consider a direct break-
ing of Gf into residual symmetries Gd and Gu as we
would like to find a common discrete group Gf that can
simultaneously predict the LO PMNS and CKM matrix.1

Within a set of the residual subgroups fGe;G�g, the
intersection between the subgroups in the set is trivial
as we would like to predict 3 different mixing angles in
the leptonic sector. This condition is, however, relaxed for
fGd;Gug as we do not find any groups that predict 3
different quark mixing angles at LO. Subgroups from
different set, e.g., Ge and Gd, can have nontrivial inter-
section. The mass matrix for each sector exhibits a resid-
ual symmetry, satisfying

�ðgsÞTMsM
y
s �ðgsÞ� ¼ MsM

y
s ; gs 2 Gs (6)

and

�ðg�ÞTM��ðg�Þ ¼ M�; g� 2 G�: (7)

The residual subgroups fGe;G�g and fGd;Gug must
be Abelian due to the experimental fact that all the
masses of quarks and leptons are distinguishable. The
3-dimensional irreducible representation of the residual
subgroups cannot be decomposed into three inequivalent
1-dimensional representations if they possess a non-
Abelian character.2 For Majorana neutrinos the residual
subgroup is given by the Klein group Z2 � Z2, while Gs

FIG. 1 (color online). Sketch of the setup considered in this
paper. Different subgroups of the flavor group Gf emerge as

remnant symmetries of the mixing matrices. The mismatch of
these groups creates quark and lepton mixing.

1This possibility is also briefly discussed in Ref. [5].
2See Ref. [21] for the case where neutrinos masses are

degenerate.
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can be any Abelian subgroups of Gf with order n � 3.
Once the generators of all the subgroups are specified in a
certain representation, the mixing pattern of quark sector
and leptonic sector can be determined via the unitary
matrices �s and �� satisfying

�y
s;��ðgs;�Þ�s;� ¼ �ðgs;�Þdiag: (8)

The unitary matrices �s and �� are determined up to
permutations of columns and also a diagonal phase
matrix. The PMNS and CKM matrices are then deter-
mined by

UPMNS ¼ �y
e��; UCKM ¼ �y

d�u; (9)

which are unique up to the permutations of rows and
columns. The Dirac CP phases of the PMNS and CKM
matrices can also be determined from this method.

III. MIXING PATTERN FROM COMMON
DISCRETE SYMMETRIES

As shown in Ref. [7], a scan of finite discrete groups
with order less than 1536 yields only 3 interesting groups
that give LO leptonic mixing patterns which lie within
3-sigma of the current best fit. These 3 groups, namely,
�ð6 � 102Þ, ðZ18 � Z6Þ 2S3, and �ð6 � 162Þ, provide a good
starting point to search for residual groups that can yield an
acceptable CKM matrix at LO. By searching the Abelian
subgroups contained in these 3 groups, we obtain the CKM
matrix at LO in the following form:

UCKM ¼
cos ~� sin ~� 0

� sin ~� cos ~� 0

0 0 1

0
BB@

1
CCA: (10)

The values of sin ~� are given in Table I, and the form may
be compared to best-fit values of the CKM matrix [22],

UCKM ’
0:974 0:225 0:004

0:225 0:973 0:041

0:009 0:040 0:999

0
BB@

1
CCA; (11)

indicating that NLO corrections of the order of Ucb �
�2
c � 0:04 are needed, which is to be contrasted with the

case of A4, for example, where UCKM ¼ 13 at LO, and
NLO corrections therefore have to be of the size Ucs �
�c � sin �c � 0:22. Since there is no mixing between all

three generations in Eq. (10), the CKM CP phase is un-
determined in this setup and will be a result of NLO
corrections.
Before we discuss the results of Table I, it is useful to

recall [7] that the groups in Table I may be defined as being
generated by the generators S, T, and Uðn; kÞ, using the
faithful irreducible representation �: fS; T;Uðn; kÞg !
fS3; T3; U3ðn; kÞg with

T3 �
0 1 0

0 0 1

1 0 0

0
BB@

1
CCA; S3 �

1 0 0

0 �1 0

0 0 �1

0
BB@

1
CCA (12)

and

U3ðn; kÞ � �
1 0 0

0 0 zn;k

0 z�n;k 0

0
BB@

1
CCA; (13)

with zn;k ¼ e2�ik=n, n, k 2 N. In the leptonic sector, if one

uses Ge ¼ hTi ffi Z3 and G� ¼ hS;Uðn; kÞi ffi Z2 � Z2,
one gets the Trimaximal-2-like mixing matrix [7]

UPMNS ¼ UHPSU13

�
� ¼ 1

2
arg ðzÞ

�
; (14)

with the 1-3 rotation matrix defined as

U13ð�Þ ¼
cos� 0 sin �

0 1 0

� sin � 0 cos �

0
BB@

1
CCA: (15)

In the quark sector, we found two different types of
solutions corresponding to different conserved subgroups.
From the form (10) of the LO CKM matrix, it is already
clear that the intersection between Gu and Gd has to be
nonvanishing; otherwise, there would be full 3 by 3 mixing
(as in the leptonic case). The generator of the intersection
can in principle be any generator, but we will always take S
for concreteness. As a result of the scan, we found 2 types
of mixing patterns:
(i) type A:

Gd ¼ hS;Uðn; pÞi ffi Z2 � Z2;

Gu ¼ hðSTÞ2TUðn;mÞi ffi Z4;

(ii) type B:

Gd ¼ hS;Uðn; pÞi ffi Z2 � Z2;

Gu ¼ hS; ðUðn;mÞT2Þ2ðUðn;mÞTÞ2Uðn;mÞi
ffi Z2 � Z2:

Both left-handed quarks and leptons may be assigned to the
same representation, which provides a possibility for
model building of flavor symmetry in the context of grand
unified theories.

TABLE I. LO Cabibbo angles sin ~�, which are compatible with
experimental results generated by flavor groups up to order 1536.
Types A and B refer to different residual symmetries (see the
text).

n Gf GAP-Identification sin ~� Type

5 �ð6 � 102Þ [600, 179] 0.156 A

0.309 B

9 ðZ18 � Z6Þ 2S3 [648, 259] 0.259 A

16 �ð6 � 162Þ n.a. 0.195 A
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Let us first discuss the case of type A. The LO
CKM matrix of Eq. (10) results from the breakdown of
Gf down to Gd ¼ hS;Uðn;mÞi ffi Z2 � Z2 and Gu ¼
hðSTÞ2TUðn; pÞi ffi Z4. Note that ððSTÞ2TUðn; pÞÞ2 ¼ S
is an element of both Gd and Gu.

The generator of the group Gu is given by

R3ðn;pÞ � �ððSTÞ2TUðn;pÞÞ ¼
1 0 0

0 0 �zn;p

0 z�n;p 0

0
BB@

1
CCA; (16)

with z defined in Eq. (13). Note that typically one needs to
choose a different nth root in Eqs. (13) and (16) in order to
obtain experimentally acceptable PMNS and CKM matri-
ces. For example, if we choose the mth of nth root z in
Eq. (13) and pth of nth root z in Eq. (16), the product of the
unitary matrix,

�u ¼ 1ffiffiffi
2

p
0 0

ffiffiffi
2

p

ie2�ip=n �ie2�ip=n 0

1 1 0

0
BB@

1
CCA; (17)

that diagonalizes R3ðn; pÞ with the unitary matrix,

�d ¼ 1ffiffiffi
2

p
0 0

ffiffiffi
2

p

e2�im=n �e2�im=n 0

1 1 0

0
BB@

1
CCA; (18)

that diagonalizes S3 and U3ðn;mÞ simultaneously will
generate LO CKM matrix

UCKM¼�y
d�u

¼ 1

2

1þ ie�2�iðm�pÞ=n 1� ie�2�iðm�pÞ=n 0

1� ie�2�iðm�pÞ=n 1þ ie�2�iðm�pÞ=n 0

0 0 2

0
BB@

1
CCA (19)

or

sin ~� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 sin

�
2�ðm� pÞ

n

�s
: (20)

The interesting case quotes in Table I correspond to (n ¼
5, p ¼ 1, m ¼ 2), (n ¼ 9, p ¼ 1, m ¼ 4), and (n ¼ 16,
p ¼ 1, m ¼ 2), respectively. Since Gu and Gd have a
nontrivial intersection, the group generated by the elements
of Gu and Gd is not the full flavor group Gf. Rather, it is a

subgroup of U(2), depending on the values of n, p, and m.
The groups generated by these remnant symmetries are
isomorphic to ðZ10 � Z2Þ 2Z2, ðZ6 � Z2Þ 2Z2, and QD32

(the quasidihedral group of order 32), respectively.3

The case of type B is analogous, and one finds

sin ~� ¼
��������cos

�
�ðm� 4pÞ

n

���������; (21)

where the case quoted in Table I corresponds to (n ¼ 5,
p ¼ 1,m ¼ 1), which generatesD20, the dihedral group of
size 20. Dihedral groups of this type have been considered
before as an explanation of the LO Cabbibo angle [24], as
we will comment on in more detail below.
To recapitulate: we have seen that the structure of the

LO CKM mixing (10) may be understood as a result of
symmetry breaking down to the subgroups of type A
and type B. The groups �ð6 � 102Þ, ðZ18 � Z6Þ 2S3, and
�ð6 � 162Þ are of the form ðZn � Zn0 Þ 2S3, where
Zn ffi hðSTÞ2ðUðn; 1ÞTÞ4Ti, Zn0 ffi hSTSUðn; 1ÞT2Uðn; 1Þ�
T2Uðn; 1ÞTUðn; 1Þi, and S3 ¼ hR0; T2R0TR0i, where R0 is
short for R0 ¼ ðUðn; 1ÞT2Þ2ðUðn; 1ÞTÞ2Uðn; 1Þ, one of the
generators of Gu in type B. Using this structure, the inter-
ested reader may figure out the origin of the remnant
symmetries for the general case. However, from the 3
concrete cases we have studied in detail, we can infer the
origin of subgroups of types A and B from a group theo-
retical perspective. The subgroups of types A and B consist
of groups of type ðZm � Zm0 Þ 2Z2, which are always sub-

groups of ðZn � Zn0 Þ 2S3 with nð0Þ � mð0Þ (one of the Zm

can be trivial). Therefore, the 1-2 mixing structure of
Eq. (10) is a byproduct that we obtain for free from the
leptonic flavor symmetry. It is also interesting to imagine
the possibility thatGQ is not a subgroup ofGL ¼ hGe;G�i,
but that they are rather subgroups of yet a larger group
Gf ¼ hGQ;GLi. However, from all the discrete groups that

predict the experimentally favored values, GQ is always a

subgroup of GL � Gf; hence, an extension to a larger

group will not yield new interesting predictions.
In this study we only considered groups that are inter-

esting because they give a good LO description of leptonic
mixing. If one does not require the quark flavor group to be
identical to the lepton flavor group, one may search for a
flavor group GQ that predicts an adequate CKM matrix,

independent of the leptonic flavor group Gf [24–27].

As we have noted above, the group generated by Gu and
Gd is not the full flavor group Gf but a smaller group GQ.

The 3-dimensional representation 3 of Gf is decomposed

into 3 ¼ 2þ 1, where the 2-dimensional representation 2
of GQ generates the Cabibbo angle. This is very similar

(at least for the symmetry breaking of type B) to models
where one assigns the first two quark generations to a
2-dimensional representation of a dihedral group Dn.

4

One may therefore view the groups discussed here as
completions of groups that only discuss the quark sector.

3See Ref. [23] for a review on the type of groups above.

4The symmetry breaking of type A might be viewed as a
generalisation thereof if one replaces dihedral with the involved
groups, e.g. quasidihedral.
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Let us recapitulate on the search for unified discrete
symmetry from the group theoretical approach. We started
our scan for groups that can yield sizeable leptonic mixing
patterns with the assumption of Majorana neutrinos. From
over a million groups, only groups of type ðZn � Zn0 Þ 2S3

are found to be interesting, and such groups contain sub-
groups, which allow for a decent description of quark
mixing by generating the Cabibbo angle at leading order.
The symmetry breaking pattern indicated here might pro-
vide an interesting opportunity for model building.

IV. DIRAC NEUTRINOS AND THE
MIXING PATTERNS

In this section we assume that neutrinos are Dirac parti-
cles and ask the question: What is the smallest finite discrete
group Gf that can predict experimentally acceptable PMNS

and CKM matrices. The residual symmetry group of neu-
trino masses is no longer restricted to be isomorphic to the
Klein group but may be an arbitrary Abelian group. We scan
all the Abelian subgroups of every discrete group Gf up to

the size of 200. The two smallest finite discrete groups that
predict experimentally acceptable entries for the quark and
lepton mixing angles are of the order of 150 and 162, with
the structure of the relevant remnant groups given in
Table II. An exact definition of the groups in terms of
3-dimensional generators is provided in the Appendix,
where we restrict ourselves to listing the smallest subgroups
for fGe;G�g and fGu;Gdg that predict the given values for
the PMNS and CKM mixing parameters.

In our previous scan [7], we had assumed that neutrinos
are Majorana particles and found only discrete groups with
order of 600 and above that can lead to an acceptable
leptonic mixing pattern. A priori we have no evidence up
till now that neutrinos areMajorana particles, and by assum-
ing that neutrinos are Dirac particles, we found two discrete
groups that are relatively small in size which can predict
experimentally acceptable LO mixing angles for quarks and
leptons, which from a model building perspective are more
economical. The CKM prediction can also be ignored if one
only looks for smallest discrete flavor group that can yield
the experimentally viable leptonic mixing angles with the
assumption of Dirac neutrinos.

To be concrete, we will discuss the group�ð6� 52Þ here
in some detail and will relegate the remaining groups to the
Appendix.5 The group �ð6� 52Þ may be viewed as gen-
erated by

A ¼ ðTUð5; 1ÞÞ4T2; B ¼ ðUð5; 1ÞT2Þ2Uð5; 1Þ:
After symmetry breakdown to Ge ¼ hAi ffi Z3 and G� ¼
hBi ffi Z10, the PMNS mixing angles of the first line in
Table II are realized. The CKM predictions follow from
breakdown to

Gd ¼ hA2B3A2B2i; Gu ¼ hABA2BA2B3Ai:
For a definition of the other groups in Table II, the reader is
referred to the Appendix.
From the definition of A and B in terms of generators

of �ð6 � 102Þ, it is clear that �ð6 � 52Þ is a subgroup of
�ð6 � 102Þ. Both groups predict the same PMNS matrix,
stemming from different remnant symmetries. The group
�ð6 � 102Þ is the smallest group that predicts LO leptonic
mixing patterns in the 3-sigma region assuming Majorana
neutrinos. If we lift this requirement and allow for Dirac
neutrinos, the size of Gf is reduced by a factor of 4. This

observation suggests that the leptonic mixing pattern has
no correlation with the nature of neutrinos (i.e., whether
Z2 � Z2 is a subgroup of Gf or not) but rather the intrinsic

representation of the group generators (i.e., different sub-
groups can give rise to the same mixing patterns, indepen-
dent of the nature of neutrinos). The same argument also
applies for ðZ9 � Z3Þ 2S3 and�ð3 � 33Þ 2Z2 as these groups
are subgroups of ðZ18 � Z6Þ 2S3. All the interesting groups
in Table II predict a trivial Dirac CP phase in the leptonic
sector, as in Ref. [7].
Combining the argument above and the observation in

Sec. III, we can draw a general conclusion that only groups
of type ðZn � Zn0 Þ 2S3 can yield an experimentally favored
LO PMNSmatrix if the flavor symmetry group is broken in
such a way that residual symmetries of the leptonic masses
are still preserved, independent of whether neutrinos are
Dirac or Majorana particles. No other (small) finite discrete
groups can yield such an equally successful prediction.

TABLE II. Lepton mixing parameters and LO CKM entries predicted by finite discrete groups with order 150 and 162. The smallest
generators for Ge, G� and Gd, Gu that predict the quark and leptonic mixing angles on the right columns are listed.

Gf GAP-Identification fGe;G�g fGd;Gug sin 2ð�12Þ sin 2ð�13Þ sin 2ð�23Þ sin ~�

�ð6 � 52Þ [150, 5] fZ10; Z3g fZ10; Z10g 0.3428 0.0289 0.6217 0.309

0.3428 0.0289 0.3794

�ð3 � 33Þ 2Z2 [162, 10] fZ6; Z9g fZ6; Z6g 0.3403 0.0202 0.6013 0.5

ðZ9 � Z3Þ 2S3 [162, 12] fZ18; Z9g fZ18; Z18g 0.3403 0.0202 0.3996

[162, 14] fZ18; Z3g fZ18; Z18g

5Note that the group �ð6 � 52Þ is also discussed in
Ref. [28], however the author only searched for the subgroup
Z2 in �ð6 � 52Þ, yielding another type of prediction.
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In addition, the LO CKM mixing pattern can be obtained
from the group of type ðZn � Zn0 Þ 2S3 if the size of the
group is sufficiently large, as we have pointed out in
Sec. III.

V. TOWARD QUANTIFYING THE PREDICTIVE
POWER OF DISCRETE GROUPS

As mentioned in the introduction, large flavor groups
generically have many different Abelian subgroups,
and, since in the setup we are considering here the LO
mixing pattern is a result of the mismatched remnant
symmetries, this implies that for very large flavor groups,
any mixing pattern should be able to be reproduced.
Heuristically, it is therefore clear that one should prefer
small flavor groups (which are also less cumbersome
from a model builder’s viewpoint). However, we have
seen from our scan that only groups that are larger than
the order of 100 predict the experimentally favored PMNS
and CKMmixing pattern at LO. One may wonder what the
difference is between such a large group and an anarchical
[29–31] drawing of three angular values from the Haar
measure.6

In this section we aim to give a quantitative measure of
the predictivity of discrete flavor groups. The scenario we
have in mind is the following: we assume the LO quark
and/or lepton mixing to be determined from mismatched
remnant symmetries, where we take each possible LO
mixing pattern to be equally likely. We further assume
that NLO corrections are randomly scattered around the
LO values. This seems to be well motivated from a model-
building perspective, as quite often there is a multitude of

higher-dimensional operators contributing at NLO order.7

We discard the comparison of CP phases, as the Dirac
CP phase in the leptonic sector is not known, while
the CKM CP phase in general is not predicted in our
approach.
We will work in the coordinates c413 � cos 4�13,

s212 � sin 2�12, and s223 � sin 2�23 for which the invariant

Haar measure of SU(3) is flat. Under the anarchy
hypotheses, in this space each point is equally likely,
pdV ¼ dc413ds

2
12ds

2
23. Without NLO corrections, the dis-

crete group would predict a sum of Delta functions pdV ¼P
i�

ð3Þð ~x� ~xiÞdc413ds212ds223 centered about the possible

LO predictions ~xi ¼ ðc413; s212; s223ÞT . Since we expect the

NLO corrections to be anarchically distributed around
the LO predictions, we smear out the Delta functions to

3-dimensional Gaussians pðiÞ
f ¼ exp ð ~x� ~xiÞ2=	2 centered

around the ith LO mixing with variance given by

	2 ¼ Minð	2
CKMÞ þMinð	2

PMNSÞ; (22)

the quadratic sum of the shortest distance between the best-
fit CKM angles ~xCKM and PMNS angles ~xPMNS to a LO
prediction of the group

Min ð	CKM=PMNSÞ � inf
i
j ~xi � ~xCKM=PMNSj: (23)

FIG. 2 (color online). The distribution �ðGfÞ is plotted for groups S4(left) and ðZ18 � Z6Þ 2S3(right). The width of Gaussian
distribution 	 in 1-sigma deviation is plotted in green. The dark shaded blue region in the middle (red dotted region in the lower right)
represents the 3-sigma global fit region for the leptonic (quark) mixing pattern.

6See also Refs. [32,33] for a critical take on anarchy in the
lepton sector.

7Since in typical models (e.g., Refs. [19,20,34,35]) these
higher dimensional operators do not respect any remnant sym-
metries, this agnostic approach seems warranted. However, it
should be stressed that this does not apply for all models, and in a
particular model, the structure of NLO corrections might very
well be predictive [36]. Such setups usually forbid higher-
dimensional operators in the superpotential; care has to be taken
to keep Kähler corrections under control [37].
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The total normalized distribution pf of a discrete groupGf

is given by the sum of all the pðiÞ
f . For illustration in Fig. 2,

we show the pf distribution in the space of ðc413; s212; s223Þ for
the group S4 and ðZ18 � Z6Þ 2S3. The group ðZ18 � Z6Þ 2S3

predicts more mixing patterns than S4 with smaller covari-
ance 	2, as its predicted PMNS matrix values are more
accurate at LO.

As a measure of predictivity, we now propose the
integration of pf within the 3-sigma region from global

fits

�ðGfÞ �
Z
Vexp

pfðc413; s212; s223Þdc413ds212ds223; (24)

which we interpret as a proxy for the goodness of the
mixing angle prediction up to the NLO correction by a
particular flavor symmetry group. For example, we have
�ðS4Þ ¼ 1:8� 10�3 and �ððZ18 � Z6Þ 2S3Þ ¼ 4� 10�3.
The larger group that needs smaller NLO corrections
therefore beats the smaller group with larger NLO cor-
rections—a result that should not come as a surprise to
the reader, who has followed us thus far.

We can go a step further and apply the measure to
anarchy and obtain

�ðanarchyÞ ¼
Z
Vexp

1½0;1
3dc413ds212ds223 ¼ 3:22� 10�4;

(25)

which might be interpreted as the least predictive theory.
Any flavor theory should certainly be more predictive than
anarchy.

The result of �ðGfÞ for each discrete group up to the

order 200 and some of the interesting groups identified by
us in Ref. [7] are plotted with blue points in Fig. 3.8 By this
measure the group ðZ18 � Z6Þ 2S3 therefore wins the title
of the most predictive group smaller than 1536.
Note that the absolute value of �ðGfÞ alone has no

intrinsic meaning; rather, it is used to compare the good-
ness of prediction for different flavor groups. A higher
value of �ðGfÞ implies a more accurate prediction of

mixing angles with a smaller size of the group. Groups
that do not predict experimentally favored values have
smaller values of �ðGfÞ. Even though a larger group tends
to predict more accurate values of mixing angles, its siz-
able order would in general reduce the value of �ðGfÞ.
From Fig. 3 we observe that �ð6 � 162Þ yields a lower
�ðGfÞ value than ðZ18 � Z6Þ 2S3 and �ð6 � 102Þ, despite
that �ð6 � 162Þ predicts a more accurate mixing pattern.
Ignoring the CKM contributions, we can also obtain a
similar plot in Fig. 4 by choosing 	2 ¼ Minð	2

PMNSÞ. The
result of �ðGfÞ for each flavor group contains the same

trend as in Fig. 3. One should note that by combining the
different subgroups of Gf in pairs, we essentially give up

the information of the assumption that neutrinos are
Majorana, as one needs to pair up only a Klein group
with another Abelian subgroup if this additional assump-
tion is made.

FIG. 3 (color online). The goodness of prediction �ðGfÞ for discrete flavor symmetry groups Gf is plotted. The goodness of
prediction for anarchy is represented by a black square in the plot. Groups that are relevant for our analysis are highlighted. See the
main text for more explanation.

8Some of the higher-order groups that yield the same �ðGfÞ as
the lower-order group contain the same lower-order group as
their subgroup. For instance, the group S4 � Z2 and S4 � Z3
yields the same order of �ðGfÞ as the group S4.
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The width of the Gaussian distribution defined in
Eq. (22) is only one of the possibilities that we can choose.
It is believed that the NLO correction of the leptonic
mixing angle has to be of the order of the Cabibbo angle
squared, 	 ¼ �2

C, or the fourth power of Cabibbo angle

	 ¼ �4
C. We also plotted the result of �ðGfÞ obtained with

these assumptions, and the only significant change in
Figs. 3 and 4 comes from the group S4,�ð6 � 42Þ,�ð6 � 52Þ,
ðZ9 � Z3Þ 2S3, and �ð3 � 33Þ 2Z2. These changes can be
understood as the result of higher volume covered by the
integration due to more narrow Gaussian width. With 	 ¼
�2
C, the spread of the Gaussian distribution is larger; hence,

smaller groups tend to yield higher values of�ðGfÞ. On the
contrary the Gaussian width is too narrow for 	 ¼ �4

C;

hence, only groups that predict a very accurate LO PMNS
matrix will generate a higher �ðGfÞ. In fact, �ðGfÞ from
anarchy is higher than certain groups, particularly S4 and
�ð6 � 42Þ. The decreasing value of �ðGfÞ with respect to

the increasing size of the group agrees with our naive
expectation that higher-order groups tend to yield a lower
value of �ðGfÞ due to more possible combinations of the

mixing patterns.

VI. CONCLUSION

In summary, we have extended our search for discrete
symmetry groups that can give an experimentally favored
LO prediction for the PMNS and the CKM matrix. With
the assumption of Majorana neutrinos, we obtain a sizable
prediction of the LO CKM matrix from groups that predict
the PMNS matrix in the 3-sigma region, as shown in
Ref. [7]. We found a group theoretical reason that explains

the emergence of such a LO Cabibbo angle; mainly, it is
due to the structure of ðZm � Zm0 Þ 2Z2, which is a generic
subgroup of ðZn � Zn0 Þ 2S3. By relaxing the condition of
Majorana neutrinos, we performed a scan of all discrete
symmetry groups up to the order of 200 and obtained 3
groups that predicted acceptable LO PMNS and CKM
matrices. All 3 groups are subgroups of the groups found
in the Majorana case, indicating that mixing pattern pre-
dictions are independent of whether neutrinos are Dirac or
Majorana particles. We extrapolated our result and con-
cluded that only groups that are of the type ðZn � Zn0 Þ 2S3

can give experimentally favored values of the PMNS (and
CKM) matrix, which can provide a new starting point for
model building.
The groups we have found are generally large and

prompt us to define a measure to quantify the predictivity
of a given flavor group, taking into account the size of the
group. Our measure �ðGfÞ rewards the smallness of a

group while punishing large groups that give many differ-
ent predictions, depending on the breaking pattern. While
this measure is nonunique, it is (to our knowledge) the first
attempt to quantify more sociological ways of distinguish-
ing fruitful starting points for model building.

ACKNOWLEDGMENTS

We would like to thank Michael A. Schmidt, Claudia
Hagedorn, and Werner Rodejohann for useful comments
on the manuscript. We also want to thank Yusuke Shimizu
for useful discussions. K. S. L. acknowledges support by
the International Max-Planck Research School for
Precision Tests of Fundamental Symmetries.

FIG. 4 (color online). The goodness of prediction �ðGfÞ for discrete flavor symmetry groups Gf is plotted, with only the leptonic
mixing patterns considered.
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APPENDIX: DEFINITION OF SUBGROUPS

In Table III we define the generators for groups found in Table II.

TABLE III. Generators for fGe;G�g and fGd;Gug that predict the experimentally favored mixing angles in Table II.

Gf GAP-Identification Generators of subgroups

�ð6 � 52Þ [150, 5] hGe;G�i ¼
* 0 �ð�1Þ3=5 0

0 0 � ffiffiffiffiffiffiffi�15
p

� ffiffiffiffiffiffiffi�15
p

0 0

0
B@

1
CA; ð�1Þ3=5 0 0

0 0
ffiffiffiffiffiffiffi�15

p
0

ffiffiffiffiffiffiffi�15
p

0

0
B@

1
CA
+

hGu;Gdi ¼
* ð�1Þ3=5 0 0

0 0 �ð�1Þ2=5
0 �1 0

0
B@

1
CA; ð�1Þ3=5 0 0

0 0 ð�1Þ3=5
0 �ð�1Þ4=5 0

0
B@

1
CA
+

�ð3 � 33Þ 2Z2 [162, 10] hGe;G�i ¼
* 0 0 �1

0 � ffiffiffiffiffiffiffi�13
p

0
�1 0 0

0
@

1
A; 0 0 ð�1Þ2=3

ð�1Þ2=3 0 0
0 � ffiffiffiffiffiffiffi�13

p
0

0
B@

1
CA
+

hGu;Gdi ¼
* 0 0 �1

0 � ffiffiffiffiffiffiffi�13
p

0
�1 0 0

0
@

1
A; 0 0

ffiffiffiffiffiffiffi�13
p

0 �1 0
�1 0 0

0
B@

1
CA
+

ðZ9 � Z3Þ 2S3 [162, 12] hGe;G�i ¼
* 0 0 ð�1Þ5=9

0 ð�1Þ8=9 � ð�1Þ5=9 0
ð�1Þ5=9 0 0

0
B@

1
CA;

0 0 ð�1Þ5=9 � ð�1Þ8=9
�ð�1Þ5=9 0 0

0 �ð�1Þ5=9 0

0
B@

1
CA
+

hGu;Gdi ¼
* 0 0 ð�1Þ5=9

0 ð�1Þ8=9 � ð�1Þ5=9 0
ð�1Þ5=9 0 0

0
B@

1
CA;

0 0 ð�1Þ8=9 � ð�1Þ5=9
0 ð�1Þ8=9 � ð�1Þ5=9 0

�ð�1Þ8=9 0 0

0
B@

1
CA
+

ðZ9 � Z3Þ 2S3 [162, 14] hGe;G�i ¼
* 0 0 ð�1Þ5=9

0 �ð�1Þ8=9 0
ð�1Þ5=9 0 0

0
B@

1
CA;

0
ffiffiffiffiffiffiffi�19

p � ð�1Þ4=9 0
0 0 ð�1Þ4=9ffiffiffiffiffiffiffi�19

p � ð�1Þ4=9 0 0

0
B@

1
CA
+

hGu;Gdi ¼
* 0 0 ð�1Þ5=9

0 �ð�1Þ8=9 0
ð�1Þ5=9 0 0

0
B@

1
CA;

0 0 �ð�1Þ8=9
0 �ð�1Þ8=9 0

ð�1Þ8=9 � ð�1Þ5=9 0 0

0
B@

1
CA
+
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