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In this paper, we investigate the conservation laws of different types of particles in theories with a

universal gravity/matter coupling. The result brings new insight about previous studies on universal gravity/

matter theories. Especially, the paper demonstrates that, for perfect fluids, there is an equivalence between

the assumption Lm ¼ ��, where � is the total energy density, and the assumption that the matter fluid

current is conserved [r�ð�u�Þ ¼ 0, where � is the rest mass density]. However, the main result is given in

the general case in which one does not make any assumption on the conservation of the matter fluid current.
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I. INTRODUCTION

Recently, many phenomenological theories of gravita-
tion have been proposed with a universal gravity/matter
coupling. The coupling appears either as a universal non-
minimal coupling between the Ricci scalar curvature
and the nongravitational fields [1–6] or as a universal
nonminimal coupling between a scalar field and the non-
gravitational fields [7–10]. In order to study both types
of theories, we define universal gravity/matter coupling
theories by the following action:

S ¼ 1

c

Z
½fðR;�; ðr�Þ2Þ þ hðR;�; ðr�Þ2ÞLm� ffiffiffiffiffiffiffi�g

p
d4x;

(1)

where g is the determinant of the metric tensor g��,

fðR;�; ðr�Þ2Þ and hðR;�; ðr�Þ2Þ are arbitrary analytical
functions of the Ricci scalar R, a scalar field � and the
gradients constructed from the scalar field. Lm is the
Lagrangian of the nongravitational sector—which we
assume here to be the usual standard model of the particle
Lagrangian.1 We dub the coupling universal because the
coupling is the same for the whole material sector; while a
more general set of theories would require different cou-
pling for each material field [11–13]. It is worth stressing
that such an action encompasses Brans-Dicke-like scalar-
tensor theories (with [7–10] and without [14–17] universal
scalar/matter coupling), fðRÞ theories (with [2–4] and
without [18] universal R=matter coupling), some low-
energy (tree-level) string-inspired 4-dimensional models
in the string frame [19–21], several Kaluza-Klein theories
reduced to four dimensions [22–24], and most of the
models present in fðR;Lm;�; ðr�Þ2Þ theories [25].
However, we consider only theories in which � is a
gravitational field—which requires some sort of coupling

between � and R, as in Brans-Dicke-like scalar-tensor
theories, for instance [26,27]. Moreover, the main feature
of the action in which we are interested is due to the
nonconstant term hðR;�; ðr�Þ2Þ. This last fact explains
the chosen name for this kind of nonminimal coupling:
gravity/matter coupling.
This type of universal gravity/matter coupling has been

proposed in order to explain the phenomena usually
associated to dark matter (without modifications of the
standard model of particles) [2,28–32], to mimic the cos-
mological constant [33], to give a reheating scenario in the
context of Starobinsky inflation [34], to explain the accel-
eration of the expansion of the Universe [1,6,7,21,35–37],
to predict (essentially) stable weakly interacting massive
partices [20], or to explain the smallness of the gravita-
tional constant G compared to the proton mass scale [38].
Moreover, it has been shown that, under specific assump-
tions, such theories can be compatible with current tight
constraints on the equivalence principle(s) (see, for
instance, Refs. [12,39–41]). In the end, the goal of such a
phenomenological action is to tend to an explanation of the
whole observed phenomena, without the need of separate
theories for inflation, dark matter, or dark energy.
As first noticed in Refs. [2–4] in the case of fðRÞ with

universal gravity/matter coupling theories, the field equa-
tions of theories with a gravity/matter coupling depend
explicitly on the on-shell Lagrangian Lm. In particular,
whether one chooses Lm ¼ �—in which � is the total
energy density [42]—or Lm ¼ P—in which P is the
pressure of the perfect fluid (or any normalized linear
combination of the two)—explicitly modifies the field
equations; while the difference between the different
on-shell Lagrangians should reduce to surface integrals
that do not contribute to the field equations—just as in
the case of general relativity in which one can freely
choose between Lm ¼ � and Lm ¼ P without modifying
the field equations [43]. Therefore, it was first thought that
there was a degeneracy of supposedly equivalent actions
that lead to different field equations [3]—which is not
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1This assumption can be relaxed to include potential dark

matter fields (see the discussion in the conclusion).
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satisfactory with respect to the monist view of modern
physics, which requires a unique mathematical description
of the natural phenomena. However, Ref. [42] showed that
some assumptions on the nature of the matter fluid can kill
the degeneracy, hence showing that different Lagrangians
actually correspond to matter fluids with different funda-
mental characteristics. To be specific, Ref. [42] showed
that, when the matter fluid current is conserved, the
Lagrangian of a barotropic perfect fluid is Lm ¼ ��—
and not anything else. In the following we discuss this issue
in more details and generalize the result found in Ref. [42]
to general perfect fluids for which the matter fluid current
is not conserved.

In Sec. II, we give the field equations corresponding to
the Eq. (1). After, in Sec. III, we study the equation of
motion of interacting particles forming an arbitrary perfect
fluid. Then, in Sec. IV, we derive the equation of motion of
noninteracting point particles. Finally, in Sec. V, we derive
the equation of motion of light rays in the geometric optic
approximation before concluding in Sec. VI.

II. FIELD EQUATIONS OF THE UNIVERSAL
GRAVITY/MATTER COUPLING MODEL

We use the usual definition of the stress-energy tensor:

T�� ¼ � 2ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
LmÞ

�g�� : (2)

By assuming that the matter Lagrangian Lm depends only
on the metric tensor components g��, and not on its

derivatives, we obtain the stress-energy tensor as

T�� ¼ g��Lm � 2
�Lm

�g�� : (3)

The extremization of the action (1) then reduces to the
following field equations [25]:

½fR þ hRLm�R�� þ ðg��r�r� �r�r�Þ
� ½fR þ hRLm� � 1

2
fg��

¼ 1

2
hT�� � ðfðr�Þ2 þ hðr�Þ2LmÞr��r��; (4)

where the subscript of f or h denotes a partial derivative
with respect to the arguments, i.e., fR ¼ @f=@R, fðr�Þ2 ¼
@f=@ðr�Þ2,

hðr�Þ2� ¼ 1

2
ðf� þ h�LmÞ; (5)

where f� ¼ @f=@� and

hðr�Þ2 ¼
1ffiffiffiffiffiffiffi�g

p @

@x�

�
ðfðr�Þ2 þ hðr�Þ2LmÞ ffiffiffiffiffiffiffi�g

p
g�� @

@x�

�
:

(6)

The (non)conservation of the stress-energy tensor therefore
reduces to

r�T
�� ¼ ðLmg

�� � T��Þ@� ln h: (7)

III. PERFECT FLUID PARTICLES

The general Lagrangian that leads to the stress-energy
tensor of a perfect fluid is

Lm ¼ ½�ð1� 	Þ�þ 
P���1; (8)

where 	 and 
 are constants, � is a normalization constant
such that � ¼ 1� 	þ 
, and where P and � are the pres-
sure and the so-called total energy density of the fluid [44].
Indeed, following the development made in Refs. [3,43],
one can show that Lm¼½�ð1�	Þ�þ
P���1 in addition
with Eq. (3) induces T	
 ¼ ð�þ PÞU	U
 þ Pg	
—see
the appendix of Ref. [42] for an example. The normaliza-
tion procedure is necessary in order to conserve energy
through the change of parametrization. Indeed, adding
surface integral terms, one can transform the on-shell
Lagrangian from �� to P (and vice versa). Therefore,
the most general Lagrangian has to be a normalized sum
of the two possible on-shell Lagrangians. For instance, for
P ¼ 0, the normalization induces thatLm ¼ �c2� for any
	; whileLm could be any times the rest mass density if not
normalized. On the other side, one should note that the
normalization procedure discards Lm ¼ T as a possible
on-shell Lagrangian for fluids with P � 0. The corre-
sponding normalized on-shell Lagrangian would write
Lm ¼ T=4 instead. However, from the trace of Eq. (3),
one gets that Lm ¼ T=4 implies that �Lm=�g

�� has to be
trace free. Therefore,Lm ¼ T=4 is not suitable any kind of
effective particles.
Also, as shown in the appendix of Ref. [42], the matter

current is generally not conserved when considering
Lm ¼ P. Therefore, we deduce that the matter current
is generally not conserved when considering the
Lagrangian (8). Thus, let us write r�ð�U�Þ ¼ D, where
D is any scalar to be determined. One deduces

r�ð�U�Þ ¼
�
�þ P

�

�
D� Pr�U

�; (9)

where [42]

� ¼ �

�
c2 � P

�
þ

Z dP

�

�
: (10)

Therefore, taking the divergence of T	
¼ð�þPÞU	U
þ
Pg	
, one gets

r�T
�� ¼ ð�þ PÞU�r�U

� þ ðg�� þU�U�Þr�P

þU�

�
�þ P

�

�
D: (11)

On the other side, Eq. (7) implies
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r�T
�� ¼ �ð�þ PÞ½g�� þU�U��@� lnh

þ
��

1� 1� 	

�

�
�þ 


�
P

�
g��@� ln h: (12)

Multiplying Eqs. (11) and (12) by U� and equating them,

one gets

r�ð�U�Þ¼� �

�þP

��
1�1�	

�

�
�þ


�
P

�
U�@� lnh: (13)

One notes that 	 ¼ 
 ¼ 0 induces r�ð�u�Þ ¼ 0—
independently of the value of @	 lnh. Thus, it proves that
Lm ¼ �� ) r�ð�u�Þ ¼ 0 for all perfect fluids. Since
Ref. [42] proves r�ð�u�Þ ¼ 0 ) Lm ¼ �� for baro-
tropic perfect fluids, one has Lm ¼ �� , r�ð�u�Þ ¼ 0
(at least) for barotropic perfect fluids. Now, injecting
Eq. (13) in Eq. (7) gives

½�þP�U�r�U
	

¼ ðg	�þU	U�Þ
�
@�Pþ

�
�1�	

�
�þ


�
P

�
@� lnh

�
:

(14)

This equation generalizes the result found in Ref. [45]
for noninteracting monopoles to interacting particles in a
perfect fluid.

IV. MONOPOLE TEST PARTICLES

In this section, we derive the equation of motion of point
particles directly from the material sector of the action—
while Ref. [45] starts from the (non)conservation equation
of the stress-energy tensor. Eventually, we shall show the
equivalence of the two approaches. The material part of the
action writes

Sm ¼ 1

c

Z
hðR;�; ðr�Þ2ÞLm

ffiffiffiffiffiffiffi�g
p

d4x: (15)

For a noninteracting point particle, one has Lm ¼ �c2�,
with � ¼ ��ð ~xÞ (� being a mass), such that

Sm ¼ �c
Z
W

ffiffiffiffiffiffiffi�g
p

�hcdt ¼ �c
Z
W

ffiffiffiffiffiffiffi�g
p

�u0hds; (16)

where the integral is taken on the world line W of the
particle and where u	 ¼ dx	=ds, s being an affine parame-
ter of the world line. According to the last section, since
noninteracting point particles are the simplest form
of perfect fluids (P ¼ 0), the Lagrangian Lm ¼ �c2�
induces the conservation of the matter fluid current
r�ð�u�Þ ¼ 0. Therefore, one shows that Lm ¼ �c2�
induces the Newtonian conservation of the so-called
conserved density �� ¼ ffiffiffiffiffiffiffi�g

p
�u0 [46],

@0ð��Þ þ @ið��viÞ ¼ 0; (17)

where vi ¼ ui=u0. Hence, one deduces the conservation of
the mass m (dm=dx0 ¼ ðu0Þ�1dm=ds ¼ 0) defined as
m ¼ ffiffiffiffiffiffiffi�g

p
�u0. One has

r�ð�u�Þ ¼ 0 , dm

ds
¼ 0: (18)

Therefore, one can take m out of the integral in Eq. (16),
and one gets the modified point particle action:

Sm ¼ �mc
Z
W
hds: (19)

Parametrizing by the proper time �, one gets Sm ¼
�mc2

R
W Ld�, with L ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g	
U

	U

q

, with U	 ¼
c�1dx	=d�, such that one can use the Euler-Lagrange
equation:

@L

@x�
� d

cd�

@L

@U� ¼ 0: (20)

Computing the terms

@L

@x�
¼ ds

cd�
@�hþ 1

2

cd�

ds
h@�g	
U

	U
 (21)

and

d

cd�

@L

@U�

¼cd�

ds
�
�
g	�@
hU

	U
þh@
g	�U
	U
þhg	�

dU	

cd�

�
;

(22)

one gets the modified equation of motion of a point particle,
DU	

cd�
¼ �ðg	� þU	U�Þ@� lnh; (23)

where D=d� stands for the usual covariant derivative
(D=d� � cU�r�). One can check that this equation is
in accordance with the result found in Ref. [45] and that,
for P ¼ 0, Eq. (14) reduces to Eq. (23). It shows that, as
expected, deriving the particle equation of motion di-
rectly from the Lagrangian is equivalent to deriving it
from the (non)conservation equation of the stress-energy
tensor.

V. ELECTROMAGNETIC WAVES IN
THE GEOMETRIC OPTIC REGIME

In the following, the electromagnetic field is not consid-
ered as a significant source of curvature (i.e., photons
are considered as test particles). Then, from Eq. (1) the
electromagnetic equation writes

r�ðhðR;�; ðr�Þ2ÞF��Þ ¼ 0: (24)

Using the Lorenz gauge (r�A
� ¼ 0), it reduces to

�hA�þg��R��A
�þðr�A��r�A�Þ@� lnh¼0: (25)

BRIEF REPORTS PHYSICAL REVIEW D 88, 027506 (2013)

027506-3



Following the analysis made in Ref. [47], we expand the
4-vector potential as follows:

A� ¼ <fða� þ �b� þOð�2ÞÞexp i=�g: (26)

The two first leading orders of Eq. (25), respectively, give

k�k
� ¼ 0; (27)

where k� � @�, and

a�r�k
� þ 2k�r�a

� ¼ ðk�a� � k�a�Þ@� ln h: (28)

Remembering that the Lorenz gauge condition gives
k�a

� ¼ 0 at the leading order, one gets

k�r�k
� ¼ 0: (29)

This equation is the usual null-geodesic equation, showing
that the presence of nonminimal gravity/matter couplingwill
not affect light ray trajectories at the geometric optic approxi-
mation.However, defininga� ¼ af�, the propagation equa-
tion for the scalar amplitude ðaÞ as well as the propagation
equation for the polarization vector (f�) are modified:

k�r�a ¼ � a

2
r�k

� þ 1

2
ak�@� lnh; (30)

k�r�f
� ¼ 1

2
k�f�@� lnh: (31)

From there follows that the conservation law of the
‘‘photon number’’ (i.e., intensity) is modified:

r�ðk�a2Þ ¼ �a2k�@� lnh: (32)

One notes that the last three equations may give alternative
ways to put constraints on those theories.

For instance, at the classical level, Eq. (32) leads to a
modification of the distance luminosity dL because of the
energy transfer between the gravitational fields and the
electromagnetic field. As an example, for a flat
Friedmann-Lemaitre-Robertson-Walker metric, the new
equation reads2

dL;k¼0 ¼ ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffi
hjz¼0

hjz

s Z z

0

dz

HðzÞ ; (33)

where HðzÞ is the Hubble parameter as it would be
measured by an observer at redshift z. This has implications
in observational cosmology since the accelerated expan-
sion of the Universe is historically deduced from the ob-
servation of high redshift supernovae while assuming the
usual equation for the distance luminosity [48]:

dL;k¼0�usual ¼ ð1þ zÞ
Z z

0

dz

HðzÞ : (34)

Therefore, in models represented by the action (1), one not
only has to check whether or not the Universe can be
accelerated (such as in Refs. [6,7,35,36]), but one also

has to pay attention on how the distance luminosity equa-
tion is affected by the evolution of the Universe when
considering Eq. (33). As far as we know, no study took
that point into account so far.

VI. CONCLUSION

In the present paper, we studied the motion of
noninteracting point particles, interacting particles com-
posing a general perfect fluid, and the motion of light rays
in theories that exhibit a universal gravity/matter coupling.
We saw that the transfer of energy between the gravity
fields and the material fields—which is due to the universal
gravity/matter coupling—depends on the nature of the
material fields. Indeed, such a transfer can take two pos-
sible forms: either it modifies the matter fluid current
conservation, or it modifies the equation of motion (or
both at the same time). As an example, it seems that for
massive noninteracting point particles, the energy transfer
is totally incorporated into the modification of the equation
of motion; while for light rays, the energy transfer is totally
incorporated into the modification of the conservation of
the intensity. Otherwise, we saw that, for a very general set
of perfect fluids, the energy transfer modifies both the
matter current fluid conservation and the equation of mo-
tion. However, all the perfect fluid Lagrangians that give a
nonconservation of the rest mass seem to be in physical
disagreement with the noninteracting point particle case.
Indeed, using the relation Lm ¼ �� ) r�ð�U�Þ ¼ 0
demonstrated for perfect fluids in Sec. III, the noninteract-
ing point particle case necessarily induces the conservation
of the rest mass (see Sec. IV). This seems to be in accor-
dance with the assumption that Lm is the usual material
Lagrangian. Therefore, we argue that perfect fluid cases in
which Lm¼½�ð1�	Þ�þ
P���1, with 	 � 0 and 
 �
0, might not have any physical significance—unless one
modifies the material sector in such a specific way that the
nonconservation of matter precisely reduces to Eq. (13),
with 	 � 0 and 
 � 0. Hence, since the last case seems
very unlikely (unless maybe for some exotic material
fields), we believe that theorists should be careful when
using Lagrangians that are such that Lm¼½�ð1�	Þ�þ

P���1, with 	 � 0 and 
 � 0. This point is very im-
portant if one considers the numerous publications
using various values for the parameters 	 and 
 without
justifications (see in the Appendix a sample of cases found
in the literature). However, this issue would get a definitive
answer if, instead of using a phenomenological perfect
fluid description of matter, one works with the actual
fundamental fields of the material sector (for instance,
with Lm describing the standard model of particle fields).
Work in that direction is in progress.
Also, although Eq. (1) generally leads to a violation of

the equivalence principle(s), specific cases can still be in
accordance with the present tight experimental constraints
(see, for instance, Refs. [12,39–41]). However, a dedicated

2This equation has been obtained in a parallel work, in collabo-
ration with Aurelien Hees (unpublished at the present time).
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study of the equivalence principle issue in each specific
case is mandatory.
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APPENDIX: PERFECT FLUID MODELS
IN THE LITERATURE

Sample of cases considered in the literature

Bertolami et al. [31] 	 ¼ 0, 
 ¼ 0, � ¼ 1 dm=ds ¼ 0

Minazzoli and Harko [42] 	 ¼ 0, 
 ¼ 0, � ¼ 1 dm=ds ¼ 0

Harko et al. [25] 	 ¼ 0, 
 ¼ 0, � ¼ 1 dm=ds ¼ 0

Sotiriou and Faraoni [4] 	 ¼ 1, 
 ¼ 1, � ¼ 1 dm=ds � 0

Bisabr [6,36] 	 ¼ 1, 
 ¼ 1, � ¼ 1 dm=ds � 0

Farajollahi and Salehi [49] 	 ¼ 0, 
 ¼ 3, � ¼ 4 dm=ds � 0

Jamil et al. [50] 	 ¼ 0, 
 ¼ 3, � ¼ 4 dm=ds � 0

Sheykhi and Jamil [51] 	 ¼ 0, 
 ¼ 3, � ¼ 4 dm=ds � 0

Saaidi et al. [52] 	 ¼ 0, 
 ¼ 3, � ¼ 4 dm=ds � 0

Sharif and Waheed [53] 	 ¼ 0, 
 ¼ 3, � ¼ 4 dm=ds � 0
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Murillo, U.N. Gómez, and I. Quiros AIP Conf. Proc.
No. 1083 (AIP, New York, 2008), pp. 34–46.

[15] L. Perivolaropoulos, Phys. Rev. D 81, 047501 (2010).
[16] N. C. Devi et al., Phys. Rev. D 84, 063521 (2011).
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