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Partial wave analysis of (2S) — ppn
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Using a sample of 1.06 X 103 (2S) events collected with the BESIII detector at BEPCII, the
decay (2S) — ppn is studied. A partial wave analysis determines that the intermediate state
N(1535) with a mass of 1524 += 5719 MeV/c? and a width of 13073]*37 MeV/c? is dominant in the
decay; the product branching fraction is determined to be B(i(2S) — N(1535)p) X B(N(1535) — pn) +
c.c. = (5.2 £0.3733) X 1075, Furthermore, the branching fraction of ¢(2S) — ppn is measured to be
(6.4 = 0.2 = 0.6) X 107°. Here, the first error is statistical and the second is systematic.
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predicted by the quark model have not been observed
experimentally; this is known as the ‘“‘missing baryon
problem” [1,2]. One possibility could be that the missing
states simply do not exist, which has lead to the develop-
ment of new phenomenological models, e.g., the diquark
model [3]. Alternatively, the coupling of the unobserved
states through conventional production channels could be
small, which makes their observation more difficult.

In addition to fixed target experiments [4—11], charmo-
nium decays produced in e"e™ collisions open a window
to hunt for the missing baryons [12]. The Beijing
Spectrometer (BES) [13] experiment started a baryon pro-
gram about a decade ago with the study of N(1535) and
N(1650) in J/¢ — ppm by partial wave analysis (PWA)
[14] using a sample of 7.8 X 10° J/¢ events. Using
58 X 10° J/ 4 events collected at the BESII detector, a
new excited nucleon N(2065) [15,16] was observed in
J/¥ — pam~ [17] and subsequently confirmed in
J/ ¢ — ppa® [18]. BESII also studied ¢(2S) — ppyvy,
where both pp7° and ppn were observed, and (2S) —
ppn for the first time with a branching fraction of
(5.8 1.1 £0.7) X 107°. In both decays, there was
weak evidence for a pp threshold mass enhancement but
no PWA was performed [19]. Most recently, BESIII re-
ported PWA results of (2S) — ppa® [20], and two
new broad excited nucleons N(2300) and N(2570) were
observed. However, no clear evidence for N(2065) was
found. Using 24.5 X 10° (2S) events, CLEO-c [21] re-
ported the analysis of (2S) — ypp, pp7m°, and ppn
without considering interference effects, in which
N(1535) and a pp enhancement [R,(2100)] were inves-
tigated in ¢(2S) decay to ppn. These results show that
J/¥ and (2S) decays offer a unique place to study
baryon spectroscopy.

In this paper, using the 1.06 X 108 ¢(2S) events taken at
the BESIII detector, a full PWA of the decay (2S) —
ppn is performed.

II. BESIII DETECTOR AND MONTE
CARLO SIMULATION

BEPCII [22] is a double-ring e* e~ collider designed to
provide a peak luminosity of 103 ¢cm™2s™! at a beam
current of 0.93 A. The BESIII [22] detector has a geomet-
rical acceptance of 93% of 47 and consists of four main
components: (1) A small-cell, helium-based (40% He, 60%
C;Hg) main drift chamber (MDC) with 43 layers providing
an average single-hit resolution of 135 wm, charged-
particle momentum resolution in a 1 T magnetic field of
0.5% at 1 GeV/c?, and a dE/dx resolution, which is better
than 6%; (2) a time-of-flight system (TOF) constructed of
5-cm-thick plastic scintillators, with 176 detectors of 2.4 m
length in two layers in the barrel and 96 fan-shaped de-
tectors in the end caps [the barrel (end cap) time resolution
of 80 ps (110 ps) provides 20 K /7 separation for momenta
up to ~1.0 GeV/c?]; (3) an electromagnetic calorimeter
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(EMC) consisting of 6240 CsI(T1) crystals in a cylindrical
structure (barrel) and two end caps [the energy resolution
at 1.0 GeV is 2.5% (5%) in the barrel (end caps), and the
position resolution in the barrel (end caps) is 6 mm
(9 mm)]; (4) the muon counter consists of 1000 m? of
resistive plate chambers in nine barrel and eight end cap
layers and provides 2 cm position resolution.

A GEANT4-based simulation software BOOST [23]
includes the geometric and material description of the
BESIII detectors, the detector response, and digitization
models, as well as the tracking of the detector running
conditions and performance. The production of the ¢ (25)
resonance is simulated by the Monte Carlo (MC) event
generator KKMC [24], while the decays are generated
by EvtGen [25] for known decay modes with branching
ratios being set to the Particle Data Group [26] world
average values, and by Lundcharm [27] for the remaining
unknown decays. The analysis is performed in the frame-
work of the BESIII Offline Software System, which takes
care of the detector calibration, event reconstruction, and
data storage.

III. EVENT SELECTION

For ¢/ (2S) — ppmn(n — y7v), the topology is quite sim-
ple, ppyvy. Each candidate event is required to have two
good charged tracks reconstructed from the MDC with
total charge zero. The point of closest approach to the
beam line of each charged track is required to be within
#20 cm in the beam direction and 2 cm in the plane
perpendicular to the beam. Both tracks must have the polar
angle 6 in the range of |cos #| < 0.93. The TOF and the
specific energy loss dE/dx of a particle measured in the
MDC are combined to calculate particle identification
probabilities for pion, kaon, and proton hypotheses.
The particle type with the highest probability is assigned
to each track. In this analysis, one charged track is
required to be identified as a proton and the other as an
antiproton.

Photon candidates are reconstructed by clustering EMC
crystal energies. For each photon, the minimum energy is
25 MeV for barrel showers (| cos 8] < 0.80) and 50 MeV
for end cap showers (0.86 < | cos 8] < 0.92). To exclude
showers from charged particles, the angle between the
nearest proton track and the shower must be greater than
10°, while for the antiproton, the angle has to be greater
than 30°. Timing requirements are used to suppress elec-
tronic noise and energy deposits in the EMC unrelated to
the event. At least two good photons are required.

For the candidates remaining, a four-constraint kine-
matic fit imposing energy-momentum conservation is
made under the ppyy hypothesis. If the number of
selected photons is greater than two, the fit is repeated
using all combinations of photons. The two photon combi-
nation with the minimum fit )(i syy 18 selected, and

2 . . .
Xppyy 18 required to be less than 20. Because the particle
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F identification efficiency between the data and MC simula-
L tion do not agree well in the low momentum region, the
' momenta of the proton and antiproton are required to be
greater than 300 MeV/c. Figure 1 shows the scatter plot of
M, versus M, for events satisfying the above require-
ments, where the two vertical bands correspond to the
decays (2S)— ppm® and (2S) — ppm, and the hori-
zontal band corresponds to the decay (2S)—
X+J/y(J/ — pp). To remove the background
events from ¢((2S)— nJ/(J/¥ — pp, m — yy) and
$28) = yXes(Xes = PPYY), M, <3.067 GeV/c?
and M,; < (3.4 GeV/c* — 0.75X M,,) are required.
B S N I R FWUT B PR ST PR S| To select a clean sample, M., is required to be in the 5
0.1 02 03 04 05 02;6 07 08 09 1 mass region, |M‘y7 _ Mnl <21 MCV/CZ.

My, (GeVic') After the above event selection, 745 candidate events are
selected. The Dalitz plot of M, versus M}, is shown in
Fig. 2(a), where two clusters corresponding to the p7 mass
threshold enhancement displayed in Figs. 2(b) and 2(c) are
visible. Both the mass spectra and the Dalitz plot display an
asymmetry for pn and pm, which is mainly caused by

2
M’JTJ (GeVi/c?)

FIG. 1. Scatter plots of pp invariant mass versus vy invariant
mass.

miﬂ;
- MHHH i ﬁ
5155'”* X W JH T HHﬁH
1:: leh J[J[J[}l HJ[j J[# 10;J[ ﬂ }[Jr}lJfJthHtPU[HJ( Jr

FIG. 2. (a) The Dalitz plot of ¢/(2S) — ppn and distributions for (b) M pn» (€) M, and (d) M 5. The crosses represent the data, the
white histograms show background events from continuum data, and the black histograms represent the background events from 7
sidebands. The background events have been normalized to the data.
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different detection efficiencies
antiproton.

To investigate possible background events, the same
analysis is performed on the MC sample of 1.0 X 108
inclusive #(2S) events, and 11 background events are
found from the channels, ¥ (2S)— yx.s(xcs— pp7°,
7 —=yy),  YQ2S) = yxeXes = ¥/, I/ — ypp),
and ¥ (25) — vx.olxeo — PAT, AT — p7¥), which is
compatible with the number of background events, 15,
estimated with 7 sidebands (M, — 0.43] <50 MeV/c?
and [M,,,, — 0.65] <50 MeV/c?). Additionally, 42.6 pb~!
of continuum data taken at 3.65 GeV/c? are used for
an estimation of the background from QED processes,
and 51 background events are obtained after normalization
with the luminosity of the continuum data and (25)
data. The background events from 7 sidebands and the
continuum data will be considered in the PWA of

b (2S) — ppn.

for the proton and

IV. PARTIAL WAVE ANALYSIS

The two-body decay amplitudes in the sequential decay
process ¥ (2S) — N*p, N* — pn (the charge-conjugate
reaction is always implied unless explicitly mentioned)
are constructed using the relativistic covariant tensor am-
plitude formalism [28], and the maximum likelihood
method is used in the PWA [18]. In (2S) — Nxp,
Nx — pm, A; is the jth partial wave amplitude, which is
described as

Aj= AL x(BW)yAgecay—x: (1)

where A’ x is the amplitude describing the production

prod—
of the intermediate resonance Ny, BWy is the Breit-
Weigner propagator of Ny, and Agecay—x 1s the decay

amplitude of Ny. The total differential cross section 4Z 9% 1s

2
, (2)

phsp

where Fppg, denotes the nonresonant contribution de-
scribed by an interfering phase space term. The probability

to observe the event characterized by the measurement ¢ is

w(&)e(£)

N FGEE)

3)

where w(§) = d—" and () is the detection efficiency.
Jdéw(é)e(€) 1s the normalization integral calculated
from the exclusive Monte Carlo sample. The joint proba-
bility density for observing n events in the data sample is

PHYSICAL REVIEW D 88, 032010 (2013)

v w(Eelé)
np(f) “Hizueae

“4)

£:P(§1,€:2,...

Rather than maximizing the likelihood function In £,
§ = —1In £ is minimized to obtain c; parameters, as well
as the masses and widths of the resonances

w(£) .
Zl (fdfw(f) (f))‘;“(f”' ®)

For a given data set, the second term is a constant and
has no impact on the determination of the parameters of the
amplitudes or on the relative changes of S values. So, for
the fitting, — In L is defined as

—InL =

—InL =

o6 )

Zl (Fagatoe®

The contribution of non-7 events and QED processes
can be estimated with 7 sidebands and continuum data.
In the log-likelihood calculation, the likelihood value of 7
sidebands and continuum data events are given negative
weights and are removed from the data since the log-
likelihood value of the data is the sum of the log-likelihood
values of the signal and background events

§=-[(= (= 1In)pgl )

The free parameters are optimized by FUMILI [29].
In the minimization procedure, a change in log-likelihood
of 0.5 represents one standard deviation for each parameter.

In the analysis, the following two Breit-Wigner formulas
are used to describe the resonance. One form has a width
that is independent of the energy of the intermediate state,
which is a default description and always implied

In -E)data -

1
BW(s) = i 8

where s is the invariant mass squared. For N(1535) with its
mass close to the threshold of its dominant decay channel
Nm, the approximation of a constant width is not very
good. Thus, a phase-space-dependent width for N(1535)
is also used

1
MIZV* -5 — lMNer*(S)

BW(s) = €))

The phase-space-dependent widths can be written as [30]

pNT](S)

pN’)T(S)
, 10

+ 0.5
pNW(M12\/*)

Ty (s) = (o 5

where py . and py,, are the phase space factors for the N7
and N7 final states, respectively,
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pnx(s) = 20vx(s)
NG

_ \/(S - (MN + Mx)z)(s - (MN - Mx)z)
s

, (I

where X is 7 or 17, and gy x(s) is the momentum of X in the
center-of-mass system of NX.

The best solution indicates that N(1535) combined with
an interfering phase space is sufficient to describe the data.

V. SYSTEMATIC ERRORS

The systematic error sources and their corresponding
contributions to the measurement of mass, width, and
branching fractions are discussed below.

(i) To investigate the impact on the PWA results from
other possible components, the analysis is also per-
formed including other possible N* states [e.g.,
N(1520), N(1650), N(1700), N(1710), N(1720),
N(1895), and N(1900), only one N* is added in the
fit each time]. The changes of the mass, width, and
observed number of N(1535) — pm events are taken
as the systematic errors by summing them in
quadrature.

(i1) In the analysis, the background level is quite low,
and the events from the 7 sidebands and continuum
data are considered in the PWA. To estimate the
uncertainty, the background events from 7 side-
bands are varied by =50%, and the bigger change
of the results is assigned as the systematic error.

(iii) In Eq. (10), the weight of the phase space factors
for both N7 and N is set to 0.5. The change of the
results due to the variation of the weights in the
range of 0-1 is taken as the systematic error.

(iv) The MDC tracking efficiency is studied with
the clean sample of J/¢ — ppm* 7~ events, as
described in Ref. [31]. The difference between the
data and the MC simulation is less than 2% per
charged track. Here, 4% is taken as the systematic
error for the proton and antiproton.

(v) According to the particle identification efficiency
study in Ref. [31], the difference of the particle
identification efficiencies between the MC
simulation and the data is around 2% for each
charged track. In this study, the two charged tracks
are required to be identified as p and p, so 4% is
taken as its systematic error from this source.

(vi) The systematic error from the photon detection
efficiency is studied using J/ — p°7° events in
Ref. [32]. The result indicates that the difference
between the data and the MC simulation is about

1% for each photon. For the decay mode analyzed
in this paper, 2% is taken as the systematic error
from two photons in the final states.

(vii) In order to estimate the systematic error of the
kinematic fit, a clean sample of J/¢ — ppm® is

PHYSICAL REVIEW D 88, 032010 (2013)

TABLE I. Summary of general systematical errors.
Source A B(%)
MDC tracking *4
Photon detection +2
Particle ID *4
Kinematic fit *7
The number of (2S) events +0.82
Total +9

TABLE II. Summary of the systematic errors on N(1535).
Source AM(MeV/c*) AT (MeV/c?) A B(%)
Systematic error from Table | s s *9
Additional resonances fi *_55’ *_569
Different BW formula e e H
Background uncertainty +10 e +8
Tota t‘i’ 4

selected. The difference of the efficiency between
the data and the MC simulation with and without
using the four-constraint kinematic fit, 7%, is taken
as the systematic error.
(viii) The number of i (2S) events (1.06 = 0.86) X 108
[33] is determined from a inclusive hadronic
process, and the systematic uncertainty is 0.82%.
There are two categories of systematic errors here. The
first includes the systematic errors listed in Table I, which
applies to all branching fraction measurements. The total is
the sum of them in quadrature. The second is from the
fitting procedure, which applies to the mass, width, and
branching fraction measurements of N(1535). Table II
summarizes the systematic errors from both categories on
N(1535).

VI. RESULTS

The PWA results including the invariant mass spectra of
pb, pm, pm, and angular distributions are shown as histo-
grams in Fig. 3 and are consistent with the data. We observe
527 = 27 N(1535) — pm events with a mass M = (1524 +
5710) MeV/c?, a width T = 130737737 MeV/c?, and a
statistical significance larger than 10¢. Here, the first error
is statistical and the second is systematic. The contributions
of N(1535) and phase space are 70.8% and 61.0%. To
determine the detection efficiency of ¢(2S5) — N(1535)p,
the MC events are generated in accordance with the PWA
amplitudes for ¢ (28) — N(1535)p. With the detection
efficiency of 24.1%, the product branching fraction of
¥ (2S) — N(1535) p(N(1535) — pmn) is calculated to be

B((28)— N(1535)p) X B(N(1535)— pm)
_ Nobs
e-Nyns) Bn—1vy)

=(5.2x0333)x 1073, (12)
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and (d) the angle between p7 in the pp system. The crosses are for data, the

white histograms for PWA projections, the dashed lines for the contribution of N(1535), and the black histograms for the background
events from 7 sidebands and continuum data. The background events have been normalized to the data.

where the number of (25) events N,qpg5 is
(1.06 + 0.86) X 10% determined from (2S) inclusive
decays [33]; B(n — 7yvy) is the world average value [34],
and the first error is statistical and the second systematic.

To investigate the pp mass enhancement observed at
BESII [19] and CLEO-c [21], which did not use a PWA, a
scan for an additional 17~ resonance described by a Breit-
Wigner function is performed. The widths used are
50 MeV/c?, 100 MeV/c?, 200 MeV/c?, 300 MeV/c?,
400 MeV/c?, 500 MeV/c?, and 600 MeV/c?. The mass
is allowed to vary from 1900 MeV/c? to 3000 MeV/c?
with steps of 2 MeV/c?. There is no evidence for a pp
resonance in this region, indicating that the threshold
enhancement can be explained by interference between
the N(1535) and phase space.

Subtracting the 51 and 15 background events from QED
processes and from 7 sidebands, respectively, the number
of ¥ (2S) — ppm events is calculated to be 679 = 26.
In addition to the contribution from N(1535), the contri-
bution from the phase space events is taken into account
in the determination of the detection efficiency according
to the PWA results. With the detection efficiency of 25.6%,
the branching fraction of (2S) — ppn is measured to be

B(y(2S) — ppm) = (6.4 0.2+ 0.6) X 1075, (13)

VII. SUMMARY

Based on 1.06 X 10%4(2S) events collected with the
BESIII detector, a full PWA on the 745¢(2S) — ppn
candidates is performed, and the results indicate that
the dominant contribution is from ¥ (2S) — N(1535)p.
The mass and width of N(1535) are determined to be
1524 = 5410 MeV/c? and 13073737 MeV/c?, respec-
tively, which are consistent with those from previous
measurements listed in the Particle Data Group [34].
The product of the branching fractions is calculated to
be B(y(28) — N(1535)p) X B(N(1535) — pm) +c.c. =
(52+0.3732) X 107°. The pp mass enhancement
observed by BESII is investigated, and the statistical
significance of an additional pp resonance is less
than 3o

The branching fraction of (2S) — ppn is determined
to be (6.4 = 0.2 = 0.6) X 1077, where the detection effi-
ciency is determined from MC simulation events generated
based on the PWA results. Compared with the branching
fraction of J/ ¢y — ppmn [34],
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o _BWES)—ppn)
Prn B(/¢ — ppm)
which improves the BESII measurement [19] of

(2.8 = 0.7)%, and indicates that the decay (2S) — ppn
is suppressed compared with the “12% rule” [35-37].

=(32+04% (14
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