
Contributions of theW-boson propagator to the � and � leptonic decay rates

Andrea Ferroglia*

Physics Department, New York City College of Technology, The City University of New York,
300 Jay Street, Brooklyn, New York 11201, USA

Christoph Greub†

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, CH-3012 Bern, Switzerland

Alberto Sirlin‡

Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA

Zhibai Zhang§

Physics Department, New York City College of Technology, The City University of New York, 300 Jay Street,
Brooklyn, New York 11201, USA and The Graduate School and University Center, The City University of New York,

365 Fifth Avenue, New York, New York 10016, USA
(Received 31 July 2013; published 23 August 2013)

We derive closed expressions and useful expansions for the contributions of the tree-level W-boson

propagator to the muon and � leptonic decay rates. Calling M and m the masses of the initial and final

charged leptons, our results in the limit m ¼ 0 are valid to all orders in M2=M2
W . In the terms of

Oðm2
j=M

2
WÞ (mj ¼ M, m), our leading corrections, of OðM2=M2

WÞ, agree with the canonical value

ð3=5ÞM2=M2
W , while the coefficient of our subleading contributions, of Oðm2=M2

WÞ, differs from that

reported in the recent literature. A possible explanation of the discrepancy is presented. The numerical

effect of theOðm2
j=M

2
WÞ corrections is briefly discussed. A general expression, valid for arbitrary values of

MW , M, and m in the range MW >M>m, is given in the Appendix. The paper also contains a review of

the traditional definition and evaluation of the Fermi constant.
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The correction of Oðm2
�=M

2
WÞ to the muon decay rate,

arising from the tree-level W-boson propagator, is well
known in the literature and amounts to a correction factor
1þ ð3=5Þm2

�=M
2
W . An analogous result was first derived

by Lee and Yang in the framework of nonlocal extensions
of the Fermi theory [1]. CallingM and m the masses of the
initial and final leptons, recent papers have included both
the leading corrections, of OðM2=M2

WÞ, as well as the
subleading contributions, of Oðm2=M2

WÞ, to the � and �
leptonic decay rates [2–4].

In the present paper, we evaluate the corrections to the�
and � leptonic decay rates induced by the W-boson propa-
gator in two cases: (i) in the limit m ¼ 0, we derive a
closed expression, valid to all orders inM2=M2

W , as well as
a useful expansion in powers of M2=M2

W ; (ii) in the cor-
rections of Oðm2

j=M
2
WÞ (mj ¼ M, m), we evaluate the

leading contributions, of OðM2=M2
WÞ, as well as the sub-

leading ones, ofOðm2=M2
WÞ. In the calculation of the latter,

it is important to include the contribution of the
�q�q�=M2

W term in the unitary-gauge W-boson propaga-
tor or, equivalently, in other gauges, that of the associated

Goldstone boson. In fact, this term leads to contributions of
Oðm2=M2

WÞ. Our result for (ii) is compared with those
reported in the recent literature. In the Appendix we
present expressions valid for arbitrary values of MW , M,
and m in the range MW >M>m.
We focus our attention on � decay and later on we

extend the results to the � leptonic decay rates in a straight-
forward manner. Defining

x ¼ M2

M2
W

; (1)

the terms of OðxnÞ (n � 1) are very small. For this reason
they are evaluated at the tree level, i.e. to zeroth order in �.
On the other hand, the QED correction �� to muon decay

in the V-A Fermi theory is very important in the term of
zeroth order in x. In order to obtain simple expressions, we
follow the usual procedure of factorizing out the QED
correction ½1þ ��� in all the terms of order xn (n � 0)

(see, for example, Ref. [5]). This factorization induces
terms of Oð�xnÞ (n � 1), which are however extremely
small. As a consistency check, we have carried out the
calculations of the decay rate in two different ways. The
first one is based on a method described in detail by
Veltman in Ref. [6]. The method requires working first in
the neutrino-pair rest frame, where all scalar products can
be written in terms of the energy transferred to the neutrino
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pair and the angle between the muon and ��e momenta. The
integral over the ��e momentum is then carried out using the
three-dimensional delta function. The angular integrals
over the �� momentum are trivial, while the integral over

its absolute value is implemented by employing the residual
one-dimensional � function. Finally, one can rewrite the
energy transferred to the neutrino pair in a Lorentz-
invariant way and carry out the integration over the electron
momentum in the muon rest frame. In the second, more
conventional approach, one works always in the muon
rest frame. We integrate first over the ��e momentum, thus
reducing the four-dimensional � function to a
one-dimensional one, which leads to the relation E2 ¼
MðE0 � EÞ=½M� Eþ j ~pj cos��, where E2 is the energy
of the muon neutrino, E and ~p are the energy and momen-
tum of the electron, E0 ¼ ðM2 þm2Þ=2M its end-point
energy, and � the angle between ~p and the �� momentum.

We then integrate over E2 using the one-dimensional �
function, over the angle �, and finally over ~p. The two
approaches lead to the same results, which we present
below. In this paper, we call �ðWÞ the decay rate when the

contributions of the tree-level W-boson propagator are
included.

(i) Integrating over the full W-boson propagator, in the
limit m ! 0 we find the closed expression

�ðWÞ ¼ �0

�
12

x3

�
1� x

2
� x2

6
þ ð1� xÞ

x
ln ð1� xÞ

��
;

(2)

where

�0 ¼
G2

�M
5

192�3
½1þ ���: (3)

Furthermore,

G�ffiffiffi
2

p ¼ g2

8M2
W

ð1þ �rÞ; (4)

where g is the SUð2ÞL gauge coupling constant,�r is
the electroweak correction introduced in Ref. [7],
and, as mentioned before, �� is the QED correction

to muon decay evaluated in the Fermi V-A theory.
Expanding ln ð1� xÞ, Eq. (2) leads to a useful and
quickly convergent expression,

�ðWÞ ¼ �0

X1
n¼0

12xn

ðnþ 3Þðnþ 4Þ

¼ �0

�
1þ 3

5
xþ 2

5
x2 þ 2

7
x3 þ 3

14
x4 þ x5

6
þ�� �

�
:

(5)

We note that the term of OðxÞ in Eq. (5) agrees with
the canonical result ð3=5ÞM2=M2

W . Equation (5) ex-
tends this result to all orders in x. Since Eq. (2)
involves sharp cancellations, the expansion in

Eq. (5) is much more useful for numerical
calculations.

(ii) For m � 0, to zeroth order in x, the decay rate is
given by the well-known expression

�ð0Þ
ðWÞ ¼ �0FðyÞ; (6)

where

y ¼ m2

M2
; (7)

and

FðyÞ ¼ 1� 8y� 12y2 ln yþ 8y3 � y4 (8)

is a phase-space factor (see, for example, Ref. [8]).
Equations (6)–(8) correspond to the MW ! 1 limit
and are the usual result in the V-A theory. In order to
evaluate the terms of Oðx ¼ M2=M2

WÞ with m � 0,
in the calculation we include the correction factor
(1þ 2q2=M2

W) arising from the expansion of the
W-boson propagator, as well as the contribution of
the �q�q�=M2

W term in the propagator. This leads
to the simple and compact result

�ð1Þ
ðWÞ ¼ �0

3

5
xð1� yÞ5: (9)

An interesting theoretical feature of Eq. (9) is that
logarithmic terms proportional to ln y cancel be-
tween the contributions of the (1þ 2q2=M2

W) cor-
rection factor and the �q�q�=M2

W term in the
propagator. We also observe that the y dependence
in Eq. (9) is very different from that in Eqs. (6) and
(8), so that in their sum FðyÞ does not factorize
in a simple manner. Neglecting terms of Oðxy2 ¼
m4=ðM2

WM
2ÞÞ and higher, Eq. (9) reduces to

�ð1Þ
ðWÞ ¼ �0

�
3

5

M2

M2
W

� 3m2

M2
W

�
: (10)

The leading correction, ð3=5ÞM2=M2
W , agrees once more

with the canonical result. In the subleading correction of
Oðm2=M2

WÞ,�2m2=M2
W arises from the contribution of the

�q�q�=M2
W term, while an additional �m2=M2

W is in-
duced by the (1þ 2q2=M2

W) correction factor.
In the muon decay case, M and m are identified with m�

and me. The extension of our results to the � leptonic decay
rates is straightforward: M is identified with m�, while
m ¼ m� in �ðWÞð� ! �� þ�þ ���Þ and m ¼ me in

�ðWÞð� ! �� þ eþ ��eÞ. Furthermore, �� should be

changed into ��, namely the appropriate QED corrections
in � decays.
As far as we know, our calculation (i), valid to all orders

in M2=M2
W in the m ! 0 limit, has not been carried out in

the literature. In order to compare our calculation (ii) with
existing results, we combine Eqs. (6) and (10),
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�ð0Þ
ðWÞ þ �ð1Þ

ðWÞ ¼ �0

�
FðyÞ þ 3

5

M2

M2
W

� 3m2

M2
W

þO
�

m4

M2
WM

2

��
:

(11)

In the literature, the phase-space factor FðyÞ is often fac-
torized. Performing such a factorization, Eq. (11) becomes

�ð0Þ
ðWÞ þ �ð1Þ

ðWÞ

¼ �0FðyÞ
�
1þ 3

5

M2

M2
W

þ 9

5

m2

M2
W

þO
�

m4

M2
WM

2

��
: (12)

Thus, the factorization of FðyÞ induces a large change in
the coefficient of the subleading correction of Oðm2=M2

WÞ.
This is easy to understand recalling Eqs. (7) and (8):
through terms of Oðm2=M2Þ the factorization of FðyÞ
effectively leads to the change

3

5

M2

M2
W

! 3

5

M2

M2
W

�
1þ 8m2

M2

�
¼ 3

5

M2

M2
W

þ 24

5

m2

M2
W

: (13)

As a consequence, the factorization of FðyÞ induces a new
subleading correction ð24=5Þm2=M2

W in the expression
between square brackets in Eq. (12). Combining this with
�3m2=M2

W in Eq. (11), one obtains the subleading correc-
tion ð9=5Þm2=M2

W reported in Eq. (12).
Our result in Eq. (12) can be compared with expressions

published in the recent literature. For example, Refs. [2–4]
consider the decay � ! lþ ��l þ �� (l ¼ �, e). Modulo
QED corrections, the result for the leptonic decay rates
presented in those papers is

�l ¼ G2
�m

5
�

192�3
f

�
m2

l

m2
�

��
1þ 3

5

m2
�

M2
W

� 2m2
l

M2
W

�
; (14)

while, in this case, our Eq. (12) becomes

�ð0Þl
ðWÞþ�ð1Þl

ðWÞ ¼
G2

�m
5
�

192�3
F

�
m2

l

m2
�

��
1þ3

5

m2
�

M2
W

þ9

5

m2
l

M2
W

þO
�

m4
l

M2
Wm

2
�

��
: (15)

Since the function f in Eq. (14) is identical to F, we see
that the two results agree on the leading correction
ð3=5Þm2

�=M
2
W , but sharply disagree on the coefficient of

the subleading term of Oðm2
l =M

2
WÞ. In particular, the signs

of the Oðm2
l =M

2
WÞ correction are opposite.

A possible explanation for this difference could be
that (1) in the derivation of Eq. (14), only the subleading
�2m2

l =M
2
W contribution from the �q�q�=M2

W term in

the propagator has been retained (thus neglecting the
additional �m2

l =M
2
W contribution arising from the

(1þ 2q2=M2
W) correction factor), and (2) the additional

ð24=5Þm2
l =M

2
W contribution induced by the factorization of

FðyÞ has not been taken into account.

Numerically, the corrections ofOðm2
j=M

2
WÞ (mj ¼ M,m)

are very small. Their largest values are attained in the decay
� ! �þ ��� þ ��. In this case, the correction factor is

1þ 3

5

m2
�

M2
W

þ 9

5

m2
�

M2
W

¼ 1þ 2:9315� 10�4 þ 3:11� 10�6;

(16)

where we employed MW ¼ 80:385 GeV. Since the current
relative error in the measurement of the � lifetime is
3:44� 10�3, in order to be sensitive to the leading correc-
tion in Eq. (16), it would be necessary to decrease the
experimental error by more than a factor 10.
In the case of muon decay,

1þ 3

5

m2
�

M2
W

þ 9

5

m2
e

M2
W

¼ 1þ 1:0366� 10�6 þ 7:3� 10�11:

(17)

The current relative error in the measured muon lifetime
is 1:00� 10�6 [9]. Thus, the leading correction in
Eq. (17) is very close to the experimental error; it is also
very close to the two-loop QED correction [see, for ex-
ample, Eq. (36) in Ref. [8]]. Thus, at present, the
Oðm2

�=M
2
WÞ correction has a marginal effect in muon

decay. On the other hand, in the foreseeable future the
subleading corrections of Oðm2=M2

WÞ are out of experi-
mental reach in both � and � decays.
We remind the reader that, in the traditional approach,

the Fermi constant GF is defined from the muon lifetime,
as evaluated in the Fermi V-A theory to first order in the
weak-interaction coupling constant. Specifically, GF is
defined by the relation

1

��
¼ G2

Fm
5
�

192�3
FðyÞ½1þ ���; (18)

where �� is the muon lifetime and �� the QED correction.

This approach has several important advantages (see, for
example Ref. [8]): (1) the muon lifetime has been mea-
sured with great accuracy; (2) to first order in GF, but all
orders in �, the very important QED correction to muon
decay in the Fermi V-A theory is known to be finite after
charge and mass renormalization [10]; (3) at present, its
contribution to the muon lifetime has been evaluated
through two-loop order [11–13] and estimated at three
loops [14]; (4) very importantly, in the traditional defini-
tion, GF is a true constant of nature, like the electric
charge: it does not need to be redefined and numerically
changed every time a new particle contributing to muon
decay is discovered; (5) the relation of GF to the funda-
mental constants of the Standard Model of particle physics
involves the electroweak radiative correction �r and has
been explained in Ref. [7]. A detailed description of the
current evaluation of GF is provided in Section II D of
Ref. [8]. It includes one- and two-loop QED corrections
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treated in two alternative ways, very small contributions
of Oð�Þ and Oð�2Þ proportional to powers of y, and an
estimate of the theoretical error due to truncation of the
QED perturbative series. The current value is [9]

GF ¼ 1:1663788ð7Þ � 10�5 GeV; (19)

an important determination at the 0.6 ppm level.
It is then clear that, in the traditional approach, the

corrections from the W-boson propagator we discuss in
this paper do not affect the definition or the value of GF.
Rather, they are interpreted as additional, albeit very small,
corrections to the� and � leptonic decay rates that emerge
in the Standard Model of particle physics. In fact, by
writing �ðWÞ in the form

�ðWÞ �
G2

�m
5
�

192�3
FðyÞ½1þ ���ð1þ �ðWÞÞ; (20)

and comparing Eqs. (18) and (20), one finds that the
relation between G2

F and G2
� is given by

G2
F ¼ G2

�ð1þ �ðWÞÞ ¼ g4

32M4
W

ð1þ�rÞ2ð1þ �ðWÞÞ; (21)

where, in the last step, we employed Eq. (4). The last factor
in Eqs. (20) and (21) represents the additional tree-level
correction induced by the W-boson propagator in the
Standard Model.

In summary, we have re-examined the contribution of the
W-boson propagator to the � and � leptonic decay rates.
Calling M and m the masses of the initial and final charged
leptons, in the limit m ! 0 we have derived a closed ex-
pression, Eq. (2), and a useful expansion, Eq. (5), valid to all
orders in x ¼ M2=M2

W . They extend the canonical result
ð3=5ÞM2=M2

W to all orders in x. In the terms of
Oðm2

j=M
2
WÞ (mj ¼ M, m), we have evaluated the leading

corrections, of OðM2=M2
WÞ, as well as the subleading ones,

of Oðm2=M2
WÞ [Eq. (12)]. While our leading corrections

agree with the canonical result, the coefficient of our sub-
leading corrections differs sharply from the one reported in
the recent literature. A possible explanation of this discrep-
ancy was presented. The numerical effect of theOðm2

j=M
2
WÞ

corrections was briefly discussed. In the Appendix we have
presented an expression for the leptonic decay rates that
includes the contribution of the W-boson propagator for
arbitrary values of MW , M, and m in the range MW >M>
m [Eq. (A3)]. This paper also contains a review of the
traditional definition and evaluation of the Fermi constant.
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APPENDIX

In this appendix we present expressions for �ðWÞ, valid
for arbitrary values of MW , M, and m, in the range
MW >M>m. We find

�ðWÞ ¼ �03

�
4ð1� yÞ

x3
� 2ð1� y2Þ

x2
� 1

x

�
2

3
� yþ y2 � 2

3
y3
�

� 5

2
yð1� y2Þþ xy2ð1� yÞ� y2ð4þ x2yÞ lny

þ 1

x4
ln

�
1� x

1� xy

�
½4ð1� xÞ

� xyð4� 3x� x3ð1þ y2ð1� x2ÞÞÞ�
�
; (A1)

where �0 is given in Eq. (3). By setting y ¼ 0 in Eq. (A1),
one immediately finds the result in Eq. (2). Equation (6)
can be recovered by taking the x ! 0 limit in Eq. (A1).
Although the decay rate is obviously well behaved in the
limit x ! 0, several of the terms in Eq. (A1) are singular in
that limit. This fact gives rise to large cancellations among
different terms, which in turn lead to a loss of significant
digits in numerical evaluations. This problem can be
avoided by rewriting the second logarithm in Eq. (A1) as
an infinite sum,

ln

�
1� x

1� xy

�
¼ � X1

n¼1

ð1� ynÞ x
n

n
: (A2)

The first three terms in this series, when inserted into
Eq. (A1), lead to the cancellation of all terms which are
singular in the x ! 0 limit. After a few manipulations of
the residual series, �ðWÞ can be written in the form

�ðWÞ ¼ �0

�
FðyÞ þ 3

5
xð1� yÞ5

þ x2

20
ð8� 27yþ 27y5 � 8y6 � 60y3 ln yÞ

þ 3
X1
n¼3

xnHnðyÞ
�
; (A3)

where FðyÞ is defined in Eq. (8) and

HnðyÞ¼y3ð1�yn�2Þ
n�2

�yð1þy2Þð1�ynÞ
n

�3yð1�ynþ2Þ
nþ2

þ4ð1þyÞð1�ynþ3Þ
nþ3

�4ð1�ynþ4Þ
nþ4

: (A4)

The contributions of Oð1; x; x2Þ are shown explicitly in the
first three terms of Eq. (A3), while those of OðxnÞ (n � 3)
are given in the series presented at the end of the equation.
An interesting property of the functions HnðyÞ (n � 3) is
that they are proportional to ð1� yÞ5. This is due to the fact
thatHnðyÞ and its first four derivatives vanish at y ¼ 1. The
same property holds for the contribution of OðxÞ, as ex-
plicitly shown in the second term of Eq. (A3). It is also
interesting to observe that only the contributions of Oðx0Þ
and of Oðx2Þ contain terms proportional to ln y.
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