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(Received 7 June 2013; published 22 August 2013)

We classify explicitly all the possible generalized CP symmetries that are definable in �ð27Þ flavor
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I. INTRODUCTION

Neutrino physics has entered a new era after the discovery
of nonzero and relatively large �13 mixing angle [1]. Such a
discovery has enabled us to pursue the determination of
yet another unknown quantity of the standard three-family
description of lepton flavor physics: the DiracCP phase �D.
For Majorana neutrinos, in addition to this phase, three
unknowns remain for the complete description of the
Pontecorvo-Maki-Nakagawa-Sataka (PMNS) mixing ma-
trix: the two Majorana CP phases and the neutrino mass
hierarchy. The determination of �D might be possible in the
foreseeable future, and hints of a nonzero �D are starting to
show up in global fits of oscillation parameters [2–4].

On the theoretical side, a relatively large �13 angle
discards the exact validity of certain mass-independent
textures [5] for the PMNS matrix, the most popular being
the tribimaximal (TBM) form [6], which was a good
approximation until recently. The great appeal of these
mass-independent textures comes from the fact that they
can arise naturally as a consequence of non-Abelian dis-
crete flavor symmetries that act on the horizontal space of
the three families of leptons. The general scheme consists
of assuming a non-Abelian discrete flavor groupGF, which
is broken into different subgroups on the charged lepton
and neutrino sectors.

If we believe that discrete flavor symmetries govern the
observed pattern of the mixing angles and mass hierarchies
of leptons, including the observed value of the �13 angle,
we need to modify the simple forms, such as the TBM
form, by either (i) adding corrections or (ii) considering
different symmetries. One route is to consider the minimal
amount of residual symmetries on the mass matrices which
still remains predictive [7–9]. Here we pursue (ii) by
employing generalized CP (GCP) transformations [10].
We consider the possibility of reducing the symmetry of
the neutrino sector to a single GCP symmetry. We will see
that such a setting leaves a lot of freedom in the leptonic
mixing matrix, but it is compatible with a more general
scenario where some other horizontal symmetry is ap-
proximately valid in the neutrino sector instead of being
exactly satisfied at leading order. Obviously, it is possible

to account for nonzero �13, even in the symmetry limit, if
we consider more complicated flavor groups [11].
One successful modification of the residual symmetry of

the neutrino sector consists of replacing the familiar ��
interchange symmetry [12] (in the flavor basis) with the
symmetry called �� reflection [13], which corresponds to
the joint application of �� interchange together with the
complex conjugation ofM�. This symmetry leads to maxi-
mal �23 and maximal Dirac CP phase by allowing nonzero
but free �13 [14]. This symmetry has been successfully
implemented in a number of models [15,16].
The possibility of considering generalized CP transfor-

mations [10] as symmetries in the leptonic sector has been
analyzed recently [17,18]. The work of Ref. [17] focuses
on analyzing the consequences of having a residual GCP
symmetry in the neutrino sector along with other residual
horizontal symmetries in the charged lepton and neutrino
sectors. In particular, the flavor groups S4 and A4 have been
analyzed and implemented recently [19].
On the other hand, the role of GCP symmetries as auto-

morphisms of the (horizontal) flavor group is studied in
Ref. [18]. The authors develop the general theory and then
analyze the relevant cases from the literature. For example,
they show that there is only one possible nontrivial defini-

tion for GCP within A4 models which leads to the ~S4 flavor
symmetry of Ref. [16].
In this work, we further consider the possible GCP

symmetries that are definable in �ð27Þ flavor models.1

Such a flavor group is interesting from the point of view
of GCP symmetries because it possesses a large number of
automorphisms that can be used as GCP symmetries [18].
At the same time, the group does not possess any order-2
element that could be promoted to a residual symmetry of
the neutrino mass matrix. The generators of the automor-
phism group for �ð27Þ were given in Ref. [18], but we
intend here to find all possible GCP symmetries explicitly
and consider constraints that were not discussed previ-
ously. Furthermore, we analyze the possibility of consid-
ering these GCP symmetries as residual symmetries of the
neutrino sector.
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1The flavor group �ð27Þ was first considered for quarks in
Ref. [20] and for leptons in Ref. [21].
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The outline of this work is the following: In Sec. II, we
review the consequences of having only a single GCP
symmetry as a residual symmetry of the neutrino mass
matrix. We list all the possible GCP symmetries in �ð27Þ
flavor models in Sec. III and extract some interesting
features. Section IV reviews the consequences of adding
one GCP symmetry in a theory invariant by a discrete
flavor symmetry. We justify the list of possible GCP sym-
metries of �ð27Þ models in Sec. V. The conclusions are
shown in Sec. VI.

II. RESIDUAL GCP SYMMETRIES

Let us start our study of the consequences of residual
GCP symmetries on the mass matrices by first reviewing
here the consequences of the usual (unitary) residual sym-
metries acting on the neutrino mass matrix as [22]

STM�S ¼ M�: (1)

We assume the charged lepton mass matrix squared, �Ml �
MlM

y
l , is diagonal (flavor basis), which should be ensured

by another residual symmetry, Gl.
We first recall that if U is the matrix that diagonalizes

M� as

UTM�U ¼ diagðmiÞ; mi > 0; (2)

with nonzero and nondegenerate massesmi, then any other
matrix U0 that also diagonalizes M� must be related to U
by [22,23]

U0 ¼ Ud; (3)

where d is a diagonal matrix with nonzero entries �1.
The symmetry in Eq. (1) dictates that if U diagonalizes

M�, then SU also diagonalizes it, and then

SU ¼ Ud: (4)

This means that the eigenvectors of M� are also eigenvec-
tors of S with eigenvalues �1. Furthermore, the symmetry
matrix S fixes one eigenvector of M� corresponding to the
unique nondegenerate eigenvalue of S; we obviously ex-
clude the cases S ¼ 1 or S ¼ �1. On the other hand, the
property d2 ¼ 1 implies S2 ¼ 1, and only Z2 symmetries
can be implemented on M�, the maximal symmetry being
Z2 � Z2, generated by two matrices S1, S2.

Instead of considering the unitary symmetry [Eq. (1)],
we can consider the antiunitary symmetry:

STM�S ¼ M�
�: (5)

For example, the choice

S ¼
1 0 0

0 0 1

0 1 0

0
BB@

1
CCA (6)

corresponds to ��-reflection symmetry [13,14].

The symmetry in Eq. (5) now implies that SU� also
diagonalizes M� if U does, and then Eq. (4) is replaced by

SU� ¼ Ud�: (7)

This is equivalent to saying that S ¼ Ud�U
T, and then

necessarily

ST ¼ S (8)

if we require nonzero and nondegenerate neutrino masses.
Since S is also unitary, it obeys S�S ¼ SS� ¼ 1. Note that
the symmetry condition [Eq. (8)] is invariant by basis
change.
We can show that any unitary and symmetric matrix S

can be diagonalized by a real orthogonal matrix R as

RTSR ¼ � � diagð�iÞ; j�ij ¼ 1: (9)

Another way of writing Eq. (9) is

SR ¼ R�: (10)

The proof consists of writing S ¼ S1 þ iS2, where S1, S2
are real symmetric matrices. Then S�S ¼ 1 implies that S1
commutes with S2, and they can be simultaneously diago-
nalized by R.
Now let us denote by ui the columns of U. The relation

in Eq. (7) implies

Su�
i ¼ �ui; (11)

the sign �1 being given by ðd�Þii. We can choose all ui to
obey the plus-sign equation of Eq. (11) by conveniently
replacing ui with iui when ðd�Þii ¼ �1. This leads to

U ¼ ðu1ju2ju3Þd
1
2
�; (12)

we choose ðd1
2
�Þii ¼ i if ðd�Þii ¼ �1, or ðd1

2
�Þii ¼ 1 if

ðd�Þii ¼ 1.
We now expand ui in terms of the real eigenvectors ri of

S, corresponding to the columns of R,

ui ¼ rja
j
i : (13)

Equation (11) with the plus sign leads to

�jðaji Þ� ¼ aji : (14)

This is solved by

ui ¼ ri�
1
2
ja

j
i ; with real aji ; (15)

where we have made the replacement aji ! �
1
2
ja

j
i .

Equation (12) is finally

U ¼ R�
1
2O�d

1
2
�; (16)

whereO� is a real orthogonalmatrix defined by ðO�Þji ¼ aji .

Orthogonality of O� follows from unitarity of U. The
combination
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US ¼ R�
1
2 (17)

is uniquely determined by S (except for sign ambiguities) if
S is nondegenerate.

In the flavor basis, VMNS ¼ U�, and then the lepton
mixing matrix,

VMNS ¼ R�
1
2O�d

1
2
�; (18)

is determined by the antiunitary symmetry [Eq. (5)], if S
is nondegenerate, up to the three-parameter freedom of
choosingO�. In particular, theCP properties are completely

determined by �
1
2 and d

1
2
�. Therefore, among the six parame-

ters of the PMNS matrix, the three phases are indirectly
determined by the symmetry. The presence of another addi-
tional unitary symmetry as in Eq. (1) that commutes with the
antiunitary symmetry [Eq. (5)] fixes one column of the
matrix O� [17]. However, compared to Ref. [17], the form
in Eq. (18) shows more explicitly the separate dependence

of the PMNS matrix on the fixed phases (�
1
2) and real

elements (R). In a general basis, the form [Eq. (18)] needs
to be adapted to show explicit dependence on the residual
symmetry of the charged lepton sector.

The desired setting is the following: if somehow R can be
chosen close to the experimental mixingmatrix, thenO� can
be close to the identity and treated as a perturbation.

III. POSSIBLE GCP SYMMETRIES
IN �ð27Þ MODELS

We seek now some possible GCP symmetries which
could be phenomenologically interesting. We choose
�ð27Þ as the flavor group because it possesses a large
amount of possible nontrivial GCP symmetries [18]. See
Ref. [21] for the first applications of the�ð27Þ flavor group
in the lepton sector.

The group �ð27Þ ’ ðZ3 � Z3Þ 2Z3 is an order-27 non-
Abelian finite group which can be defined by using two
generators a, b and another auxiliary element a0 through
the relations [24]

a3 ¼ a03 ¼ b3 ¼ e; aa0 ¼ a0a;

bab�1 ¼ ðaa0Þ�1; ba0b�1 ¼ a:
(19)

Note that a, a0 generate the invariant subgroup Z3 � Z3,
and the element

z0 � aa0�1 (20)

generates the center of the group Zð�ð27ÞÞ ’ Z3.
In three dimensions, we can use the explicit (faithful)

representation 3 for �ð27Þ:

D3ðbÞ ¼ T �
0 0 1

1 0 0

0 1 0

0
BB@

1
CCA;

D3ðaÞ ¼ diagð1; !;!2Þ;
D3ða0Þ ¼ diagð!;!2; 1Þ:

(21)

This representation differs slightly from that in Ref. [24].
Notice that Tei ¼ e�ðiÞ where � ¼ ð123Þ. This means that,

on a vector x ¼ ðx1; x2; x3ÞT, x ! Tx induces xi ! x��1ðiÞ,
i.e., the permutation (132).
The definable GCP symmetries for any flavor group

were studied in Ref. [18] as automorphisms acting on the
flavor group. Although the generators of the automorphism
group were listed there, the possible GCP symmetries were
not listed explicitly. Here we show in Sec. V that there are
only 12 possible nonequivalent GCP symmetries that can
be defined within a �ð27Þ flavor group for the three fam-
ilies of left-handed leptons Li transforming as 3 in Eq. (21).
They are given by

Li ! ðSkÞijðCL�
j Þ; (22)

where

S0 ¼ 13;

S1 ¼
1 0 0

0 0 1

0 1 0

0
BB@

1
CCA;

S2 ¼ diagð1; 1; !Þ;
S3 ¼ diagð1; 1; !2Þ ¼ S22;

S4 ¼ U!;

S5 ¼ U�
! ¼ S4S1;

S6 ¼ �i!ffiffiffi
3

p
!2 1 1

1 1 !2

1 !2 1

0
BB@

1
CCA;

S7 ¼ i!2ffiffiffi
3

p
! 1 1

1 1 !

1 ! 1

0
BB@

1
CCA;

S8 ¼
! 0 0

0 0 1

0 1 0

0
BB@

1
CCA;

S9 ¼
!2 0 0

0 0 1

0 1 0

0
BB@

1
CCA;

S10 ¼ S6S1;

S11 ¼ S7S1:

(23)
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The GCP symmetries in Eq. (23) are unique up to compo-
sition with elements of �ð27Þ itself and multiplication by
an overall phase factor. Concerning the first freedom, we
choose Si to be symmetric2 [Eq. (8)] so that they can be used
as residual symmetries of M�. We consider only the GCP
symmetries that do not enlarge the horizontal flavor group
�ð27Þ; see discussion in Sec. IVB. The transformation prop-
erties for the singlets 1rs are fixed according to the automor-
phism these matrices induce on �ð27Þ [18]. Sometimes one
singlet cannot appear alone but has to be paired up with
another singlet.

In principle, we can use all Si with i ¼ 0; . . . ; 11 as
residual GCP symmetries for M�. However, S0 corre-
sponds to the usual CP transformation and is therefore
noninteresting. The GCP symmetry corresponding to S1
is interesting, but it corresponds to �� reflection, which
was considered previously in the literature, e.g., in
Ref. [16]. The matrices S2, S3 are diagonal, so they have
trivial eigenvectors. Analogously, S8, S9 are block diago-
nal, so they have one trivial eigenvector. The matrices S10,
S11 should also be discarded, because they have degenerate
eigenvalues.3 The remaining S4, S5, S6, S7 are potential
candidates for further study.

The GCP transformations corresponding to S4, S5, S6, S7
are potentially interesting, because their matrices [Eq. (17)]
are given by

US4 ¼

1þ ffiffi
3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3þ ffiffi

3
p Þ

p ð1� ffiffi
3

p Þffiffiffiffiffiffiffiffiffiffiffi
6�2

ffiffi
3

pp 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3þ ffiffi

3
p Þ

p 1ffiffiffiffiffiffiffiffiffiffiffi
6�2

ffiffi
3

pp � 1ffiffi
2

p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3þ ffiffi

3
p Þ

p 1ffiffiffiffiffiffiffiffiffiffiffi
6�2

ffiffi
3

pp 1ffiffi
2

p

0
BBBBBB@

1
CCCCCCAdiagð1; i; e

i�=4Þ;

US5 ¼

1þ ffiffi
3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3þ ffiffi

3
p Þ

p ð1� ffiffi
3

p Þffiffiffiffiffiffiffiffiffiffiffi
6�2

ffiffi
3

pp 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3þ ffiffi

3
p Þ

p 1ffiffiffiffiffiffiffiffiffiffiffi
6�2

ffiffi
3

pp � 1ffiffi
2

p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3þ ffiffi

3
p Þ

p 1ffiffiffiffiffiffiffiffiffiffiffi
6�2

ffiffi
3

pp 1ffiffi
2

p

0
BBBBBB@

1
CCCCCCAdiagð1; i; e

�i�=4Þ;

US6 ¼ UTBdiagðei2�=3; 1; ei�=6Þ;
US7 ¼ UTBdiagðe�i2�=3; 1; e�i�=6Þ; (24)

where UTB is the familiar tribimaximal mixing matrix,

UTB ¼

ffiffi
2
3

q
1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p � 1ffiffi
2

p

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

0
BBBB@

1
CCCCA: (25)

We have chosen the order of the eigenvectors appropri-
ately. Note that the tribimaximal matrix appears for S6 and
S7. Numerically, however, all matrices are close, as

jUS4 j ¼ jUS5 j ¼
0:888074 0:459701 0

0:325058 0:627963 0:707107

0:325058 0:627963 0:707107

0
BB@

1
CCA;

jUS6 j ¼ jUS7 j ¼
0:816497 0:57735 0

0:408248 0:57735 0:707107

0:408248 0:57735 0:707107

0
BB@

1
CCA:

(26)

Instead of S10 and S11, which we discarded because of
degenerate eigenvalues, we could have considered
D3ðaÞS10D3ðaÞ and D3ðaÞS11D3ðaÞ or their composition
with D3ða2Þ. They have nondegenerate eigenvalues and
are symmetric, but they lead to either

jUSj ¼
0:84403 0:449099 0:293128

0:293128 0:84403 0:449099

0:449099 0:293128 0:84403

0
BB@

1
CCA or

0:84403 0:449099 0:293128

0:449099 0:293128 0:84403

0:293128 0:84403 0:449099

0
BB@

1
CCA; (27)

which inevitably lead to a large �13 angle. This case reminds
us that compositions with elements of the horizontal
symmetry do lead to different physical predictions if GCP
transformations are considered as residual symmetries [17].

IV. INCLUSION OFA GCP TRANSFORMATION

To obtain all the possible GCP symmetries listed in
Eq. (23) which are consistent with the flavor group
�ð27Þ, we need to study how to extend a discrete symmetry
group GH by the inclusion of one generalized CP trans-
formation acting, e.g., as Eq. (22) for the three families of
left-handed leptons. This study was performed in general
in Ref. [18]. Here we consider it in more detail and addi-
tionally add more constraints not previously considered.

A. CP as automorphism

We begin by reviewing how GCP transformations
induce an automorphism on other symmetry groups of
the theory, especially on discrete symmetries [18].
Let a discrete group, GH,

4 act on the scalar multiplet of
fields 	 as

	 ! DðgÞ	; (28)

where g 2 GH and D is a (possibly reducible) representa-
tion of GH. This setting can be easily extended to other
nonscalar fields.
A generalized CP transformation acts as

	 ! ~S �	 � S	�ðx̂Þ; (29)
2In �ð27Þ, this choice is always possible; see Sec. VD.
3The unitary version of S11 was used in a different context in

Ref. [25]. 4H stands for horizontal.
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where x̂ ¼ ðx0;�xÞ if x ¼ ðx0;xÞ. Notice that S should be
unitary to preserve the kinetic term. For fermionic fields, it
is implicit that we factor CP2 ¼ �1.

Invariance of the theory by ~S and GH leads to an invari-
ance by the composition

	!~S S	�!g SDðgÞ�	�!~S�1

SDðgÞ�S�1	; (30)

which is a horizontal (unitary) transformation. The last
transformation in Eq. (30) should be an element of
DðGHÞ, because otherwise we would have to enlarge GH.
Hence, by defining

D~SðgÞ � SDðgÞ�S�1; (31)

it is required that there always exist some g0 2 GF

such that

D~SðgÞ ¼ Dðg0Þ; for all g 2 GF: (32)

We can easily show that DS is also a representation for
GH [18]. Moreover, kerDS ¼ kerD, and then DS is faith-
ful if D is faithful. Considering that the representationD is
faithful, the mapping � � D�1 �DS exists (restricted to
the image of D and DS) and is a homomorphism between
GH and itself:

g ! g0 ¼ �ðgÞ: (33)

Since DS is also faithful, � is invertible, and it is then an
automorphism between GH and itself. The possible matri-
ces S in Eq. (31) then realize some element of the auto-
morphism group AutðGHÞ. We can then rewrite the
condition in Eq. (32) as

D~SðgÞ ¼ Dð�ðgÞÞ (34)

for all g 2 GF and some automorphism �.
Suppose now that there is a matrix S ¼ Sð�Þ which

solves Eq. (34) for some automorphism �. We can see
that the matrix S0S, where S0 ¼ Dðg0Þ corresponds to a
group element, also solves Eq. (34) for the automorphism
cg0 � �, since

DS0 ~SðgÞ ¼ ðS0SÞDðgÞ�ðS0SÞ�1 ¼ S0Dð�ðgÞÞS0�1

¼ Dðg0�ðgÞg0�1Þ ¼ Dðcg0 � �ðgÞÞ; (35)

we have defined the conjugation by the element g0 as

cg0 ðgÞ � g0gg0�1: (36)

The automorphism generated by conjugation as in Eq. (36)
is denoted as inner, whereas the automorphism that is not
inner is called outer. All the inner automorphisms compose
the inner autormophism group InnðGHÞ, an invariant sub-
group of AutðGHÞ. Given that conjugation by group ele-
ments trivially corresponds to an automorphism, we only
need to consider the outer automorphism group defined by

OutðGHÞ � ðGHÞ=InnðGHÞ: (37)

At the Lagrangian level, inner automorphisms do not in-
troduce any restriction when we extend GH to GH 2hGCPi.
Suppose now that there are two matrices S0 and S ¼

S1S0 which satisfy Eq. (34) for a common automorphism �.
The relation between S and S0 is

S1 ¼
M



ðs
 � 1d
Þ; (38)

where s
 is an m
 �m
 unitary matrix acting on the
horizontal space of m
 copies of the irreducible represen-
tation (irrep) 
. We are using the decomposition

DðgÞ ¼M



ð1m

�D
ðgÞÞ: (39)

The proof of Eq. (38) follows from the Schur lemma and is
analogous to Theorem 1 of Ref. [26]. Therefore, two
matrices that satisfy Eq. (34) for the same automorphism
� differ only by the unitary change of basis on the hori-
zontal space of replicated irreps of GH.
Let us analyze the case of trivial automorphism, i.e.,

� ¼ id. Equation (34) implies

SDðgÞ�S�1 ¼ DðgÞ; for all g 2 GF: (40)

If D is an irreducible representation, we can distinguish

three cases: real [DðrÞ], pseudoreal [DðpÞ], or complex

[DðcÞ] representation. For realDðrÞ, Eq. (40) can be satisfied
with S ¼ 1. For pseudorealDðpÞ, by definition, there is also
a unitary (antisymmetric) W such that

WDðpÞðgÞ�W�1 ¼ DðpÞðgÞ; for all g 2 GF: (41)

For a single complex DðcÞ, it is not possible to satisfy

Eq. (40), because DðcÞ and DðcÞ� are inequivalent.

However, for a reducible representation DðcÞ 	DðcÞ�,
Eq. (40) can be satisfied as

0 1

1 0

 !
DðcÞðgÞ 0

0 DðcÞðgÞ�
 !� 0 1

1 0

 !

¼ DðcÞðgÞ 0

0 DðcÞðgÞ�
 !

: (42)

Therefore, in a GH-invariant theory, invariance by the CP
transformation associated with the identity automorphism
demands the presence of a multiplet c 0 transforming as

DðcÞ� if the theory contains a multiplet c transforming as

DðcÞ. We have to keep in mind that a GCP transformation
also induces an automorphism on other groups involved,
such as gauge groups or the Lorentz group. Thus, c 0
should have the same quantum numbers of c with respect
to these other groups, because the GCP transformation that
leads to Eq. (42) is

c ðxÞ !GCPc 0�ðx̂Þ; c 0ðxÞ !GCPc �ðx̂Þ: (43)

In contrast, for gauge groups, the automorphism that
customarily meets the expectation of reversing gauge
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quantum numbers is the contragradient automorphism c �

[26], which can be defined for the fundamental represen-
tation of SUðnÞ by S ¼ 1 and

DðcÞ�ðgÞ ¼ DðcÞðc �ðgÞÞ: (44)

We note that c � is outer for SUðnÞ, n 
 3, and Uð1Þ. By
associating CP with c �, any gauge theory with scalars or
fermions interacting only by gauge interactions is always
CP invariant [26].

Assume now that � has finite order5 m, i.e., �m ¼ id. Let
us study the composition of Eq. (34). If we apply it twice,
we obtain

Dð�2ðgÞÞ ¼ ðSS�ÞDðgÞðSS�Þ�1: (45)

More generally, we obtain

Dð�2nðgÞÞ ¼ ðSS�ÞnDðgÞðSS�Þ�n (46)

if we apply it an even number of times, or

Dð�2nþ1ðgÞÞ ¼ ððSS�ÞnSÞDðgÞ�ððSS�ÞnSÞ�1; (47)

if we apply it an odd number of times. We will see in
Sec. IVB that the order of the automorphism � associated
with a GCP transformation should be even. Therefore,
from the Schur lemma (and unitarity of S), for m ¼ 2n,
we need

ðSS�Þn ¼ 1 (48)

within all irrep sectors.

B. Composition of GCP transformations

We should analyze now the conditions imposed by the

composition of the GCP transformation ~S itself.
If we apply the transformation in Eq. (29) twice, we

would obtain

	ðxÞ !~S S	�ðx̂Þ !~S ðSS�Þ	ðxÞ: (49)

This is just the statement that usualCP has order 2 (order 4
for fermions). However, Eq. (49) also implies that

SS� ¼ DðsÞ; for some s 2 GH; (50)

because otherwise GH would be larger by the symmetry
represented by SS�.

The requirement of Eq. (50) applied to Eq. (45) implies

Dð�2ðgÞÞ ¼ Dðsgs�1Þ; for all g inGH: (51)

This means that any automorphism � associated with a
GCP transformation should have order 2, modulo inner
automorphisms, i.e., �2 ¼ cs. This requirement was not
considered in Ref. [18]. We should emphasize that the
consistency condition [Eq. (50)] is indeed independent
from the automorphism condition [Eq. (34)] when

�2 ¼ cs is not automatic, i.e., when OutðGHÞ has elements
of order greater than 2.6 This is the case with GH ¼ �ð27Þ;
see a specific example in Eq. (106). On the other hand, if
OutðGHÞ has only elements of order at most 2, the Schur
lemma applied to Eq. (45) implies that the condition in
Eq. (50) is automatically satisfied. This is the case, e.g., of
GH ¼ A4.
Another condition coming from the finiteness of s

requires

ðSS�Þn ¼ 1 (52)

for sn ¼ e, e being the identity element of GH. This
relation is identical to Eq. (48). Thus, the GCP transforma-

tion ~S always has an even order 2n, and it induces an
automorphism of the same even order.
Let us now rewrite Eq. (50) as

SS� ¼ SDðsÞ�S�1 ¼ D~SðsÞ ¼ Dð�ðsÞÞ: (53)

Therefore, the automorphism � induced by S should leave
the element s invariant.
If wewant S to generate a residual GCP symmetry on the

neutrino mass matrix, S needs to be symmetric [Eq. (8)],
and then SS� ¼ 13. Hence, Eqs. (50) and (51) imply

s ¼ e; �2 ¼ id: (54)

This is the case of usual CP symmetry ~S ¼ CP.
However, even if S is nonsymmetric, the addition of the

GCP transformation ~S might be equivalent to the addition

of another transformation ~S0 with symmetric S0. Let us
define

S0 � DðgÞS (55)

and calculate

S0S0� ¼ Dðg�ðgÞsÞ: (56)

We have used Eq. (34). Thus, we obtain S0S0� ¼ 1 if we
can find g in GH such that

g�ðgÞs ¼ e: (57)

If s has an odd order 2mþ 1, this condition is automati-
cally satisfied by g ¼ sm, since

g�ðgÞs ¼ smsms ¼ s2mþ1 ¼ e (58)

where Eq. (53) was applied.
Additionally, we can see from Eq. (52) that for each

matrix S that satisfies Eq. (34) and then corresponds to a
consistent GCP transformation, there are equally consis-
tent choices of S related by rephasing:

S ! ei
S: (59)

5A finite group GH always has a finite AutðGHÞ.
6The author is thankful to G.-J. Ding for raising this question

during FLASY2013.
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All these matrices induce the same automorphism � on the
group GH.

Now, suppose we have at our disposal two GCP trans-
formations [Eq. (29)] defined by two unitary matrices S1
and S2. If we apply them in succession, we obtain

	ðxÞ ! S1	
�ðx̂Þ ! S1S

�
2	ðxÞ: (60)

This means that two different GCP transformations induce
a (unitary) horizontal transformation

	ðxÞ ! U	ðxÞ; (61)

with U ¼ S1S
�
2.

We distinguish two cases: (i) If this new horizontal U
transformation corresponds to a representation DðgÞ of an
element g in GH, then only one of the two GCP trans-

formations ~S1, ~S2 has to be included as an additional trans-
formation subjected to the constraints of Eqs. (34) and (50).
(ii) If the horizontal transformation U does not correspond
to an element of GH, then such a group has to be extended
to a larger groupG0

H. The simplest way to extendGH toG0
H

is by split extension of the form GH 2hUi. In this case, U
also induces an automorphism �, by a unitary version of the
transformation in Eq. (34), as

DUðgÞ � UDðgÞU�1 ¼ Dð�ðgÞÞ: (62)

We denote this unitary transformation by DU without the
tilde symbol. We can also understand this requirement by

the successive application of ~S1, ~S2 as

DðgÞ ! D~S1
ðgÞ ¼ S1DðgÞ�S�1

1 ! D~S2 ~S1
ðgÞ

¼ S2D~S1
ðgÞ�S�1

2 ¼ S2S
�
1DðgÞST1Sy2 : (63)

We identify U ¼ S2S
�
1 and � ¼ �2 � �1 in Eq. (62) if �k is

induced by ~Sk, k ¼ 1, 2. In these cases, the action of the

antiunitary transformations ~S1 and ~S2, inducing automor-
phisms �1, �2, is equivalent to the action of the unitary
transformation U which induces the combined automor-
phism �2 � �1. We can compose unitary automorphisms
with antiunitary automorphisms, as well as unitary ones
with another unitary transformation. The set of all matrices
S in Eq. (31) and U in Eq. (62) represents the automor-
phism group AutðGHÞ.

V. THE CASE OF GH ¼�ð27Þ
The automorphism group of �ð27Þ was discussed in

Ref. [18]. The structure of the group is

Autð�ð27ÞÞ ’ ðððZ3 � Z3Þ 2Q8Þ 2Z3Þ 2Z2;

Z � Zð�ð27ÞÞ ’ Z3;

Innð�ð27ÞÞ ’ �ð27Þ=Zð�ð27ÞÞ ’ Z3 � Z3;

Outð�ð27ÞÞ ’ GL2ðF3Þ ’ ðQ8 2Z3Þ 2Z2:

(64)

Recall that the outer automorphism group is defined by
Eq. (37). The possible nontrivial GCP transformations
have to be associated with one of the 48 elements of
Outð�ð27ÞÞ.
We can study Autð�ð27ÞÞ by using the explicit represen-

tation in Eq. (21) for the generators a, b, a0 in Eq. (19). But
instead of using a0, we can use Eq. (20) as an auxiliary
generator. For the representation in Eq. (21), we have

z0 �!213: (65)

We can replace the presentation in Eq. (19) with

a3 ¼ b3 ¼ z30 ¼ e; az0 ¼ z0a;

bab�1 ¼ az0; bz0b
�1 ¼ z0:

(66)

We can write all 27 elements of �ð27Þ as
g ¼ bn1an2zn30 ; (67)

where n1, n2, n3 runs from 0 to 2.

A. Auxiliary result

Let us show that for G ¼ �ð27Þ, the following is true:

OutðGÞ � AutðGÞ=InnðGÞ ’ AutðG=ZðGÞÞ: (68)

This means that to study the outer automorphism group of
�ð27Þ, all we need to know is the automorphism group of
the smaller group �ð27Þ=Z ’ Z3 � Z3. This property is
very particular to�ð27Þ, and it is not satisfied, for example,
for G ¼ A4 or a cyclic group.
To establish Eq. (68), it is useful to define a homomor-

phism from AutðGÞ to AutðG=ZÞ by mapping � 2 AutðGÞ
to �0 2 AutðG=ZÞ by

�0ðxZÞ ¼ �ðxÞZ; (69)

where xZ 2 G=Z is a coset of Z in G, containing x in G.
By the homomorphism theorem of group theory, we prove
Eq. (68) by showing that the kernel of this homomorphism
is InnðGÞ.
By definition, the kernel of the homomorphism defined

by Eq. (69) is given by automorphisms � of G mapped to
�0 ¼ id. This means

�0ðxZÞ ¼ �ðxÞZ ¼ xZ; for all xZ inG=Z: (70)

Then �ðxÞz0 ¼ xz00 for some z0, z00 in Z. Finally, � in the
kernel of the homomorphism [Eq. (69)] is required to obey

�ðxÞ ¼ xz; for some z inZ and for all x inG: (71)

The remaining task is to show that any automorphism �
of G that obeys Eq. (71) is an inner automorphism. We do
it explicitly forG ¼ �ð27Þ by considering its generators a,
b. Any automorphism � that obeys Eq. (71) should be
entirely determined by how it acts on the generators
a, b, i.e.,
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�ðaÞ ¼ azn0 ; �ðbÞ ¼ bzm0 : (72)

Let us now show that any automorphism of the type in
Eq, (72) is an inner automorphism.We begin by confirming
that the validity of the property bab�1 ¼ az0 in Eq. (66)
through the automorphism � implies �ðz0Þ ¼ z0. Then we
check the action through the conjugation of

caðbÞ ¼ bz20; cbðaÞ ¼ az0; (73)

where we use the notation cgðxÞ ¼ gxg�1 for conjugation.

Conjugation by a, b in Eq. (73) allows us to compute the
conjugation by a general g ¼ bn1an2z

n3
0 as

cgðaÞ ¼ azn10 ; cgðbÞ ¼ bz�n2
0 : (74)

We made use of the property bnam ¼ ambnzmn
0 . We can

then conclude that any automorphism as in Eq. (72) cor-
responds to a conjugation by some g in G, and conversely
any inner automorphism will have the form of Eq. (72).
This result establishes Eq. (68) for �ð27Þ.

B. Automorphism group of �ð27Þ=Z3

Let us study the automorphism group of �ð27Þ=Z ’
Z3 � Z3, where Z � Zð�ð27ÞÞ ’ Z3 is the center of
�ð27Þ. The group �ð27Þ=Z is generated by the cosets �a ¼
aZ and �b ¼ bZ, while Z is generated by z0 in Eq. (20). An
automorphism � in �ð27Þ=Z can be defined by knowing
the mapping of the generators ð �a; �bÞ � ð�ð �aÞ; �ð �bÞÞ. Part of
this discussion can be also found in Ref. [27].

Next we know AutðZ3 � Z3Þ ’ GL2ðF3Þ, the group of
2� 2 invertible matrices with entries in the finite field
F3 ¼ f�1; 1; 0g. We identify �ð27Þ=Z and Z3 � Z3 as
follows: for each element �x ¼ �an �bm in �ð27Þ=Z we define
a vector in F23 ¼ F3 � F3 as

�x ¼ �an �bm ! p ¼ ðn;mÞT; (75)

where n, m ¼ �1, 0, 1. For example,

�a ! ð1; 0Þ;
�b ! ð0; 1Þ; and

�a �b2 ! ð1;�1Þ ¼ ð1; 0Þ þ ð0;�1Þ:
(76)

Therefore, we trade group multiplication in Z3 � Z3 ¼
h �ai � h �bi for vector addition in F23. Now a matrix A in

GL2ðF3Þ induces an autormophism in F23 by

p ! Ap: (77)

The automorphism on �ð27Þ=Z can be read off from
Eq. (75). For example,

��A¼ 1 1

�1 0

 !
is equivalent to

(
�ð �aÞ¼ �a �b2

�ð �bÞ¼ �a
: (78)

We can split GL2ðF3Þ into SL2ðF3Þ 2Z2, where Z2 is
generated by a 2� 2matrix of determinant�1, associated
with the automorphism �. Let us choose

�� d � �1 0

0 1

 !
; (79)

so that Autð�ð27Þ=ZÞ ’ SL2ðF3Þ 2h�i. Now we only need
to study the subgroup isomorphic to SL2ðF3Þ.
Let us show that SL2ðF3Þ ’ Q8 2Z3 by picking up some

elements of SL2ðF3Þ,

e1 �
1 1

1 �1

 !
; e2 �

�1 1

1 1

 !
;

e3 �
0 �1

1 0

 !
; c � 1 1

0 1

 !
:

(80)

We can show that

he1; e2; e3i ’ Q8; hci ’ Z3; (81)

and that he1; e2; e2ihci generates an order-24 group which
exhausts SL2ðF3Þ.
Firstly, we can directly show that the following proper-

ties hold:

e21 ¼ e22 ¼ e23 ¼ �12;

e1e2 ¼ �e2e1 ¼ e3;

c3 ¼ 12:

(82)

These properties establish Eq. (81). The semidirect product
Q8 2Z3 is confirmed from the automorphism on Q8 gen-
erated by c as

ce1c
�1 ¼ e2; ce2c

�1 ¼ e3; ce3c
�1 ¼ e1: (83)

Finally, we can check that he1; e2; e2i and hci have trivial
intersection and that he1; e2; e2ihci has 24 elements.
For completeness, we can add the element d in Eq. (79)

to generate GL2ðF3Þ. The element d induces an automor-
phism on SL2ðF3Þ as

de1d
�1 ¼ e�1

2 ; de2d
�1 ¼ e�1

1 ;

de3d
�1 ¼ e�1

3 ; dcd�1 ¼ c�1:
(84)

We can write all elements of GL2ðF3Þ as a product of an
element in SL2ðF3Þ and 12 or d.

C. Unitary and antiunitary automorphisms

We show here the following result: antiunitary trans-
formations [Eq. (31)] induce automorphisms inOutð�ð27ÞÞ
corresponding to matrices A in GL2ðF3Þ with detA ¼ �1,
and unitary transformations [Eq. (62)] realize automor-
phisms corresponding to elements of SL2ðF3Þ.
Given that the center of a group is always mapped into

itself by any automorphism, we can firstly distinguish two
types of automorphisms in Autð�ð27ÞÞ:

ðIÞ�ðz0Þ ¼ z0; ðIIÞ�ðz0Þ ¼ z�1
0 : (85)

We can easily see that automorphisms of type I form a
normal subgroup of Autð�ð27ÞÞ with half of the elements.
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In general, we would call a CP-type transformation a
type-II transformation which sends z0 ! z�1

0 . We can see

that by noting that only the triplet and antitriplet represen-
tations, 3 and �3, represent the element z0 of the center
nontrivially. For example, for 3, with the choice of
Eq. (21), we obtain Eq. (65) for z0. Since z0 is in the center,
its representation 3 is proportional to the identity, and we
can immediately see that the automorphisms induced by a
unitary transformation [Eq. (62)] are of type I, whereas the
automorphisms induced by Eq. (31) are of type II.

Our task is to show that the subgroup of type-I
automorphisms coincides with the subgroup SL2ðF3Þ of
Autð�ð27ÞÞ modulo inner automorphisms. We follow
Ref. [27], Sec. 7.1. The first step is to define the commu-
tator of two elements x, y of the group

½x; y� � xyx�1y�1: (86)

This operation has the properties

½y; x� ¼ ð½x; y�Þ�1 and ½xx0; y� ¼ ½x; y�½x0; y�; (87)

where the last relation is already specialized to �ð27Þ
where all commutators lie in the center Z. For example,

½b; a� ¼ bab�1a�1 ¼ z0: (88)

We can also identify the commutator in �ð27Þ and
�ð27Þ=Z as

½x; y� ¼ ½ �x; �y�; (89)

since the commutator is invariant if we replace x with xz,
where z 2 Z. The same is true for y.

The next step is to use the mapping [Eq. (75)] to define a
bilinear d function of F23 to F3 by

dðp;qÞ ¼ n; from ½ �x; �y� ¼ zn0 ; if p ! �x; q ! �y:

(90)

The integer n ¼ �1, 0, 1 belongs to F3. The properties in
Eq. (87) translate to the following properties of d:

dðq;pÞ ¼ �dðp;qÞ;
dðpþ p0;qÞ ¼ dðp;qÞ þ dðp0;qÞ:

(91)

Thus, d is a bilinear function. Since ½ �a; �b� ¼ z20 �
dðð1; 0Þ; ð0; 1ÞÞ ¼ �1, dðp;qÞ corresponds to ð�1Þ times
the determinant of the matrix formed by columns p, q
(from the uniqueness of the determinant function). This
observation leads to

dðAp; AqÞ ¼ det ðAÞdðp;qÞ; (92)

where A 2 GL2ðF3Þ. Finally, we can see how an automor-
phism � associated with a matrix A acts on z0 ¼ ½ �b; �a� �
dðð0; 1Þ; ð1; 0ÞÞ ¼ 1:

z0 ! dðAð0; 1Þ; Að1; 0ÞÞ ¼ det ðAÞ � ½�ð �bÞ; �ð �aÞ�
¼ �ð½ �b; �a�Þ ¼ �ðz0Þ ¼ ðz0Þdet ðAÞ: (93)

Hence, elements of SL2ðF3Þ [GL2ðF3Þ � SL2ðF3Þ] act as
type-I [type-II] automorphisms.

D. Obtaining the matrices Si

We are now in a position to calculate the matrices S that
induce the automorphisms in Eq. (34) for the triplet rep-
resentation 3 in Eq. (21). These matrices will define the
GCP transformations [Eq. (22)] for the lepton doublets.
The relation in Eq. (68) allows us to associate, in a

one-to-one fashion, a matrix A 2 GL2ðF3Þ with each
automorphism � of Autð�ð27ÞÞ, modulo inner automor-
phisms. For GCP transformations, we only need the
elements of GL2ðF3Þ � SL2ðF3Þ with determinant ð�1Þ,
which can be written as

A ¼ A0d; (94)

where A0 2 SL2ðF3Þ, and d was defined in Eq. (79); see
Sec. VB. In turn, all the elements A0 of SL2ðF3Þ can be
recovered from the structure he1; e2; e3i 2hci ’ Q8 2Z3

whose generators were defined in Eq. (80).
We can calculate all the possible matrices S that define

GCP transformations by using Eq. (34) for elements of
GL2ðF3Þ of the type in Eq. (94). Let us begin with the
simplest A ¼ d case. We need a matrix SðdÞ that induces
automorphism ða; bÞ ! ða2; bÞ; i.e.,

SðdÞD3ðaÞ�SðdÞy ¼ D3ða2Þ;
SðdÞD3ðbÞ�SðdÞy ¼ D3ðbÞ:

(95)

We use the triplet representation in Eq. (21). Since Eq. (95)
requires that SðdÞ commute with bothD3ðaÞ andD3ðbÞ, the
only solution is

SðdÞ ¼ 13; (96)

neglecting a possible phase factor. Thus, the GCP associ-
ated with the automorphism d is just the usual CP
transformation.
We can obtain all other matrices S by composition from

Eq. (94), since

DððA0dÞðgÞÞ ¼ UðA0ÞDðdðgÞÞUðA0Þy
¼ UðA0ÞDðgÞ�UðA0Þy; (97)

where we have denoted as ðA0dÞðgÞ the element mapped by
automorphism from g by the matrix A0d, using some con-
ventions explained below. For the generators a, b, we need

UðA0ÞD3ðaÞUðA0Þy ¼ D3ðA0ðaÞÞ;
UðA0ÞD3ðbÞUðA0Þy ¼ D3ðA0ðbÞÞ: (98)

We seek only matrices that can be associated with one
single GCP transformation, which requires Eqs. (50), (51),
and (53). In particular, Eq. (51) implies that we only need
to consider order-2 automorphisms in Outð�ð27ÞÞ.
All the order-2 automorphisms of Outð�ð27ÞÞ are in the

conjugacy class of d. Such a conjugacy class is composed
of the 12 elements
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8<
: �1 0

0 1

 !
;

�1 1

0 1

 !
;

�1 �1

0 1

 !
;

�1 0

1 1

 !
;

�1 0

�1 1

 !
;

0 1

1 0

 !9=
;f1;�12g: (99)

We can denote the elements within the first set of braces by
fd; cd; c2d;�e2cd; e1c

2d;�e3dg, respectively.
To find all the matrices S corresponding to the auto-

morphisms in Eq. (99), we only need to find the unitary
matrices U satisfying Eq. (98) for the automorphisms
f12; c; c

2;�e2c; e1c
2;�e3gf12;�12g, which correspond

to the set in Eq. (99) multiplied by d from the right. To
construct all of them, we only need f�12; c;�e2c; e3g, i.e.,( �1 0

0 �1

 !
;

1 1

0 1

 !
;

1 0

�1 1

 !
;

0 �1

1 0

 !)
; (100)

respectively; the rest can be obtained from their inverses.
Note that automorphism A0 is unique in Outð�ð27ÞÞ. In

Autð�ð27ÞÞ, they are defined up to inner automorphisms.
To define an automorphism in Autð�ð27ÞÞ from GL2ðF3Þ
we need a convention, i.e., a recipe to extract one repre-
sentative element from the coset. We adopt the following:
we drop the bar in Eq. (78) and define the mapping on a, b.
One only needs to define an ordering for terms with prod-
ucts of a and b. We use the ordering bn2an1 . For example,
for the automorphism c above, we seek a UðcÞ that induces

c ¼ 1 1

0 1

 !
: ða; bÞ � ða; baÞ: (101)

Thus, we conveniently write cðaÞ ¼ a, cðbÞ ¼ ba as in
Eq. (97).

Imposing Eq. (98), we find

Uð�12Þ ¼
1 0 0

0 0 1

0 1 0

0
BB@

1
CCA;

Uðe3Þ ¼ 1ffiffiffi
3

p
1 1 1

1 ! !2

1 !2 !

0
BB@

1
CCA � U!;

UðcÞ ¼
1 0 0

0 1 0

0 0 !

0
BB@

1
CCA;

Uð�e2cÞ ¼ �i!ffiffiffi
3

p
1 !2 1

1 1 !2

!2 1 1

0
BB@

1
CCA � U0

3:

(102)

Note that for �e2c, we have used e3ce
�1
3 ¼ �e2c, so that

the convention in Eq. (101) is not respected. To obtain a
symmetric matrix, we redefine

Uð�e2cÞ ¼ D3ðbÞU0
3 ¼

�i!ffiffiffi
3

p
!2 1 1

1 !2 1

1 1 !2

0
BB@

1
CCA � U3:

(103)

Finally, the list of matrices [Eq. (23)] is obtained from
Eq. (102) as follows:

S0 ¼13; S1 ¼Uð�12Þ; S2 ¼UðcÞ;
S3 ¼UðcÞ�1; S4 ¼Uðe3Þ; S5 ¼Uðe3ÞS1;
S6 ¼U3S1; S7 ¼U�1

3 S1; S8 ¼TS2T
�1S1;

S9 ¼TS3T
�1S1; S10 ¼U3; S11 ¼U�1

3 : (104)

To define symmetric S8, S9, we have conveniently included
the inner automorphism T ¼ D3ðbÞ. All GCP transforma-
tions in �ð27Þ models are then defined by the matrices Si,
i ¼ 0; . . . ; 11, up to inner automorphisms. The choice of
symmetric Si implies that the associated automorphisms �i
have order 2 in Autð�ð27ÞÞ, as in Eq. (54), and not only in
Outð�ð27ÞÞ. Therefore, in �ð27Þ, we can define all GCP
transformations in terms of symmetric Si, which are the
symmetries relevant for residual GCP symmetries on the
mass matrix M�. However, this does not mean that we
cannot define GCP transformation with nonsymmetric S.
For example, defining S10 ¼ U0

3 in Eq. (102) instead of U3

leads to

S10S
�
10 ¼

0 0 1

1 0 0

0 1 0

0
BB@

1
CCA ¼ D3ðbÞ: (105)

In this case, Eq. (50) is valid with nontrivial s ¼ b.
We should also emphasize that the matrices in Eq. (102)

are defined up to phases. If we are only interested in GCP
transformations, Eq. (59) ensures that phases are unimpor-
tant. Instead, if we want to enlarge the �ð27Þ group
(identifying it with its triplet representation) by the inclu-
sion of some of the elements above, then the phase factors
should be compatible with the order of the element. For
example, UðcÞ is defined up to factors 1, !, !2, while
Uðe3Þ can be multiplied only by�1,�i. For completeness,
the order of �e2c is also 3.
Let us finish the study of GCP in �ð27Þ flavor models

by giving an explicit example showing that, for �ð27Þ,
the consistency condition [Eq. (50)] is additional to the
automorphism condition [Eq. (34)]. If we take the auto-
morphism associated with �ðaÞ ¼ ba, �ðbÞ ¼ a, we have
�8 ¼ id modulo conjugation. If we solve the condition in
Eq. (34) for a, b, we find

S ¼ 1ffiffiffi
3

p
1 1 1

1 ! !2

! 1 !2

0
BB@

1
CCA (106)
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up to rephasing. For the consistency condition in Eq. (50),
we find

SS� ¼ iffiffiffi
3

p
!2 !2 1

1 !2 !2

1 ! 1

0
BB@

1
CCA: (107)

This element is not part of �ð27Þ, so the horizontal group
needs to be enlarged by including it. One can check that
ðSS�Þ4 ¼ 13.

VI. CONCLUSIONS

We have found all GCP transformations that can be
defined in �ð27Þ flavor models, up to composition with
elements of �ð27Þ or multiplication by a phase factor. The
list is shown in Eq. (23). The inclusion of any other GCP
transformation leads to the enlargement of the flavor group
�ð27Þ. Moreover, the extension of the flavor group by any
GCP transformation is equivalent to the addition of an
antiunitary transformation [Eq. (22)] for which the unitary
part S that connects different families is symmetric.

We have also discussed the consequences of having a
single GCP symmetry as a residual symmetry of the neu-
trino mass matrixM�. In the flavor basis, the presence of a

CP-type residual symmetry ofM� fixes three out of the six
parameters of the leptonic mixing matrix—more precisely,
three complex phases that lead indirectly to the Dirac CP
phase and the two Majorana phases. Although the mixing
angles are unconstrained, there is an intrinsic part of the
mixing matrix that is completely determined by the GCP
residual symmetry. If other symmetries are able to ensure
that the unconstrained part is near the identity matrix, then
the residual symmetry is capable of fixing the approximate
features of the leptonic mixing matrix.
Specifically for �ð27Þ flavor models, we have identified

some potential GCP symmetries that lead to interesting
patterns for the parts that are determined by the residual
symmetry. In particular, two GCP symmetries lead to the
tribimaximal form for the intrinsic part of the PMNS
matrix. Another two GCP symmetries lead to a new pattern
numerically close to but distinct from the tribimaximal
form. These patterns could be further employed in flavor
model building to explain the observed mixing patterns of
leptons, including the nonzero �13 angle.
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