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We present the first signature-based search for delayed photons using an exclusive photon plus missing

transverse energyfinal state. Events are reconstructed in a data sample from theCDF II detector corresponding

to 6:3 fb�1 of integrated luminosity from
ffiffiffi
s

p ¼ 1:96 TeV proton-antiproton collisions. Candidate events are

selected if they contain a photon with an arrival time in the detector larger than expected from a promptly

produced photon. The mean number of events from standard model sources predicted by the data-driven

backgroundmodel based on the photon timing distribution is286� 24. A total of 322 events are observed.Ap

value of 12% is obtained, showing consistency of the data with standard model predictions.
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The unknown nature of possible particles or interactions
beyond the standard model (SM) motivates search strat-
egies at particle collider experiments that do not rely on
features of specific phenomenological models, but rather
seek generic deviations from the SM expectations [1]. We
report a signature-based search in exclusive photon and
missing transverse energy ( 6ET) [2] events from proton-
antiproton (p �p) collisions at

ffiffiffi
s

p ¼ 1:96 GeV where can-
didate events are selected based on photons that arrive late
in the detector relative to the time expected from prompt
production (delayed photon). This would be the signature
of a heavy, neutral, long-lived particle that traverses part of
the detector and then decays to a photon and a neutral,
noninteracting particle that would appear in the detector
as 6ET [3,4]. Such particles would exist, for example,
in gauge-mediated supersymmetry-breaking scenarios

(e.g., ~�0
1 ! � ~G, where ~�0

1 is the lightest neutralino and
~G is the gravitino) [5]. Searches that focus on particular
models at collider experiments, where supersymmetric
particles appear at the end of a decay chain, found no
evidence for these particles [6,7]. We focus on the exclu-
sive �þ 6ET final state with delayed photons. Since the
sensitivity to such scenarios can vary significantly as a
function of the model parameters (e.g., production mecha-
nism as well as the mass and lifetime of the heavy, non-SM
particle) [3,4], we conduct a signature-based search
and present the results without any optimization or limit
interpretation with respect to a particular model.

This paper summarizes the first such search and uses
data from 6:3 fb�1 of integrated luminosity collected
with the CDF II detector at the Fermilab Tevatron [8].
An important variable in this search is the difference
between the observed arrival time of a photon in the
detector and the time predicted for photons promptly pro-
duced in the primary p �p interaction. This difference in
time, �t, is used to distinguish signal candidate events
from both SM-collision and noncollision background
sources. For photons produced in decays of heavy, long-
lived particles, the distribution in �t would be shifted
towards positive values [3]. A full estimation of the back-
grounds to the photon and missing energy final state is
performed in a data-driven manner and compared to data to
determine whether any significant excess of events exists.

Detailed descriptions of the CDF II detector can be
found elsewhere [9]. The detector subsystems relevant to
this analysis are briefly mentioned here. The event kine-
matic properties and detector geometry are described in a
cylindrical coordinate system [2]. The detector is com-
posed of a silicon microstrip tracking system (‘‘silicon
vertex detector’’), a tracking drift chamber, a calorimeter
detector, and a muon detector. The silicon vertex detector
provides a high-precision position measurement of
charged-particle trajectories [10], while the drift chamber
provides accurate momentum measurements and allows
the reconstruction of each charged particle’s production

time [11]. The combination of these measurements pro-
vides accurate reconstruction of the position ( ~xi) and time
(ti) of the primary p �p interaction. The p �p luminous region
is approximately described by a Gaussian distribution cen-
tered at zi ¼ 0 with an rms spread of 28 cm and mean time
of ti ¼ 0 with an rms spread of 1.28 ns. The p �p interac-
tions are reconstructed using an algorithm that combines
well measured tracks to form a candidate vertex [6]. Vertex
candidates must consist of at least three high-quality tracks
that intersect each other within 1.5 cm along the z axis and
within 1.5 ns in time, with�pT � 5 GeV and jzj< 60 cm,
where

P
pT is the scalar sum of the transverse momenta of

the corresponding charged particles. The reconstructed
vertices use the average z and t of the tracks and have a
spatial resolution of 0.24 cm in z and a time resolution of
0.22 ns.
The calorimeter has a pointing-tower geometry and is

composed of separate electromagnetic and hadronic com-
partments that are used to identify photons, electrons, jets,
and muons, as well as measure 6ET in the event. The mea-
surement of the arrival time (tf) of photons (and electrons)
in the electromagnetic calorimeter is done using a fixed-
threshold discriminator and a time-to-digital converter sys-
tem [12] which is connected to each electromagnetic tower
and has a resolution of 0.60 ns. The measurement of the
arrival position ( ~xf) is measured by the shower-maximum
detector in the electromagnetic calorimeter (radius ¼
184 cm) and has a resolution of 0.2 cm [13].
The CDF experiment uses a multitrigger online data

acquisition system. This analysis uses events selected
with a trigger that requires a photon candidate having at
least 25 GeVof ET , in addition to a requirement of at least
25 GeV of 6ET in the event. By also allowing candidate
events from one or more additional photon triggers [6], we
achieve approximately 100% efficiency for events passing
the final selection requirements [6].
In the offline analysis, photon candidates are required to

meet standard photon identification requirements with a
minor modification as described in Ref. [6], to retain
efficiency for photons that do not come directly from the
beam line. For reasons described below, the offline photon
ET and event 6ET values are calculated with respect to the
center of the detector (E0

T and 6E0
T) rather than the selected

primary vertex. Backgrounds from noncollision sources
(cosmic rays and beam-halo sources) are rejected using
standard criteria [6,14] along with new requirements [15]
that render the beam-halo background negligible.
Collision backgrounds in the exclusive �þ 6ET data

sample result from processes of �þ jets production, where
unreconstructed jets mimic 6ET ; Z� ! ��� production;
W ! l� production, where the lepton or an extraneous
jet is misidentified as a photon; and Wð�Þ ! l�� produc-
tion, where the lepton is not identified. Raising the E0

T and

6E0
T thresholds to 45 GeV and requiring the exclusive �þ

6ET final state rejects most of these backgrounds; any event
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with a reconstructed track with pT > 10 GeV=c and rapid-
ity magnitude j�j< 1:6 [2] is excluded from the analysis.
Similarly, events are rejected if they contain an additional
energy cluster, reconstructed with the JETCLU algorithm
[16] with a �R ¼ 0:4 cone, with ET > 15 GeV.

We calculate �t for each photon candidate using

�t ¼ ðtf � tiÞ � TOF; (1)

where TOF ¼ ðj ~xf � ~xijÞ=c is the expected time of flight of
a prompt photon from the selected p �p interaction vertex to
the location of the associated energy deposit in the calo-
rimeter. For a promptly produced photon, �t ¼ 0 ns in a
hypothetical detector with perfect timing resolution. The
signal region for this analysis is defined as 2< �t < 7 ns
to remove most promptly produced photons at small values
of�t and cosmic-ray events at large times but retain heavy,
long-lived particles that would have decayed before leav-
ing the detector [3]. If multiple vertices are reconstructed
in the event, the vertex with the highest

P
pT is selected as

the primary vertex.
The background contributions from noncollision and

collision sources are estimated from data. The noncollision
backgrounds are dominated by cosmic-ray sources [6] that
are distributed uniformly in time. They are modeled using
a data-driven background estimate using events in the
region of 20<�t < 80 ns and an extrapolation into the
signal region. The collision backgrounds can be divided
into two classes of events. The first class includes events in
which the photon is correctly associated with its produc-
tion vertex and are readily reduced by the final timing
requirement. The second class includes events in which
the primary vertex is incorrectly selected as the production
vertex of the photon.

The dominant collision background in the signal region
comes from prompt SM-photon production events in which
the photon is associated with the wrong primary vertex.
A wrong vertex assignment can occur either because the
p �p interaction that produced the photon was not recon-
structed or because an additional p �p interaction produced
another vertex that was mistakenly associated with the
photon. Although it can only be done on a statistical basis,
each collision-background event can be classified as a
right-vertex or a wrong-vertex event. While the probability
of an event being a wrong-vertex type is dependent on the
number of extra collisions in the event or the instantaneous
luminosity, the fraction of each type can be measured
in data.

Monte Carlo simulations of all the expected SM back-
ground processes were performed to aid in their study and
rejection. The simulated samples are W ! e�e, W !
���, W ! ���, �þ jet, Z� ! ��� (all produced by the

PYTHIA event generator [17], which adds initial- and final-

state radiation), and Wð�Þ ! l�� (produced by the BAUR

event generator [18]). The detector response in all simula-
tion samples, including multiple collisions in the event, is

modeled by a GEANT-based detector simulation [19] and
allows each event to be classified as a right-vertex or
wrong-vertex event. This analysis also uses a control sam-
ple of exclusive eþ 6ET collision events [20] because the
final state differs from exclusive �þ 6ET final state only in
the charged-particle track associated with the electron. In
such events, the electron track is removed from the event
reconstruction to emulate exclusive �þ 6ET events and
then used a posteriori to determine whether the emulated
photon is correctly associated with its production vertex.
The �t distributions for right-vertex and wrong-vertex

events, �tR and �tW, respectively, are both well modeled
by Gaussian distributions after all selection requirements.
The distribution describing right-vertex events has a mean
timing of h�tRi ¼ 0:0� 0:05 ns and rms spread of 0:65�
0:05 ns [12], due to the contributions of the vertex-
reconstruction algorithm and the calorimeter-timing reso-
lutions. The distribution describing wrong-vertex collision
events has an rms spread of 2:0� 0:1 ns [12]. Its mean
depends on the associated SM processes and cannot be
assumed a priori. Since the collision-background timing
distribution is described by the sum of the right-vertex and
wrong-vertex event distributions, the collective collision
background is modeled by the sum of two Gaussian dis-
tributions. Five of the six parameters describing these two
Gaussian distributions are directly determined from the
�þ 6ET candidate-event data sample since the region
�2 & �t & 2 ns is dominated by right-vertex events and
the region with large negative times �7 & �t & �2 ns is
dominated by wrong-vertex events. An independent mea-
surement, for example h�tWi, is still needed to correctly
model the collision backgrounds.
The crucial element of this analysis is that the wrong-

vertex timing distribution is well described by a Gaussian
whose mean can be measured in a data-driven manner. To
motivate the additional selection requirements, Eq. (1) can
be rewritten in a form that illustrates the sources of non-
Gaussian tails and nonzero mean times for wrong-vertex
events. Since tf equals tRi þ TOFR for SM background

events, in the absence of detector effects, the measured
�twhen a wrong vertex is selected can be approximated as

�tW ¼ ðtRi � tWi Þ þ ðTOFR � TOFWÞ; (2)

where we continue the use of the superscripts R and W for
the variables. The first term in the right-hand side of Eq. (2)

has a mean value of zero with an rms spread of
ffiffiffi
2

p �
1:28 ns ¼ 1:8 ns resulting from the luminous-region pa-
rameters. Additional variation due to the measurement of
the arrival time brings the full rms spread to 2.0 ns [12].
The rms spread of the background-dependent second term
is typically smaller than 0.4 ns, but three effects introduce
process-specific non-Gaussian tails and Oð0:1Þ ns biases
on the mean.
The first source of wrong-vertex timing bias is a thresh-

old effect that affects events with the photon ET near the
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analysis threshold of 45 GeV. Use of the wrong vertex
position in photon reconstruction biases the measured
value of the photon transverse energy (Em

T ) with respect
to its true value (Et

T) for geometric reasons. If ET is defined
as ET ¼ E sin �, where � is the photon-momentum polar
angle defined with respect to the primary vertex, selection
of the wrong vertex results in misreconstruction of the
photon ET . If the selection of the wrong vertex results in
a shorter path length from the collision to the calorimeter,
then the ET is overestimated and the second term in Eq. (2)
is positive (TOFR > TOFW). Events with photon Et

T <
45 GeV and Em

T > 45 GeV contribute to the sample with
an average �tW value biased towards larger times.
Similarly, an event with a photon with Et

T > 45 GeV but
Em
T < 45 GeV is removed from the sample because of the

negative bias of �tW. In this case, �tW is biased toward
negative times. Thus, an ET threshold biases the �tW

distribution towards positive �tW values. In order to mini-
mize this bias, the detector center (z ¼ 0:0) is used in
computing ET (and 6ET for consistency).

The second source of wrong-vertex timing bias arises
because the primary vertex is required to have jzj< 60 cm.
Photons in events originating from collisions which oc-
curred at jzj> 60 cm would necessarily have the wrong
vertex used to compute �t. This case induces a positive
bias in the timing of the second term in the right-hand side
of Eq. (2) because the path length from the selected vertex
to the calorimeter is biased to shorter values than the true
path length. To suppress this source of background, the
analysis vetoes events with a vertex with jzj> 60 cm using
a vertex-identification algorithm that has high efficiency
for collisions at large jzj [21]. This requirement is 95%
efficient for events with a correctly reconstructed primary
vertex satisfying jzj< 60 cm.

The last significant source of wrong-vertex timing bias is
from W ! e� events identified as �þ 6ET in a way that
biases h�tWi towards positive values. In this case, as the
electron traverses the tracking system, it loses most of its
energy to a high-energy photon via bremsstrahlung. As the
trajectory of the low-energy electron is curved away from
the final photon direction, the photon candidate passes all
the photon-identification criteria. In the case that a wrong
vertex is selected, the reconstructed photon candidate
timing is biased to a positive value of the second term in
the right-hand side of Eq. (2). This occurs because electrons
with a longer path length are more likely to generate a
photon via bremsstrahlung in the detector, and thus the
actual path length traversed is longer on average than that
of a prompt photon produced in the collision. To reject
events in which the electron track does not point to the
photon position in the calorimeter, an extra requirement is
imposed on reconstructed tracks that are close to the photon
in ��� space, as measured at the beam line. An event is
rejected if any reconstructed track in it has a value offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��=	�Þ2 þ ð��=	�Þ2

q
< 5:0, where �� and �� are

the differences between the � and � of the track and that
of the photon, respectively, and 	� ¼ 6:3� 10�3 and

	� ¼ 8:1� 10�2 are the detector resolutions in �� and

��, respectively [8]. Studies show that this requirement is
approximately 95% efficient for prompt photons and re-
duces the background rate from this source by about 70%.
After imposing all of these bias-reducing restrictions,

the resulting sample contains 5421 �þ 6ET candidates.
The wrong-vertex events in eachMC simulation and eþ

6ET control sample have a timing distribution that is well
modeled by a single Gaussian distribution with an rms
spread of 2:0� 0:1 ns and a mean that varies among
the production mechanisms between 0.0 and 0.8 ns. With
mean variations across samples not exceeding half of the
measured rms spread, any combination of the �t distribu-
tions for the modeled background processes is found to be
well modeled by a single Gaussian distribution with the
same rms spread within uncertainties. However, the mean
value of �tW for the data must be determined separately.
Since the mean of the wrong-vertex timing events lies in

the region dominated by right-vertex events, no fit proce-
dure is sensitive enough to determine h�tWi with adequate
accuracy. To determine h�tWi, a sample of events inde-
pendent of the exclusive �þ 6ET sample is created. This
event sample is identical to the �þ 6ET sample, except for
a requirement that there be no reconstructed vertex, and
contains 4924 events. The value of�t for an event that does
not have a reconstructed vertex, denoted �t0, is computed
assuming an initial time and position of ti ¼ 0 and zi ¼ 0
in Eq. (1). For geometric reasons, h�t0i ¼ h�tWi to a high
degree of precision for the entire sample; this is observed in
all simulation and control samples as shown in Fig. 1. The
largest discrepancy is 0.08 ns and is taken as the systematic
uncertainty on the measurement of h�tWi. The �t0 distri-
bution is well described by a single Gaussian with an rms
spread of 1:6� 0:08 ns and a normalization that is deter-
mined from data. Note that the rms spread for �t0 is

FIG. 1 (color online). A comparison of h�tWi and h�t0i in a
number of Monte Carlo samples that produce the exclusive �þ
6ET final state and two exclusive eþ 6ET data samples.
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smaller than the rms spread for �tW because in Eq. (2)
there is variation from not subtracting off the right-vertex
information as well as having subtracted off the wrong
information. In�t0 there is no variation from having added
wrong-vertex information.

The data from events both with and without a vertex are
combined to estimate the full set of backgrounds. The data
outside the signal region are fit to the sum of the two
Gaussian distributions and the uniform distribution that
describe the complete background model. For the no-
vertex sample, a single Gaussian and uniform distribution
are used. A likelihood fit is performed over events with a
vertex in the bins spanning �7< �t < 2 ns and 20<
�t < 80 ns and for events without a vertex in the bins
spanning �3:5< �t0 < 3:5 ns and 20<�t0 < 80 ns,
which are expected to be dominated by collision and
cosmic-ray backgrounds. The likelihood function is de-
fined as a product of Poisson probabilities over the bins
of �t and �t0 and Gaussian constraints assigned for each
systematic uncertainty.

The best-fit values for the two samples (without and with
vertices) are shown in Figs. 2(a) and 2(b). A value of
h�t0i ¼ h�tWi ¼ 0:20� 0:13 ns is obtained from the fit.
Likewise, in the sample of events with a vertex, 875� 66
right-vertex events, 676� 84 wrong-vertex events, and
31:9� 0:7 events=ns from cosmic rays are obtained. In
the signal region, the fit predicts a background of 286�
24 events. The contributions include 159� 4 cosmic-ray
events, 126� 24wrong-vertex events, and 1:0� 0:6 right-
vertex events. The uncertainty on the background is domi-
nated by the limited number of events in the sample
without a reconstructed vertex. The statistical uncertainty
on h�tWi produces a 22-event uncertainty on the number of
wrong-vertex events in the signal region. The remaining
uncertainties are all smaller and are dominated by the
systematic uncertainty on the relationship between h�tWi
and h�t0i, the uncertainty on the rms spread of h�tWi, and
the uncertainties on the mean and rms spread for h�tRi.
The �t distribution for the data and backgrounds in

the region �10<�t < 10 ns is shown in Fig. 2(c). The

FIG. 2 (color online). (a) The �t0 timing distribution for �þ 6ET events with no vertex. The dashed lines demarcate the region
�3:5<�t0 < 3:5 ns, used to measure h�tWi ¼ h�t0i. Note that the overflow and underflow data for cosmic-ray events beyond the
timing regions shown in all figures have not been displayed. (b) The �t timing distribution for �þ 6ET events with a vertex. The dashed
line separates the region 20<�t < 80 ns, which is used to estimate the rate of cosmic-ray events. (c) The �t distribution, from
�10< �t < 10 ns, with the dashed lines indicating the signal region. In all three cases, the shaded regions reflect the best-fit values
determined from the sideband regions. (d) The background-subtracted data distribution with systematic uncertainties.
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data-minus-background distribution is shown in Fig. 2(d).
A total of 322 events are observed in the signal region. The
probability for the SM background to yield the observed
number of events or more (p value) is determined using
simulated experiments that take into account the mean
background expectation in the signal region, along with
its systematic uncertainty. The resulting p value is 12%,
consistent with standard model-only expectations.

In conclusion, motivated by the possible existence of an
unobserved, heavy, long-lived, neutral particle, we present
the first signature-based search for the production of events
with the exclusive photon and missing transverse energy
final state, where the photon detection time is delayed with
respect to the time expected for a photon originated di-
rectly from the collision. We identify a number of kine-
matic properties and detector effects that can mimic the
presence of a signal and use novel analysis techniques to
minimize their impact on the results. We observe no evi-
dence of delayed-photon production in this final state.
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238 (2001); T. Sjöstrand, S. Mrenna, and P. Skands, J.
High Energy Phys. 05 (2006) 026.

[18] U. Baur, T. Han, and J. Ohnemus, Phys. Rev. D 57, 2823
(1998).

[19] R. Brun, F. Bruyant, M. Maire, A. McPherson, and P.
Zanarini, CERN Report No. CERN-DD/EE/84-1, 1987;

we use the standard CDF simulation software as described
in E. Gerchtein and M. Paulini, arXiv:physics/0306031
and add a parametrized timing simulation.

[20] Each electron is required to pass the standard electron
requirements described in T. Aaltonen et al. (CDF
Collaboration), Phys. Rev. D 77, 112001 (2008), with
the exception of the �2

CES, j�xj and j�zj requirements to
make them more consistent with the photon identification
requirements.

[21] W. Ashmanskas et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 477, 451 (2002); B. Ashmanskas et al., Nucl.
Instrum. Methods Phys. Res., Sect. A 518, 532 (2004).

SIGNATURE-BASED SEARCH FOR DELAYED PHOTONS IN . . . PHYSICAL REVIEW D 88, 031103(R) (2013)

RAPID COMMUNICATIONS

031103-9

http://dx.doi.org/10.1103/PhysRevD.52.4784
http://dx.doi.org/10.1103/PhysRevD.45.1448
http://dx.doi.org/10.1103/PhysRevD.45.1448
http://dx.doi.org/10.1016/S0010-4655(00)00236-8
http://dx.doi.org/10.1016/S0010-4655(00)00236-8
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.1103/PhysRevD.57.2823
http://dx.doi.org/10.1103/PhysRevD.57.2823
http://arXiv.org/abs/physics/0306031
http://dx.doi.org/10.1103/PhysRevD.77.112001
http://dx.doi.org/10.1016/S0168-9002(01)01830-7
http://dx.doi.org/10.1016/S0168-9002(01)01830-7
http://dx.doi.org/10.1016/j.nima.2003.11.078
http://dx.doi.org/10.1016/j.nima.2003.11.078

