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We carry out a detailed study of the branching fractions and lepton-pair invariant-mass spectrum of

�� ! ����‘
þ‘� decays (‘ ¼ e, �). In addition to the model-independent (QED) contributions, we

include the structure-dependent (SD) terms, which encode information on the hadronization of QCD

currents. The form factors describing the SD contributions are evaluated by supplementing Chiral

Perturbation Theory with the inclusion of the lightest multiplet of spin-1 resonances as active degrees

of freedom. The Lagrangian couplings have been determined by demanding the known QCD short-

distance behavior to the relevant Green functions and associated form factors in the limit where the

number of colors goes to infinity. As a result, we predict BRð�� ! ����e
þe�Þ ¼ ð1:7þ1:1�0:3Þ � 10�5 and

BRð�� ! �����
þ��Þ 2 ½0:03; 1:0� � 10�5. According to this, the first decay could be measured in the

near future, which is not granted for the second one.
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I. INTRODUCTION

The hadronic final states that can be produced in
�-lepton decays provide a clean environment to study the
dynamics of strong interactions at energies below the
�-lepton mass. The leading weak interactions that drive
the flavor transitions in these decays are dressed by the
strong and electromagnetic interactions to generate a large
diversity of hadronic and photonic states. The hadronic
vertices can be cleanly extracted and used to test several
properties of QCD and electroweak interactions, or to
extract fundamental parameters of the Standard Model [1].

In this paper, we study the �� ! ����‘
þ‘� (‘ ¼ e or

�) decays, which have been considered previously [2] in
the context of sterile neutrino exchange. The calculation in
Ref. [2] overlooks the Standard Model contribution which,
to our knowledge, has not been studied before and it is
tackled for the first time in the present paper. We will
present the results of this calculation and analyze the
associated phenomenology in this article, ignoring all pos-
sible new physics contributions. The attempt to measure
these decay channels has not been made so far, although, as
we will show, they are likely to be detected in near-future
facilities. The �-lepton decays under consideration are the
crossed channels of the �� ! ‘��‘e

þe� decays, which
have been studied in the past [3,4] and have been already
observed [5]. Both decays are interesting because they
involve the ��W���� vertex with the two gauge bosons
off their mass shells. The analogous radiative �� !
����� and �� ! ‘��‘� decays, which have been widely
studied before [6–9], provide information on the same
vertex in the case of a real photon. The knowledge of the
�W� vertex in the full kinematical range is of great
importance, not only for testing QCD predictions, but
also because it plays a relevant role in computing the

radiative corrections to � ! ‘�, � ! ��� decays and in
the evaluation of the hadronic light-by-light contributions
to the muon anomalous magnetic moment [10].
These four-body decays of pions and � leptons explore

different virtualities of the photon and W boson and can
provide complementary information on the relevant form
factors. The low energies involved in pion decays are
sensitive to QCD predictions in the chiral and isospin
limits, while �-lepton decays involve energy scales where
the resonance degrees of freedom become relevant. As is
well known, rigorous predictions from QCD for the form
factors that describe the �W� and ��� vertices can be
obtained only in the chiral and short-distance limits.
Therefore, the information provided by �-lepton decays
is valuable in order to understand the extrapolation be-
tween these two limiting cases.
The vector and axial-vector form factors relevant to our

study are calculated in the framework of the Resonance
Chiral Theory (R�T) [11,12]. In order to fix the free
couplings appearing in these calculations, we also impose
available short-distance constraints in the large-NC limit of
QCD. As a result, we are able to predict the branching
ratios and the invariant-mass spectrum of the lepton pair in
�� ! ����‘

þ‘� decays.
In Sec. II, we decompose the matrix element in terms of

the model-independent (QED) and the structure-dependent
(SD; vector and axial-vector) contributions, where the
latter depend on the corresponding hadronic form factors.
These are studied in detail in Sec. III, and the QCD con-
straints on their short-distance behavior in the NC ! 1
limit are discussed in Sec. IV. The related phenomenologi-
cal analysis is presented in Sec. V, and we give our con-
clusions in Sec VI. An appendix with the results of the
spin-averaged squared matrix element completes our
discussion.
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II. MATRIX ELEMENTAND DECAY RATE

We consider the process ��ðp�Þ ! ��ðpÞ��ðqÞ�
‘þðpþÞ‘�ðp�Þ. This decay is generated by demanding that
the photon in the��ðp�Þ ! ��ðpÞ��ðqÞ�ðkÞ decays become
virtual and then convert into a lepton pair (lepton-pair pro-
duction mediated by the Z boson is negligible); at the ampli-
tude level, it suffices to change the photon polarization ��

in the radiative decay by e �uðp�Þ�� � vðpþÞ=k2, with k ¼
pþ þ p� the photon momentum and e the positron charge.
Therefore, one can relate the description of the structure-
dependent contributions to lepton-pair production to the
ones appearing in the real photon case [9]. In analogy with
the radiative pion and one-meson tau decays, the matrix
element can be written as the sum of four contributions:

M½��ðp�Þ ! ��ðpÞ��ðqÞ‘þðpþÞ‘�ðp�Þ�
¼ MIB�

þMIB�
þMV þMA: (1)

The relevant diagrams are depicted in Fig. 1. The notation
introduced for the amplitudes describes the four kinds
of contributions: MIB�

is the bremsstrahlung off the tau

lepton, [Fig. 1(a)]; MIB�
is the sum of the bremsstrahlung

off the � meson [Fig. 1(b)] and the diagram with the
local W���� vertex [Fig. 1(c)]; MV is the structure-
dependent vector contribution [Fig. 1(d)]; and MA is the
structure-dependent axial-vector contribution [Fig. 1(e)].
Our imprecise knowledge of the exact mechanism of
hadronization in the last two terms is parametrized in terms
of hadronic form factors, which are functions of p � k
and k2.
The decay amplitude is composed of the following set of

gauge-invariant contributions (GF is the Fermi constant,
Vud ¼ 0:9742 the ud quark mixing angle, F� ¼ 92:2 MeV
[5], and we have defined MIB ¼ MIB�

þMIB�
):

MIB ¼ �iGFVud

e2

k2
F�M� �uðp�Þ��vðpþÞ �uðqÞð1þ �5Þ

�
2p�

2p � kþ k2
þ 2p�

� � 6k��

�2p� � kþ k2

�
uðp�Þ;

MV ¼ �GFVud

e2

k2
�uðp�Þ��vðpþÞFVðp � k; k2Þ����	k

�p	 �uðqÞ��ð1� �5Þuðp�Þ;

MA ¼ iGFVud

2e2

k2
�uðp�Þ��vðpþÞ

�
FAðp � k; k2Þ½ðk2 þ p � kÞg�� � k�p�� � 1

2
A2ðk2Þk2g��

þ 1

2
A4ðk2Þk2ðpþ kÞ�p�

�
�uðqÞ��ð1� �5Þuðp�Þ: (2)

The structure-dependent contributions are described in
terms of one vector and three axial-vector Lorentz-
invariant form factors. These form factors will be discussed
in detail later in the article and, in particular, the depen-
dence on k2 of FAðp � k; k2Þ and FVðp � k; k2Þ will be given
in Sec. III. It can be easily checked that the decay
amplitudes corresponding to the radiative �� ! �����
decays can be obtained from Eq. (2) by replacing
e �uðp�Þ��vðpþÞ ! ��=k2, where �� is the polarization
four-vector of the real photon, and then by setting

k2 ¼ 0. In this case, the decay amplitude depends only
upon two form factors, FAðp � k; k2 ¼ 0Þ and
FVðp � k; k2 ¼ 0Þ, whose expressions can be read from
Ref. [9]. The additional axial-vector form factors A2ðk2Þ
and A4ðk2Þ can be found in Ref. [6].
Equation (2) can be checked from the corresponding

expressions for Kþ ! �þ��‘
þ‘� in Eq. (4.9) of

Ref. [6] by using crossing symmetry and the conservation
of the electromagnetic current. As noted in this reference,
the parametrization of the axial-vector form factor used by

(a) (b) (c)

(e)(d)

FIG. 1. Feynman diagrams for the different kinds of contributions to the �� ! ����‘
þ‘� decays, as explained in the main text.

The dot indicates the hadronization of the QCD currents. The solid triangle (square) represents the SD contribution mediated by the
axial-vector (vector) current.
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the Particle Data Group [5] for the analogous �þ !
�þ��e

þe� decays neglects the A4ðk2Þ form factor.1

Given the different kinematics of our problem, we will
keep it in the following. As we will see later, at next-to-
leading order in Chiral Perturbation Theory (�PT), A2ðk2Þ
and A4ðk2Þ can be expressed in terms of only one form
factor. (This is no longer true at the next order [6], whose
contributions we neglect.) If we define this form factor as
Bðk2Þ � � 1

2A2ðk2Þ, then 1
2A4ðk2Þ¼�Bðk2Þ=ðk2þ2p �kÞ,

and the axial-vector SD amplitude is simplified to

MA ¼ iGFVud

2e2

k2
�uðp�Þ��vðpþÞ

�
�
FAðp � k; k2Þ½ðk2 þ p � kÞg�� � k�p��

þ Bðk2Þk2
�
g�� � ðpþ kÞ�p�

k2 þ 2p � k
��

� �uðqÞ��ð1� �5Þuðp�Þ: (3)

The results of summing the different contributions to the
squared matrix element over polarizations are collected in
the Appendix.

The IB contributions are model independent in the sense
that they are determined in terms of the parameters of the
well-known nonradiative �� ! ���� decays and by using
QED. They provide the dominant contribution to the decay
rate in the case of a real photon emission [9], owing to the
well-known infrared divergent behavior. For the decay
under consideration, we can expect that this behavior is
softened, since k2 	 4m2

‘. The SD (or model-dependent)

contributions require the modeling of the ��W�� vertex
for photon and W-boson virtualities of the order of 1 GeV.
Those terms can be split into vector V and axial-vector A
contributions, according to Eq. (2), and must include the
resonance degrees of freedom that are relevant at such
energies (see Sec. III).

Therefore, the decay rate can be conveniently separated
into six terms which correspond to three moduli squared
(IB; VV; AA) and three interference terms (IB� V,
IB� A, V � A). Thus, we can write the decay rate as
follows:

�total¼�IBþ�VVþ�AAþ�IB�Vþ�IB�Aþ�V�A: (4)

In terms of the five independent kinematical variables
needed to describe a four-body decay, the differential
decay rate is given by

d�ð�� ! ���
�‘þ‘�Þ

¼ X
12
34

4ð4�Þ6M3
�

jMj2ds34ds12dðcos�1Þdðcos �3Þd�3; (5)

where jMj2 is the spin-averaged unpolarized decay
probability,

X ¼ 1=2ðM2
�; s12; s34Þ
2

; 
ij ¼
1=2ðsij; m2

i ; m
2
j Þ

sij
; (6)

and ða; b; cÞ ¼ a2 þ b2 þ c2 � 2ab� 2ac� 2bc.
The five independent kinematical variables in

Eq. (5) were chosen as fs12; s34; �1; �3; �3g, where
s12 :¼ ðp1 þ p2Þ2 and s34 :¼ ðp3 þ p4Þ2; the momenta
were relabeled2 as

fp�; q; p; pþ; p�g ! fp; p1; p2; p3; p4g: (7)

The definition of the angles is the standard one. Finally, the
integration limits are

smin
34 ¼ ðm3 þm4Þ2; smax

34 ¼ ðM�m1 �m2Þ2;
�1;3 2 ½0; ��; �3 2 ½0; 2��;

smin
12 ¼ ðm1 þm2Þ2; smax

12 ¼ ðM� ffiffiffiffiffiffi
s34

p Þ2: (8)

In this way, the outermost integration corresponds to the
square of the invariant mass s34 of the lepton-antilepton
pair, assuming it can be the spectrum most easily measured
in the considered decays.

III. STRUCTURE-DEPENDENT FORM FACTORS

Although the hadronic form factors cannot be computed
from the underlying theory, the symmetries of QCD
are nonetheless the guiding principle for writing the
effective Lagrangian that will be used. At very low ener-
gies, the strong-interaction Lagrangian exhibits a chiral
SUðnfÞ 
 SUðnfÞ symmetry in the approximate limit of

(nf) massless light quarks. This symmetry allows us to

develop �PT [14] as an expansion in powers of momenta
and masses of the lightest mesons (that acquire mass
through explicit chiral symmetry breaking), over a typical
hadronic scale which can be identified with the lightest
resonances or the chiral symmetry breaking scale. Since
the energies probed in hadronic tau decays are larger than
these hadronic scales, the �PT expansion parameter no
longer converges at high invariant masses. In parallel
new degrees of freedom, the lightest resonances become
excited, and they should be introduced as dynamical fields
in the action. This is done in R�T [11], working in the
convenient antisymmetric tensor formalism, which guar-
antees that the contact interactions of next-to-leading order
(NLO) �PT are already included in the R�T Lagrangian,
as can be seen by integrating the resonances out. Now the
expansion parameter is 1=NC (NC being the number of

1The other form factors are related via � ffiffiffi
2

p
m�½FAðp �k;k2Þ;

A2ðk2Þ;FVðk2Þ�¼½FA;R;FV� to the ones used in Ref. [5].

2We decided to write Eqs. (5) and (6) in terms of the second set
of momenta in Eq. (7) for its general usefulness in four-body
decays. See Ref. [13] for details. By contrast, we prefer to
present the rest of Eq. (1) to Eq. (A2) in terms of the first set
of momenta in Eq. (7) for an easier interpretation.
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colors of the gauge group) [15], and the theory at leading
order has a spectrum of infinitely many stable states with
only tree-level interactions. In our case, we will see that the
kinematics of the problem damps very strongly the observ-
ables above 1 GeV, which justifies considering only the
exchange of the lightest vector and axial-vector resonance
multiplets.3 We will introduce the most important NLO
correction in the 1=NC counting given by the meson
widths, as they are needed to achieve a sensible description
of the propagating resonances.

The relevant effective Lagrangian reads as follows:

LR�T ¼: LWZW þLV
kin þ

F2
�

4
hu�u� þ �þi

þ FV

2
ffiffiffi
2

p hV��f
��
þ i þ i

GVffiffiffi
2

p hV��u
�u�i

þX7
i¼1

ci
MV

Oi
VJP þ

X4
i¼1

diOi
VVP þ

X5
i¼1

iOi
VAP; (9)

where all coupling constants are real andMV is the mass of
the lightest vector meson resonance nonet [16]. We follow
here the notation in Refs. [11,17,18], where the explicit
form of these operators can be found.

The structure-dependent form factors in �� !
���

�‘þ‘� decays that appear in Eq. (2) can be obtained
from the same Feynman diagrams considered in Ref. [9]
for the �� ! ���

�� decays. This is achieved by replacing
the real photon with a virtual one, which then converts into
the lepton-antilepton pair. These diagrams are given in
Figs. 2 and 3 for the vector and axial-vector current con-
tributions, respectively.
Since both theW gauge boson and the photon are virtual

in the present case, the form factors defining the ��W��
vertex will depend upon two invariant variables, which we
choose as t :¼ ðpþ kÞ2 ¼ k2 þ 2p � kþm2

� and k2. The
other important difference is that the second diagram of
Fig. 3—which was zero for real photons [9]—will now
contribute, giving rise to the additional form factor Bðk2Þ.
This term can be related to the isovector component of the
electromagnetic �þ�� form factor [6], and it accounts for
the off-shell-ness of the photon that is not contained in the
pure QED contribution.
In the framework of the R�T, the vector form

factor FVðt; k2Þ, defined in Eq. (2), adopts the following
expression:

FVðt; k2Þ ¼ � NC

24�2F�

þ 2
ffiffiffi
2

p
FV

3F�MV

½ðc2 � c1 � c5Þtþ ðc5 � c1 � c2 � 8c3Þm2
�

þ 2ðc6 � c5Þk2�
�

cos 2�

M2
� � k2 � iM���

ð1� ffiffiffi
2

p
tg�Þ þ sin 2�

M2
! � k2 � iM!�!

ð1þ ffiffiffi
2

p
cotg�Þ

�

þ 2
ffiffiffi
2

p
FV

3F�MV

D�ðtÞ½ðc1 � c2 � c5 þ 2c6Þtþ ðc5 � c1 � c2 � 8c3Þm2
� þ ðc2 � c1 � c5Þk2�

þ 4F2
V

3F�

D�ðtÞ½d3ðtþ 4k2Þ þ ðd1 þ 8d2 � d3Þm2
��
�

cos 2�

M2
� � k2 � iM���

ð1� ffiffiffi
2

p
tg�Þ

þ sin 2�

M2
! � k2 � iM!�!

ð1þ ffiffiffi
2

p
cotg�Þ

�
; (10)

where

FIG. 3. Axial-vector current contributions to the W�� ! ���� vertex.

FIG. 2. Vector current contributions to the W�� ! ���� vertex.

3Given the (axial-)vector character of the Standard Model couplings of the hadronic matrix elements in � decays, form factors for
these processes are ruled by vector and axial-vector resonances.
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D�ðtÞ ¼ 1

M2
� � t� iM���ðtÞ

(11)

and ��ðtÞ stands for the decay width of the �ð770Þ reso-
nance included, following the definition given in Ref. [19]:

��ðsÞ¼
sM�

96�F2
�

�
	3

�ðsÞ�ðs�4m2
�Þþ1

2
	3

KðsÞ�ðs�4m2
KÞ
�
;

(12)

with 	PðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

P

s

q
.

For the purposes of numerical evaluation, we will as-
sume the ideal mixing for the !�� system of vector
resonances, namely

!1 ¼ cos�!� sin ���
ffiffiffi
2

3

s
!�

ffiffiffi
1

3

s
�;

!8 ¼ sin �!þ cos ���
ffiffiffi
2

3

s
�þ

ffiffiffi
1

3

s
!:

(13)

In this limit, the contribution of the � meson to Eq. (10)
vanishes; in addition, we will neglect any energy depen-
dence in their off-shell widths, given that they are rather
narrow resonances.

Similarly, the axial-vector form factor FAðt; k2Þ is
given by

FAðt; k2Þ ¼ F2
V

F�

�
1� 2GV

FV

�
D�ðk2Þ � F2

A

F�

Da1ðtÞ

þ FAFVffiffiffi
2

p
F�

D�ðk2ÞDa1ðtÞð�00tþ 0m
2
�Þ; (14)

where we have used the notation

ffiffiffi
2

p
0 ¼ �41 � 2 � 4

2
� 5;

ffiffiffi
2

p
00 ¼ 2 � 4

2
� 5

(15)

for the relevant combinations of the couplings in LVAP
2

[Eq. (9)].
The energy-dependent a1ð1260Þ resonance width enter-

ing Da1ðtÞ was studied within this framework in Ref. [20],

where the dominant ��� and KK� absorptive cuts where
obtained in terms of the corresponding three-meson form
factors [20,21]. Here we have used the updated fit results of
Ref. [22], which were obtained using the complete multi-
dimensional distributions measured by BABAR [23].
Finally, the additional axial-vector form factor Bðk2Þ is

Bðk2Þ ¼ F�

F�þ��
V j�ðk2Þ � 1

k2
; (16)

where F�þ��
V j� corresponds to the I ¼ 1 part of the �þ��

vector form factor. Based on the effective field theory
description of Ref. [24] including only the �ð770Þ contri-
bution and reproducing the �PT results [25–27], several
phenomenological approaches including the effect of
higher excitations have been developed [28,29]. This
form factor has also been addressed within dispersive
representations exploiting analyticity and unitarity con-
straints [30–33]. Here we will follow the approach of
Ref. [34] and will use a dispersive representation of the
form factor at low energies matched to a phenomenological
description at intermediate energies, including the excited
resonances contribution. A three-times subtracted disper-
sion relation will be used:

F�
V ðsÞ ¼ exp

�
�1sþ�2

2
s2 þ s3

�

Z 1

sthr

ds0
�1
1ðs0Þ

ðs0Þ3ðs0 � s� i�Þ
�
;

(17)

where [35]

tan�1
1ðsÞ ¼

=mF�ð0Þ
V ðsÞ

<eF�ð0Þ
V ðsÞ (18)

with

F�ð0Þ
V ðsÞ ¼ M2

�

M2
�½1þ s

96�2F2
�
ðA�ðsÞ þ 1

2AKðsÞÞ� � s
¼ M2

�

M2
�½1þ s

96�2F2
�
<eðA�ðsÞ þ 1

2AKðsÞÞ� � s� iM���ðsÞ
: (19)

The loop function is (� can be taken as M�)

APðk2Þ ¼ ln

�
m2

P

�2

�
þ 8

m2
P

k2
� 5

3
þ 	3

Pðk2Þ ln
�
	Pðk2Þ þ 1

	Pðk2Þ � 1

�
;

(20)

and the phase-space factor 	Pðk2Þ was defined after
Eq. (12).

The parameters �1, �2 and the �ð770Þ resonance pa-
rameters entering Bðk2Þ will be extracted [34] from fits to
BABAR 	ðeþe� ! �þ��Þ data [36], excluding the
!ð782Þ contribution. We have used the preliminary values
�1 ¼ 1:87, �2 ¼ 4:26 in the numerics.

IV. SHORT-DISTANCE CONSTRAINTS

The form factors derived in the previous section satisfy
the constraints imposed by chiral symmetry. Some of the
remaining free parameters can be fixed by requiring that
they satisfy the short-distance QCD behavior. The study of
two-point spin-1 Green functions within perturbative QCD
[37] shows that both of them go to a constant value at
infinite transfer of momenta. Assuming local duality, the
imaginary part of the quark loop can be understood as the
sum of infinite positive contributions of intermediate had-
ron states. If these must add up to a constant, it should be
expected that each of the contributions vanishes in that
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limit. This vanishing should be accomplished asymptoti-
cally and, consequently, it is expected that all resonance
excitations up to the QCD continuum contribute to the
meson form factors in this limit. This conclusion is also
derived from the large-NC limit of QCD, where these
requirements find their most natural application.

On the contrary, phenomenology suggests that the effect
of excited resonances on the short-distance relations is
pretty small. To give just two examples, if the effects of
the �ð1450Þ resonance are ignored in the pion vector form
factor [24], the generic asymptotic constraint (where i
corresponds to the index of the multiplet)X

i

Fi
VG

i
V ¼ F2

� (21)

that is obtained in the NC ! 1 limit reduces to FVGV ¼
F2
�. Upon integration of the resonances, this produces the

prediction of the �PT low-energy coupling,

L9 ¼ FVGV

2M2
�

¼ F2
�

2M2
�

¼ 7:2� 10�3; (22)

in remarkably good agreement with the phenomenologi-
cally extracted value, which shows that the corrections to
obtaining the high-energy constraint considering only the
lightest multiplet are smaller than 5% in this case.

Our second example concerns the study of the
�� ! ðK�Þ��� decays. In Ref. [38], the effect of the
K?ð1410Þ resonance was included through

� ¼ �F0
VG

0
V

F2
¼ FVGV

F2
� 1: (23)

While � ¼ 0 if the second multiplet is neglected, in the
subsequent analyses [35,39,40] it was found to be
� ¼ �0:05� 0:02, which supports the idea that the mod-
ifications introduced by the second multiplet to the short-
distance constraints are at the 5% level.4

This number should be, however, enlarged for estimat-
ing the error associated with the neglect of the heavier
multiplets on the high-energy constraints in our problem.
The previous examples were given for two-meson form
factors, and we are dealing with the form factors corre-
sponding to (axial-vector) current coupled to a pseudosca-
lar and a photon (giving the lepton-antilepton pair), which
has a much richer dynamics. Our estimate on the error is
discussed at the end of this section.

The vanishing of the vector form factor in Eq. (10) for
t ! 1 and k2 ! 1 yields

c1 � c2 þ c5 ¼ 0; 2ðc6 � c5Þ ¼ �NCMV

32
ffiffiffi
2

p
�2FV

; (24)

in agreement with the results of Ref. [17] for the VVP
Green’s function. No restrictions are found on the other

couplings entering Eq. (10). The high-energy conditions
found in Ref. [17] for them are

�c1 � c2 � 8c3 þ c5 ¼ 0;

d1 þ 8d2 � d3 ¼ F2
�

8F2
V

;

d3 ¼ �NC

64�2

M2
V

F2
V

þ F2
�

8F2
V

:

(25)

No short-distance requirements are obtained for the axial-
vector form factor in Eq. (14), which already vanishes in
the limit of k2 and t simultaneously large. The correspond-
ing couplings are constrained by the high-energy condi-
tions on the two-point Green functions of vector and
axial-vector currents [11]:

FVGV ¼ F2
�; 2FVGV � F2

V ¼ 0; (26)

and by the short-distance constraints applying in the VAP
Green’s function [42] and three-meson hadronic form
factors [20,21]:

0 ¼ F2
�

2
ffiffiffi
2

p
FAGV

; 00 ¼ 2GV �FV

2
ffiffiffi
2

p
FA

; 0 ¼ 0 þ 00

4
:

(27)

If the Weinberg sum rules [43] (F2
V � F2

A ¼ F2
�, F

2
VM

2
V ¼

F2
AM

2
A) are imposed, all couplings are predicted in terms of

F� and MV :

c1 � c2 þ c5 ¼ 0;

2ðc6 � c5Þ ¼ �NCMV

64�2F�

;

c1 � c2 � 8c3 þ c5 ¼ 0;

d1 þ 8d2 � d3 ¼ 1

16
;

d3 ¼ �NCM
2
V

128�2F2
�

þ 1

16
;

GV ¼ F�ffiffiffi
2

p ;

FV ¼ ffiffiffi
2

p
F�;

FA ¼ F�;

0 ¼ 1

2
;

00 ¼ 0;

0 ¼ 1

8
:

(28)

In numerical evaluations, we will take MV ¼ 775 MeV.
In order to estimate the error of our predictions, we may

be conservative and consider uncorrelated variations of the
above relations [Eq. (28)] of around 1=3. Comparison to
hadronic tau decay data suggests, however, that the typical

4This conclusion is supported by the analysis of the �� !
K���� decays [41].
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error of our approach is smaller [44], & 20%, and we will
take this figure for estimating the error ranges. We will,
nonetheless, keep c1 � c2 þ c5 ¼ 0 to avoid the leading
powers violating the asymptotic behavior [45]. In this way,
we will assume variations of �20% for the nonvanishing
combinations of couplings in Eq. (28): c6 � c5,
d1 þ 8d2 � d3, d3, GV , FV , FA, 

0 and 0, and we will
set jc1 þ c2 þ 8c3 � c5j � 0:01 and j00j � 0:04 so that
they are smaller than analogous nonvanishing couplings
according to Eq. (28).

V. PHENOMENOLOGICAL ANALYSIS

Using the results of previous sections, we have evaluated
the branching fractions and the invariant-mass spectrum of
the ‘þ‘� pair for the decays �� ! ����‘

þ‘� (‘ ¼ e,�).
In order to assess the contributions of structure-dependent
(SD) and inner-bremsstrahlung (IB) contributions, we have
evaluated separately the moduli squared and interferences
in both observables, as discussed in Sec. II. The form
factors that describe SD contributions were given in Eqs.
(10) to (20), and the coupling constants involved were fixed
using short-distance QCD constraints in Eq. (28). The
branching ratios that are predicted using these form factors
are shown in the second and third columns of Table I; the
corresponding allowed ranges that are obtained by letting
the couplings vary within 20% of their central values, as
described in the previous section, are shown in the fourth
and fifth columns of Table I. The couplings which were
predicted to vanish (c1 þ c2 þ 8c3 � c5 and 00) have a
marginal influence on the error estimates. Also, the impact
of the variations on 0, 

0 and on d1 þ 8d2 � d3 are rather
mild and the error ranges are basically determined by the
uncertainties on the remaining couplings: FV , FA, GV ,
c5 � c6 and d3.

The normalized invariant-mass distribution of the lepton
pair,

1

��

� d�ð�
� ! ����e

þe�Þ
ds34

; (29)

is shown in Fig. 4. As can be observed, the IB contribution
dominates the spectrum for values of s34 & 0:1 GeV2. For

larger values (which can be better appreciated in Fig. 5),
the SD part overcomes the former, and the AA contribution
dominates in the rest of the spectrum, apart from the
�ð770Þ peak region, where the VV part overtakes it. The
interference terms IB� V and IB� A are negative for
most of the spectrum and do not appear in the figure.
The normalized�þ�� invariant-mass distribution [by a

definition similar to Eq. (29)] is shown in Fig. 6. In this
case, the IB and SD contributions [essentially AA apart
from the �ð770Þ peak region] are comparable for s34 &
0:1 GeV2. For higher values of the squared photon-
invariant mass, the main contribution comes from the AA
part, and the VV contribution shows up through the peak at
the �ð770Þ mass.
In Figs. 4–6, vertical fluctuations can be appreciated in

certain energy regions of the normalized invariant-mass
distributions. In order to compute these distributions in the
s34 variable, we have integrated numerically the decay
probability over the remaining four independent kinemati-
cal variables by using a FORTRAN code based on the
VEGAS routine. The observed fluctuations arise from the
Monte Carlo evaluation over the four-body phase-space
integration. The branching fractions shown in Table I were

TABLE I. The central values of the different contributions to the branching ratio of the �� ! ����‘
þ‘� decays (‘ ¼ e, �) are

displayed on the left-hand side of the table. The error bands of these branching fractions are given in the right-hand side of the table.
The error bar of the IB contribution stems from the uncertainties on the F� decay constant and � lepton lifetime [5].

‘ ¼ e ‘ ¼ � ‘ ¼ e ‘ ¼ �

IB 1:461� 10�5 1:600� 10�7 �0:006� 10�5 �0:007� 10�7

IB� V �2� 10�8 1:4� 10�8 [�1� 10�7, 1� 10�7] [�4� 10�9, 4� 10�8]

IB� A �9� 10�7 1:01� 10�7 [�3� 10�6, 2� 10�6] [�2� 10�7, 6� 10�7]

VV 1:16� 10�6 6:30� 10�7 [4� 10�7, 4� 10�6] [1� 10�7, 3� 10�6]

AA 2:20� 10�6 1:033� 10�6 [1� 10�6, 9� 10�6] [2� 10�7, 6� 10�6]

V � A 2� 10�10 �5� 10�11 �10�10 �10�10

Total 1:710� 10�5 1:938� 10�6 ð1:7þ1:1
�0:3Þ � 10�5 [3� 10�7, 1� 10�5]

1e-06 0,0001 0,01 1

s
34

 (GeV
2
)

1e-07

1e-06

1e-05

0,0001

0,001

0,01

0,1

1

1/
Γ τ   

 d
Γ/

ds
34

  (
G

eV
-2

)

IB-IB
IB-V
IB-A
V-V
A-A
Total

FIG. 4 (color online). The different contributions to the nor-
malized eþe� invariant-mass distribution defined in Eq. (29) are
plotted. A double logarithmic scale was needed.
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obtained by integrating numerically these invariant-mass
distributions and checked by a direct integration over the
five independent kinematical variables.

We have found that the SD contribution is sizable (15%)
in the case of ‘ ¼ e decays and dominant (92%) for ‘ ¼ �.
Accordingly, it will be easy to pin it down from the
experimental data if enough statistics are accumulated: in
‘ ¼ e decays by confirming that the differential decay
width ceases to decrease as expected from IB around s34 �
0:1 GeV2 and starts increasing up to the �ð770Þ peak
region; and in the ‘ ¼ � case first because it falls slower
than expected from a QED contribution5 and second, from
s34 � 0:3 GeV2 on, because it starts to rise up to the �ð770Þ
peak region. In case a fine binning is achieved in this zone,
it will be possible to confirm the expected VV contribution
in either decay mode as well.

The fact that in both decays the contribution to the decay
width of the s34 > 1 GeV2 region is negligible justifies our
assumption of including only the lightest multiplet of
vector and axial-vector resonances. This result is not trivial
in the axial-vector case, and in the vector case it is not
modified even if the �ð1450Þ exchange is included phe-
nomenologically [20].

We have also assessed the relevance of the axial-vector
B form factor, introduced in Eq. (3) [see also Eq. (16)]. We
find it important, as the ðAAÞ þ ðIB� AÞ contributions
drop to 33% and 25% of the values shown in Table I if
this form factor is neglected. This, in turn, results in a

decrease of the branching ratio of 5% for ‘ ¼ e and 44%
for ‘ ¼ �. Therefore, it is essential to include this contri-
bution in the muon decay channel. This explains why the
AA normalized invariant-mass distribution was peaked in
the �ð770Þmass region for either channel, since the B form
factor is proportional to the isovector component of the
electromagnetic dipion form factor.
A future study of the data corresponding to the SD-

dominated part of the spectrum will also allow us to test
the hadronization proposed in Ref. [9] for the �� ! �����

decays. In particular, in that reference it was found that

�ð�� ! ��ð�Þ��Þ ¼ �ð�� ! ����Þð1þ ��Þ; (30)

with �� � 1:460� 10�2 for a photon energy threshold of

50 MeV. The SD part, whose contribution was found to be
�� � 0:138� 10�2, could be tested through the

�� ! ����‘
þ‘� (‘ ¼ e, �) decays considered in this

paper. This knowledge can also be extended to the compu-
tation of the radiative corrections to the ratio R�=� :¼
�ð�� ! ����Þ=�ð�� ! �� ���Þ [8], relevant for lepton

universality tests [1].
Finally, the study of radiative tau decays is also impor-

tant for a faithful modeling of backgrounds in lepton flavor
violation searches, as was noted for the �� ! �����

decays in the case in which the pion is misidentified as a
muon and resembles the �� ! ��� [46] signal. The
standard simulation of the radiative decay is performed
with PHOTOS [47], which only includes the scalar QED
contribution, neglecting the SD parts. Analogously, the
�� ! ��‘þ‘��� (‘ ¼ e, �) decays under consideration
might also mimic the �� ! ��‘þ‘� processes. Although
it seems that the inclusion of QCD contributions for the
‘ ¼ � case will be important (as the SD part gives the bulk
of the branching ratio), a devoted study is needed to con-
firm this, because the involved processes are three- and

1
s

34
 (GeV

2
)

1e-07

1e-06

1e-05

1/
Γ τ   

 d
Γ /

ds
34

  (
G

eV
-2

)
IB-IB
IB-V
IB-A
V-V
A-A
Total

FIG. 5 (color online). The different contributions to the nor-
malized eþe� invariant-mass distribution defined in Eq. (29) are
plotted in a magnification for s34 * 0:1 GeV2 chosen to better
appreciate the SD contributions. A double logarithmic scale was
needed.

0,01 0,1 1

s
34

 (GeV
2
)

1e-06

1/
Γ τ   

 d
Γ/

ds
34

  (
G

eV
-2

)

IB-IB
IB-V
IB-A
V-V
A-A
Total

FIG. 6 (color online). The different contributions to the nor-
malized �þ�� invariant-mass distribution are plotted. A double
logarithmic scale allows the different contributions to be dis-
played more clearly.

5The ð1=�Þd�=ds34 distribution and the IB contribution to it
can be well approximated by aþ b Logðs34Þ in the range
½0:11; 0:19� GeV2. We find bTOT ¼ �1:314ð3Þ � 10�6 and
bIB ¼ �8:87ð3Þ � 10�7, quantifying the effect of SD contribu-
tions in this region. We quote for completeness our results
aTOT ¼ �5:63ð6Þ � 10�7 and aIB ¼ �1:221ð5Þ � 10�6.

P. ROIG, A. GUEVARA, AND G. LÓPEZ CASTRO PHYSICAL REVIEW D 88, 033007 (2013)

033007-8



four-body decays, which complicates things with respect to
the study in Ref. [46], where the kinematics of �� ! ���
is completely fixed, selecting the photons with almost
maximal energy in �� ! ����� decays as the relevant
background.

VI. CONCLUSIONS

We have studied for the first time the �� ! ����‘
þ‘�

(‘ ¼ e, �) decays. We have evaluated the model-
independent contributions by using QED and have ob-
tained the structure-dependent part (W� ! ���� vertex)
using R�T. This approach ensures the low-energy limit of
�PT and includes the lightest resonances as active degrees
of freedom worked out within the convenient antisymmet-
ric tensor formalism. We have been able to predict all the
couplings involved in the relevant Lagrangian term using
short-distance QCD constraints (in the NC ! 1 limit and
restricting the spectrum to the lowest-lying spin-1 reso-
nances) on the related Green functions and form factors,
and we have considered the error stemming from this
procedure in a conservative way.

Within this framework, we predict BRð�� !
����e

þe�Þ ¼ ð1:7þ1:1
�0:3Þ � 10�5 and BRð�� !

�����
þ��Þ 2 ½3� 10�7; 1� 10�5�. We find that while

the ‘ ¼ e decays should be within discovery reach at the
future superflavor facilities, this will only be possible for
the ‘ ¼ � decays if they happen to be close to the upper
limit of the range we have given. The studied hadronic
currents are ready for installation in the R�T-based version
[22,48] of TAUOLA, the standard Monte Carlo generator for
tau lepton decays.
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APPENDIX

We collect in this appendix the results of summing over
polarizations and averaging over that of the tau the differ-
ent contributions to the squared matrix element. We refrain
from writing the lengthy outcome of the contraction of the
indices which was used in our programs.

jMIBj2 ¼ 16G2
FjVudj2 e

4

k4
F2
�M

2
�‘��

� ����k2

ðk2 � 2k � p�Þ2
þ 4p�q�k � p�

ðk2 þ 2k � pÞðk2 � 2k � p�Þ
þ 4p

�
� q�k � p�

ðk2 � 2k � p�Þ2

� 2g��k � p�k � q
ðk2 � 2k � p�Þ2

� 4p�p�
�k � q

ðk2 þ 2k � pÞðk2 � 2k � p�Þ
� 4p�

� p�
�k � q

ðk2 � 2k � p�Þ2
þ 8p�p�

�p� � q
ðk2 þ 2k � pÞðk2 � 2k � p�Þ

þ 4p�p�p� � q
ðk2 þ 2k � pÞ2 þ

4p�
� p�

�p� � q
ðk2 � 2k � p�Þ2

�
;

2<e½MIBM�
V� ¼ �32G2

FjVudj2 e
4

k4
F�M

2
�=mfF�

Vðp � k; k2Þ‘�
�0�

�0�0�0	0
k�0p	0V��0 g;

2<e½MIBM�
A� ¼ �64G2

FjVudj2 e
4

k4
F�M

2
�‘

�0
�<e½A�

�0�0V��0 �;

jMV j2 ¼ 16G2
FjVudj2 e

4

k4
jFVðp � k; k2Þj2��0�0�0	0����	k

�p	k�0p	0‘��0
���0

;

jMAj2 ¼ 64G2
FjVudj2 e

4

k4
‘��0���0A��A�0�0�

;

2<e½MVM�
A� ¼ �64G2

FjVudj2 e
4

k4
=m½FVðp � k; k2Þ����	k

�p	‘�
�0���0

A�0�
�0 �; (A1)

where we have defined

‘�� ¼ p��p�þ þ p��p
�
þ � g��ðm2

‘ þ p� � pþÞ; ��� ¼ p
�
� q� þ p�

�q
� � g��p� � q;

A�� ¼ FAðp � k; k2Þ½ðk2 þ p � kÞg�� � k�p�� þ Bðk2Þk2
�
g�� � ðpþ kÞ�p�

k2 þ 2p � k
�
;

V�� ¼ 2p�q�

2k � pþ k2
þ�g��k � qþ 2q�p�� � i����	k

�q	 þ k�q�

k2 � 2k � p�

;

(A2)

and used the conservation of the electromagnetic currents, implying k�‘
�� ¼ 0 ¼ ‘��k�.
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