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We study linear responses of D0-branes in the low frequency region by using gauge/gravity corre-

spondence. The dynamics of the D0-branes is described by matrix theory with finite temperature, which is

dual to a near extremal D0-brane black hole solution. We analyze the tensor mode and vector modes of a

stress tensor and a Ramond-Ramond 1-form current of matrix theory. Then, we show that if a cutoff

surface is close to a horizon of the D0-brane black hole, the linear responses take forms similar to the

hydrodynamic stress tensor and current on S8. By taking a Rindler limit, those linear responses come to

obey the hydrodynamics exactly, which is consistent with previous works on a Rindler fluid. We also show

that if the cutoff surface is far from the horizon, the linear responses do not take the forms of the

hydrodynamic stress tensor and current on S8. Especially, we find that the vector modes no longer possess

a diffusion pole in the low frequency region, which indicates that the linear responses of the D0-branes

cannot be explained by hydrodynamics.

DOI: 10.1103/PhysRevD.88.026020 PACS numbers: 04.70.�s, 11.25.Tq, 11.25.Uv, 47.10.�g

I. INTRODUCTION

If we apply a time-dependent external field to a black
hole, what occurs in the black hole? According to the
membrane paradigm [1–3], the response of the black hole
can be represented by the degrees of freedom on the
stretched horizon. It is expected that these degrees of free-
dom carry information on the interior of the black hole. This
is suggested by two guiding principles of quantum gravity:
the holographic principle (which states that the entropy in a
spatial region is bounded by the area) and the black hole
complementarity (which states that there is a consistent
theory in the frame of an observer outside the horizon).

It has long been known that matter on the stretched
horizon obeys hydrodynamic laws in the long wavelength
limit [1]. On the other hand, it was pointed out that a
localized perturbation spreads over the entire horizon in a
time logarithmic in the Bekenstein-Hawking entropy. This
time scale, which is different from the ones in local quantum
field theories, plays a crucial role in forbidding a possible
violation of the no-cloning theorem of quantum state [4–6].
These properties have been derived from classical general
relativity. To understand what the degrees of freedom on the
stretched horizon are, and how they thermalize, we will
need a fundamental theory, such as string theory.

In string theory, the Bekenstein-Hawking entropy and
the Hawking emission rate of some specific black holes
have been correctly reproduced by D-brane systems [7,8].
It is likely that D-branes provide microscopic descriptions
for more general black holes, but there are few quantitative
results.

Recently, it has been found that transport coefficients in
the membrane paradigm agree with those of a highly
excited fundamental string at the correspondence point,
up to numerical coefficients [9,10]. This can be regarded
as a support for string theory as a microscopic description
of the stretched horizon, in spite of a few limitations. First,
the black hole is realized when the string coupling is larger
than the value at the correspondence point [11]. In this
situation, one can no longer neglect the excitations of
D-branes because the masses of the D-branes are pro-
portional to the inverse of the string coupling [12].1 In
addition, the authors of [9,10] have considered only homo-
geneous perturbations to obtain the transport coefficients
of the fundamental string. To study dynamical processes
such as diffusion, one has to apply inhomogeneous pertur-
bations to the system.
According to AdS/CFT correspondence or matrix the-

ory, string theory can be defined nonperturbatively by
supersymmetric Yang-Mills theories. These gauge theories
should allow us to study the dynamics on the stretched
horizon from the first principles, even though it is difficult
to solve these theories. In fact, there have been extensive
studies of hydrodynamic properties of strongly coupled
gauge theories from gravity calculations using AdS/CFT
correspondence (or gauge/gravity correspondence, more
generally), following the work of Policastro et al. [15]. In
these studies, transport coefficients of gauge theories have
been obtained by studying fluctuations around black brane
backgrounds which have momentum along the brane, in
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1In [13], transport coefficients of the D1-D5-P system induced
by a few moduli fields have been discussed. However, since the
low energy effective theory of the D1-D5-P system does not
couple to the bulk metric and gauge field [8,14], we could not
discuss the linear responses of the stress tensor and current.
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the limit of small momentum. The computations of gauge/
gravity correspondence are closely related to those in the
old membrane paradigm [16].

In spite of this development, it is not clear how the
transport phenomena in the directions which surround a
black hole (or a black brane; the S5 direction in the case of
D3-branes) are represented in gauge theories. This question
should be important in the understanding of black holes in
the real world, since there are no directions along the brane
in this case. Also, answers to this question may shed light on
how the space emerges from lower dimensional theories.

Let us consider the case of D0-branes for definiteness.
There are no spatial directions along the brane, and the D0-
brane black hole is surrounded by S8. The low-energy
description of D0-branes is given by maximally supersym-
metric (0þ 1) dimensional Yang-Mills theory with UðNÞ
gauge symmetry. This theory is called matrix theory and
has been proposed to be a description of M theory in a
particular large N limit [17].

Black holes should correspond to dynamically realized
spherically symmetric configurations of matrix-valued
scalar fields. Fluctuations on the stretched horizon should
correspond to fluctuations around such a configuration.
It is not clear how these fluctuations propagate, and it is
not even clear if they can be effectively described by a local
field theory on S8.2

An important clue is that one knows how the matrices
couple to background fields. Kabat and Taylor [20] and
Taylor and Van Raamsdonk [21–23] studied one-loop
effective potential in matrix theory and found that certain
single-trace operators couple to supergravity backgrounds.
These operators have definite SO(9) R-charges, meaning
that they are in the momentum representation on S8. One
should be able to find linear responses of matrix theory to
external perturbations by computing correlation functions
of these operators.

In this paper, we will study transport phenomena along
S8 in matrix theory by using gauge/gravity correspon-
dence. Our aim is to clarify what kind of behavior one
should expect from the dynamics of matrices. In particular,
we wish to understand to what extent the theory behaves as
in field theory on S8.

Gauge/gravity correspondence for D0-branes was pro-
posed in [24,25]. Correlation functions at zero temperature
have been found [26–30] by applying theGubser-Klebanov-
Polyakov-Witten (GKPW) [31,32] prescription to the
near-horizon D0-brane background. It was found that the
zero-temperature correlators for operators which couple to
supergravity modes obey power law, even though the theory
is not conformally invariant. These results have been con-
firmed byMonte Carlo simulations ofmatrix theory [33,34].

In this paper, we follow the standard procedure for
studying the hydrodynamic limit in gauge/gravity corre-
spondence. Wewill use the real-time prescription proposed
by [15,35]. We evaluate the on-shell action on the near-
extremal D0-brane background and obtain correlation
functions following the GKPW prescription. We make a
series expansion in the frequency and study the low fre-
quency limit. We will study the tensor and vector modes
and find shear viscosity and diffusion poles for the stress
tensor and Ramond-Ramond (R-R) 1-form current. The
scalar modes are deferred to future work.
One should note that the types of operators that we

consider are different from the ones familiar in the holo-
graphic study of hydrodynamics. The stress-energy tensor
on S8 is represented by scalar operators from the perspec-
tive of gauge theory on (0þ 1) dimension. Modes with
different momentum on S8 are represented by different
operators. Unlike stress-energy tensors in conformal field
theories, these operators are not marginal operators and
will have nontrivial wave function renormalization.
We follow the interpretation in [16,36,37] and assume

that the position r ¼ rc of the regulated boundary (or the
‘‘cutoff surface’’), on which the on-shell action is eval-
uated, sets the scale of renormalization. We assume that the
normalization of the operators is fixed at that scale. Since
the gauge theory has only time, the renormalization scale
refers to the scale of time separation.
We will consider the two cases: when the cutoff surface

is near the horizon and when it is near infinity. In the
former case, we obtain the results which can be interpreted
as conventional hydrodynamics. This is the limit where the
operators are defined at an infrared scale. However, in the
latter case, we observe that the theory behaves differently
from the usual fluid. This is the limit where the operators
are defined at some ultraviolet scale, so that the operators
could be sensitive to the short-time behavior of the theory.
This paper is organized as follows. In Sec. II, we review

hydrodynamic equations for a charged fluid on S8. We
consider the tensor and vector modes, and we find the
expressions for the stress tensor and current in the presence
of external perturbations. In Sec. III, after briefly reviewing
matrix theory and gauge/gravity correspondence at zero
temperature, we describe gauge/gravity correspondence at
finite temperature on which our analysis is based. In
Sec. IV, we calculate the linear responses of the stress
tensor and R-R 1-form current of matrix theory by using
the gauge/gravity correspondence.3 In Secs. IVB and IVC,

2In [18,19], fluctuations of matrix theory have been analyzed
by a numerical simulation of the classical dynamics to study the
thermalization in the high temperature regime.

3In this paper, we assume that the stress tensor of matrix theory
is coupled to themode of themetric in the bulk and the R-R 1-form
current of matrix theory is coupled to the mode of the R-R 1-form
field in the bulk. This is different from the correspondence between
the operators in matrix theory and the modes of the supergravity
fields proposed in [26]. However, we believe that our assumption is
more natural to obtain the correct linear responses ofmatrix theory
under the perturbations of the bulk metric and R-R 1-form field.
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we calculate the on-shell action for the tensor and vector
modes, respectively, at arbitrary rc. In Sec. IVD, we study
transport coefficients when the cutoff surface is near the
horizon. From the tensor mode, we find that the linear
response of the stress tensor takes the form of the hydro-
dynamic stress tensor on S8, and that the shear viscosity to
entropy density ratio is equal to 1=4�. From the vector
modes, we find that the linear responses of the stress tensor
and R-R 1-form current take forms similar to the hydro-
dynamic stress tensor and current on S8. By taking a
Rindler limit, the linear responses become the hydrody-
namic stress tensor and current on R8, which is consistent
with previous work on a Rindler fluid [16,38]. In Sec. IVE,
we consider the case in which the cutoff surface is far from
the horizon. We find that both the tensor mode and vector
modes do not follow the hydrodynamics. Especially, there
is no diffusion pole in the vector modes in the low fre-
quency region, which indicates that the linear responses of
the D0-branes cannot be explained by hydrodynamics.
The final section is devoted to the summary and comments.
In Appendix A, we briefly summarize the definitions
and properties of the spherical harmonics on S8. In
Appendix B, we derive the on-shell action of the tensor
mode and vector modes.

II. HYDRODYNAMICS ON S8

In this section, we review a charged fluid on
9-dimensional spacetime whose spatial part is S8. We
introduce external perturbations of the metric g�� and

gauge field A� and consider the linear response [39]. The

background metric and gauge field are given by

�g�� ¼ �1 0

0 �gij

 !
; (1)

�A� ¼ ð ��; 0Þ; (2)

where the indices�, � run from 0 to 8, and �gij is the metric

on S8 with radius R. We introduced the chemical potential
� as the constant mode of A0, and �� is its background part.

The hydrodynamic equations of the charged fluid are

0 ¼ r�T
�� � F��J�; (3)

0 ¼ r�J
�; (4)

where F�� ¼ @�A� � @�A� is the field strength. The con-

stitutive relations of the stress tensor and current are

T�� ¼ �u�u� þ p���

� �������

�
r�u� þr�u� � 1

4
g��r�u

�

�
� 	���r�u

�; (5)

J� ¼ nu� þ 
���ðE� � T���r�ð�=TÞÞ; (6)

where � is the energy density, p is the pressure, n is the
charge density, T is the temperature, � is the chemical
potential, and

��� ¼ g�� þ u�u�; (7)

E� ¼ F��u
�; (8)

are the projection to spatial direction and the external
electric flux, respectively. The coefficients of second order
parts, �, 	 , and 
, are the shear viscosity, bulk viscosity,
and conductivity, respectively. The normalization condi-
tion of the velocity field u� is given by g��u

�u� ¼ �1.

Now, we introduce perturbations for the metric and
gauge field and then consider the response of the fluid at
the linear order of perturbations. By expanding them in
terms of spherical harmonics on S8, they can be classified
into the tensor, vector, and scalar modes which are asso-
ciated to the tensor, vector, and scalar harmonics, respec-
tively. We consider the tensor mode and vector modes and
introduce no perturbation for the scalar mode. Then, the
scalar quantities such as �, p, and n have no response and
remain constant. Since in this case, the velocity field
satisfies the incompressible condition r�u

� ¼ 0, the

constitutive relations are simplified as

T�� ¼ ��u�u�þ �p�����������ðr�u�þr�u�Þ; (9)

J� ¼ �nu� þ 
���E�; (10)

where ��, �p, and �n denote the energy density, pressure, and
charge density in equilibrium, respectively.
We apply the following external perturbations to the

fluid in equilibrium:

g�� ¼ �g�� þ h��; (11)

A� ¼ �A� þ 
A�; (12)

where

hijðt; xiÞ ¼
X
I

bIðtÞYI
ijðxiÞ; (13)

h0iðt; xiÞ ¼
X
I

bI0ðtÞYI
i ðxiÞ; (14)


Aiðt; xiÞ ¼
X
I

aIðtÞYI
i ðxiÞ: (15)

Here, YI
i and YI

ij are the vector harmonics and tensor

harmonics on S8, respectively. The tensor mode is bI and
the vector modes are bI0 and aI. Hereafter, we often sup-

press the angular momentum index I and the sum in the
spherical harmonic expansions. The definitions and prop-
erties of the spherical harmonics are summarized in
Appendix A.
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Under the perturbations, the velocity field changes as

u� ¼ �u� þ 
u�; (16)

where �u� is the velocity field in the equilibrium and
the linear responses can be expanded by the spherical
harmonics:

�u� ¼ ð1; 0; . . . ; 0Þ; (17)


u0 ¼ 0; 
ui ¼ uðtÞYi: (18)

Since u0 behaves as a scalar on S8, it does not change
in this case. Note that 
ui ¼ 
u� �g�i þ �u�
g�i ¼
ðu� b0ÞYi. Thus, the changes of the stress tensor and
current are


T0i ¼ ðð ��þ �pÞu� �pb0ÞYi; (19)


Tij ¼ �ð �pbþ �@0bÞYij � �uð �riYj þ �rjYiÞ; (20)


Ji ¼ ð �nu� 
@0aÞYi: (21)

Inserting (19)–(21) into the hydrodynamic equation (3), we
find

uð!Þ ¼ i!b0ð!Þ � i! �n
��þ �p að!Þ

i!�D ðlþ8Þðl�1Þ
R2

; (22)

where we have used the Fourier transformation,

uðtÞ ¼
Z d!

2�
uð!Þe�i!t: (23)

In the expression (22), l is the angular momentum (see also
Appendix A) and

D ¼ �

��þ �p
; (24)

is the diffusion constant. Therefore, the linear response
of the stress tensor and current under the external
perturbations are


Tijð!; xiÞ ¼ X
I

�
� �pbIð!ÞYij

I ðxiÞ þ i!�bIð!ÞYij
I ðxiÞ

þ i!�
�b0I ð!Þ þ �n

��þ �p aIð!Þ
i!�D ðlþ8Þðl�1Þ

R2

ð �riYj
I ðxiÞ

þ �rjYi
IðxiÞÞ

�
; (25)


T0ið!; xiÞ ¼ X
I

��
��þ �

ðlþ8Þðl�1Þ
R2

i!�D ðlþ8Þðl�1Þ
R2

�
b0I ð!ÞYi

IðxiÞ

� �n
i!

i!�D ðlþ8Þðl�1Þ
R2

aIð!ÞYi
IðxiÞ

�
; (26)


Jið!;xiÞ¼X
I

��
i!
� �n2

��þ �p

i!

i!�Dðlþ8Þðl�1Þ
R2

�
aIð!ÞYi

IðxiÞ

þ �n
i!

i!�Dðlþ8Þðl�1Þ
R2

b0I ð!ÞYi
IðxiÞ

�
: (27)

Since we are interested in the dissipative behavior of the
stress tensor and current, we neglect the nondissipative
terms in (25) and (26). If we expand the stress tensor and
current in terms of the spherical harmonics as


Tijð!; xiÞ ¼ X
I

TIð!ÞYij
I ðxiÞ þ ~TIð!Þð �riYj

I ðxiÞ

þ �rjYi
IðxiÞÞ; (28)


T0ið!; xiÞ ¼ X
I

T0
I ð!ÞYi

IðxiÞ; (29)


Jið!; xiÞ ¼ X
I

JIð!ÞYi
IðxiÞ; (30)

the coefficients TI, ~TI, T0
I , and JI are

TIð!Þ ¼ i!�bIð!Þ; (31)

~TIð!Þ ¼ i!�
�b0I ð!Þ þ �n

��þ �p aIð!Þ
i!�D ðlþ8Þðl�1Þ

R2

; (32)

T0
I ð!Þ¼�

ðlþ8Þðl�1Þ
R2

i!�D ðlþ8Þðl�1Þ
R2

b0I ð!Þ� �n
i!

i!�D ðlþ8Þðl�1Þ
R2

aIð!Þ;

(33)

JIð!Þ ¼
�
i!
� �n2

��þ �p

i!

i!�D ðlþ8Þðl�1Þ
R2

�
aIð!Þ

þ �n
i!

i!�D ðlþ8Þðl�1Þ
R2

b0I ð!Þ: (34)

III. GAUGE/GRAVITY CORRESPONDENCE
FOR MATRIX THEORY

In this section, we briefly review matrix theory and the
gauge/gravity correspondence for matrix theory in the
extremal and the near-extremal case.

A. Matrix theory

Let us consider a system which is composed of N
D0-branes on top of one another in 10-dimensional type
IIA string theory. In this system, there are open strings
whose ends are attached on the D0-branes and closed
strings which are propagating in the bulk. Although the
closed strings are usually coupled to the D0-branes, we can
decouple the closed strings from the D0-branes by taking a
near-horizon limit [24]. Since all the massive string modes
are also decoupled in this limit, the dynamics of the
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D0-branes can be described by the lowest modes of the
open strings, namely, matrix theory [17].

Matrix theory is the maximally supersymmetric UðNÞ
Yang-Mills theory in (0þ 1) dimensions, which can be
viewed as matrix quantum mechanics. The action is

S ¼
Z

dtTr

�
1

2gsls
_Xm _Xm þ 1

4gsl
5
s

½Xm; Xn�2

þ ðfermionic termsÞ
�
; (35)

where gs is the string coupling constant and ls is the string
length. In this action, we have adopted the gauge condition
A ¼ 0. The Yang-Mills coupling constant is g2YM ¼
ð2�Þ�2gsl

�3
s , which has mass dimension 3. The fields

Xmðm ¼ 1; . . . ; 9Þ, which are N � N Hermitian matrices,
describe the lowest modes of open strings connecting the
D0-branes, and the diagonal components represent the
positions of the D0-branes in the 9 spatial dimensions.

B. Gauge/gravity correspondence: Extremal case

For gs � 1 and gsN � 1, the D0-brane system can be
treated as a classical solution of type IIA supergravity. The
extremal D0-brane black hole solution in string frame is
given by4

ds2s ¼�
�
1þR7

r7

��1
2
dt2 þ

�
1þR7

r7

�1
2ðdr2 þ r2d�2

8Þ; (36)

e� ¼ gse
~� ¼ gs

�
1þ R7

r7

�3
4
; (37)

A0 ¼ g�1
s

��
1þ R7

r7

��1 � 1

�
; (38)

where � and A� are the dilaton and R-R 1-form field,

respectively. The ‘‘radius’’ R is determined by the number
of D0-branes as

R ¼ ð60�3Þ17ðgsNÞ17ls: (39)

By taking the near-horizon limit R7=r7 � 1, the solution
becomes

ds2s ¼ �
�
r

R

�7
2
dt2 þ

�
R

r

�7
2ðdr2 þ r2d�2

8Þ; (40)

e
~� ¼

�
R

r

�21
4
; (41)

A0 ¼ 1

gs

r7

R7
: (42)

For the classical supergravity description to be reliable,
the string coupling e� must be much smaller than 1 and the
curvature radius in string frame must be much longer than
ls. Then, one finds the following condition for r [24,26]:

ðgsNÞ13N� 4
21 � r

ls
� ðgsNÞ13: (43)

The former condition leads to the first inequality and the
latter condition leads to the second inequality. In addition,
from the near-horizon condition r � R, we have

r

ls
� ðgsNÞ17: (44)

Therefore, the total region of r becomes [26]

g
4
21
s ðgsNÞ17 � r

ls
� ðgsNÞ17: (45)

The condition (45) is satisfied in a wide range of r if
gs � 1 and gsN � 1. Thus, matrix theory can be
described by the classical solution (40)–(42) in this region.
The near-horizon metric (40) is related to the metric on

AdS2 � S8 by a Weyl transformation as [26]

ds2s ¼ e
2
7
~�ds2w; (46)

ds2w ¼ R2

��
2

5

�
2 1

z2
ð�dt2 þ dz2Þ þ d�2

8

�
; (47)

where

z � 2

5
R

7
2r�5

2: (48)

In our paper, we call the frame whose metric is given by
(47) ‘‘AdS frame.’’
The GKPW relation for this gauge/gravity correspon-

dence is given by [26]

eiSIIA½h�jhsI ðz¼zcÞ¼ �hsI
¼
�
exp

�
i
Z

dt �hsIðtÞOs
IðtÞ

��
; (49)

where SIIA is the action of 10-dimensional type IIA super-
gravity, hsI denotes each mode of perturbations of the bulk
fields, and zc is the radial coordinate of the cutoff surface,
on which matrix theory is defined. On the left-hand side,
hsI is a solution of the bulk equations of motion which

4Although the overall sign of A0 is different from that in [26],
this is just a matter of convention. Let us calculate the total R-R
charge in our convention. We apply a homogeneous chemical
potential � � 
A0 to the system at the asymptotic boundary,
which is coupled to the total R-R charge q � R

S8 d
8x

ffiffiffiffiffi
g8

p
J0. The

change of the Lagrangian is 
L ¼ �q. The variation of the
action with respect to A0 is


SIIA ¼ � g2s
16�G

Z
d10x

ffiffiffiffiffiffiffi�g
p ½r�ð
A0F

�0Þ þ ðe:o:m:Þ�

¼
Z
r¼1

dt
7gsV8

16�GR

A0;

where we have inserted the solution (36) and (38) in the second

line. Therefore, the total R-R charge is q ¼ þ 7gsV8

16�GR .
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satisfies two boundary conditions hsIðz ! 1Þ ¼ 0 and
hsIðz ¼ zcÞ ¼ �hsIðtÞ. Therefore, the left-hand side is a func-
tional of �hsIðtÞ. The right-hand side represents a generating
functional for connected correlation functions of matrix
theory operator Os

IðtÞ, which couples to the source �hsIðtÞ.
By taking the functional derivatives of (49) with respect to
�hsIðtÞ and sending �hsIðtÞ to zero, we obtain the correlation
functions of matrix theory via the on-shell action of
type IIA supergravity.

C. Gauge/gravity correspondence: Near-extremal case

Next, we consider the near-extremal D0-branes. If non-
extremality is sufficiently small, the horizon remains in the
near-horizon region r � R and we can take the near-
horizon limit in a similar fashion to the extremal case.
Then, in the near-horizon limit, the near-extremal
D0-brane black hole solution becomes

ds2s ¼ e
2
7
~�ds2w; (50)

ds2w ¼ ~R2

�
z�2ð�fdt2 þ f�1dz2Þ þ

�
5

2

�
2
d�2

8

�
; (51)

f ¼ 1�
�
z

z0

�14
5
; e

~� ¼
�
z
~R

�21
10
; (52)

A0 ¼ 1

gs

� ~R
z

�14
5
; (53)

where ~R � 2
5R and z0 ¼ 2

5R
7
2r

�5
2

0 denotes the radius of the

horizon. The Hawking temperature TH, the Bekenstein-
Hawking entropy SBH and the total D0-brane charge q are5

TH ¼ 7

10�z0
; (54)

SBH ¼ V8

4G

� ~R
z0

�9
5
; (55)

q ¼ 7gs
16�GR

V8; (56)

where V8 is the volume of S8 with radius R.
For the gauge/gravity correspondence to be valid, r0

should be in the region of (45). Then, one finds6

ðgsNÞ107 � g2YMN

T3
H

� N
10
7 : (57)

Thus, we can study the strongly coupled D0-brane system
by using the gauge/gravity correspondence.
In the near-extremal case, the definition of the GKPW

relation (49) is subtle if we discuss the real time correlation
functions [40]. Since the regularity condition on the hori-
zon is not well-defined in this case, we impose the ingoing
boundary condition [15,35]. Up to the quadratic order of
the perturbations, the on-shell action takes the following
form:

Son-shell ¼
X
I

AI

Z d!

2�
�hsIð�!ÞF Ið!; zÞ �hs0I ð!Þjz¼zc ; (58)

where

AI ¼
8<
:DI

2 � 1
2

R
d8x

ffiffiffiffiffi
g8

p
Yij
I Y

I
ij; ðfor tensor modeÞ;

DI
1 �

R
d8x

ffiffiffiffiffi
g8

p
Yi
IY

I
i ; ðfor vector modesÞ;

(59)

and
ffiffiffiffiffi
g8

p
is the square root of the determinant of the metric

on S8 with radius R. Hereafter, we suppress the angular
momentum index I and the sum over I. Then, the retarded
Green function of matrix theory is given by

Gss0
R ð!Þ ¼

��2F ð!; zÞjz¼zc ; ðfor s ¼ s0Þ;
�F ð!; zÞjz¼zc ; ðfor s � s0Þ; (60)

where the retarded Green function of operators Os is
defined by

Gss0
R ð!Þ ¼ �i

Z 1

�1
dtei!t�ðtÞh½OsðtÞ;Os0 ð0Þ�i0: (61)

Here, h i0 denotes the ensemble average in equilibrium.
Thus, according to the linear response theory [41], the
linear response of the matrix theory operator is


hOsð!Þi�hOsð!Þi�hOsð!Þi0¼�Gss0
R ð!Þ �hs0 ð!Þ; (62)

where h i denotes the ensemble average when the source
fields �hsð!Þ are turned on.

IV. LINEAR RESPONSES OF D0-BRANES

In this section, we investigate fluid in the gauge/gravity
correspondence for matrix theory. We introduce perturba-
tions in tensor and vector modes and calculate the linear
responses of the stress tensor and R-R 1-form current. Our
strategy for the calculation is the following:
(i) We put the cutoff surface at z ¼ zc.
(ii) We solve the bulk equations of motion for the

perturbations of the metric and the R-R 1-form.
Then, we impose the ingoing boundary condition
at z ¼ z0 and the Dirichlet boundary condition at
z ¼ zc on the solutions.

(iii) We evaluate the on-shell action and calculate the
linear responses of the operators which are coupled
to those perturbations.

(iv) We compare the results with the hydrodynamic
stress tensor and current on S8 (or R8) when

5The D0-brane charge q has mass dimension 1 because the
1-form field A� is defined to be dimensionless.

6The condition (57) does not hold if we take the large N limit

when other parameters are fixed because
g2
YM

N

T3
H

� ðgsNÞ52ðlsr0Þ
15
2 . It is

satisfied if gs scales as N
�ð�1<�<� 3

7Þ [5].
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(a) the cutoff surface is near the horizon.
(b) the cutoff surface is far from the horizon.
The bosonic action of the 10-dimensional type IIA

supergravity in string frame is7

SIIA ¼ 1

2�2

Z
d10x

ffiffiffiffiffiffiffi�g
p �

e�2�ðRþ 4@��@��Þ

� g2s
4
F��F

��

�
; (63)

where �, � ¼ 0; . . . ; 9; 2�2 ¼ 16�G; and G is the 10-
dimensional Newton constant. Because Neveu-
Schwarz–Neveu-Schwarz 2-form and R-R 3-form have
no nontrivial backgrounds in the D0-brane solution
(50)–(53), they are decoupled from the metric and R-R
1-form at the linear order. Hence, we have omitted them.

To reduce the calculations, it is convenient to use the
AdS frame (51). Then, the action becomes [26]

S0IIA ¼ 1

2�2

Z
d10x

ffiffiffiffiffiffiffi�g
p

e�6
7�

�
Rþ 16

49
@��@��

� g2s
4
e
12
7�F��F

��

�
: (64)

To obtain the correct on-shell action, we need to add the
Gibbons-Hawking term [42],

SGH ¼ � 1

�2

Z
z¼zc

d9x
ffiffiffiffiffiffiffiffi��

p
e�6

7�K; (65)

on the boundary, where ��� is the induced metric on the

cutoff surface and K is the trace of the extrinsic curvature
K��. Therefore, the total action is

Stotal ¼ S0IIA þ SGH: (66)

By varying the action (64) with respect to the metric,
1-form and dilaton, one finds the equations of motion

0 ¼ R�� � 1

2
g��Rþ 4

7

�
g��@��@��� 5

7
@��@��

�

þ 6

7
ðr�@��� g��r�@

��Þ

þ g2s
8
e
12
7�ðg��F�
F

�
 � 4F��F
�
� Þ; (67)

0 ¼ r�ðe6
7�F��Þ; (68)

0 ¼ R� 16

49
@��@��þ 16

21
r�r��þ g2s

4
e
12
7�F��F

��:

(69)

We denote the linear perturbations of the metric, R-R
1-form and dilaton around the background fields

(51)–(53) as h��, Â�, and �̂, respectively. At the linear

order of the perturbations, the equations of motion become

0 ¼ r�@�hþ ðr�r�h�� �r�r�h
�
� �r�r�h

�
�Þ þ h��R� g��ðh�
R


� þr�@�h�r�r
h�
Þ
� 8

7

�
h��@��@��� g��ðh�
@��@
�� 2@��̂@��Þ � 5

7
ð@��̂@��þ @��@��̂Þ

�

� 12

7

�
r�@��̂� g��r�@

��̂� 1

2
ðr�h

�
� þr�h

�
� �r�h��Þ@��� h��r�@

��

þ g��ðr�h
�

@


�þ h�
r�@

�� 1

2
@�h@

��Þ
�
� g2s

4
e
12
7�

�
h��F�
F

�
 þ 4h�
F��F�

 � 2g��h

�
�F�
F

�


þ 2g��F̂�
F
�
 � 4ðF̂��F�

� þ F��F̂�
�Þ þ 12

7
�̂ðg��F�
F

�
 � 4F��F�
�Þ
�
; (70)

0 ¼ 6

7
ð@��̂F�� þ @��F̂�� � @��h��F

��Þ þ r�F̂
�� þ 1

2
@�hF

�� �r�h
�
�F

�� � h��r�F
�� �r�h

�
�F

��; (71)

0¼�r�@
�hþr�r�h���h��R

�
��16

49
ð2@��̂@���h��@��@��Þ

þ16

21

�
1

2
@�h@

���r�h
�
�@

���h��r�@
��þr�@

��̂

�
þg2s

2
e
12
7�

�
6

7
�̂F��F

���h��F��F
��þ F̂��F

��

�
; (72)

where F̂�� ¼ @�Â� � @�Â�.

7Hereafter, we denote ~� as � for simplicity.
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We adopt the following gauge conditions [26]:

ri

�
hij �

1

8

i
jh

k
k

�
¼ 0; (73)

rih0i ¼ rihzi ¼ 0; (74)

riÂi ¼ 0; (75)

where i ¼ 1; . . . ; 8. Then, using the spherical harmonic
expansions on S8, we can classify the perturbations into
the scalar modes,

h00ðx�Þ ¼
X

b00ðt; zÞYðxiÞ; h0zðx�Þ ¼
X

b0zðt; zÞYðxiÞ;

hzzðx�Þ ¼
X

bzzðt; zÞYðxiÞ; hiiðx�Þ ¼
X

biiðt; zÞYðxiÞ;

Â0ðx�Þ ¼
X

a0ðt; zÞYðxiÞ; Âzðx�Þ ¼
X

azðt; zÞYðxiÞ;

�̂ðx�Þ ¼ X
’ðt; zÞYðxiÞ; (76)

vector modes,

h0i ðx�Þ ¼
X

b0ðt; zÞYiðxiÞ; hzi ðx�Þ ¼
X

bzðt; zÞYiðxiÞ;

Âiðx�Þ ¼
X

aðt; zÞYiðxiÞ; (77)

and tensor mode,

hijðx�Þ �
1

8

i

jh
k
kðx�Þ ¼

X
bðt; zÞYi

jðxiÞ; (78)

where Y, Yi, and Yij are the scalar, vector, and tensor
harmonics on S8, respectively. Here, we have suppressed
the angular momentum indices. Since these modes are
decoupled from each other, we can analyze each mode
independently.

A. Solutions of equations of motion

As we will see later, the equations of motion can be
reduced into the differential equations which generally
take the following form:

0 ¼ f�1u�pðupf�0Þ0 þ ~!2f�2u�9
7�� k2f�1u�2�

¼ �00 þ
�
p

u
� 1

1� u

�
�0 þ ~!2

u
9
7ð1� uÞ2 �� k2

u2ð1� uÞ�:

(79)

In this section, we will discuss the solutions and boundary
conditions for this differential equation. The function � is
related to perturbations of the metric and R-R 1-form. The
parameters p and k take

p ¼ 0; k2 ¼ lðlþ 7Þ
49

; (80)

for the tensor mode, and

p ¼ 9

7
; k2 ¼ ðlþ 1Þðl� 1Þ

49
;
ðlþ 6Þðlþ 8Þ

49
; (81)

for two independent modes of the vector modes. The
variable u is related to the radial coordinate z as

u ¼
�
z

z0

�14
5
; (82)

and ~! is the dimensionless frequency,

~! ¼ !

4�TH

: (83)

Although it is difficult to solve the differential equation
(79) for an arbitrary ~!, we can obtain the solution in the
hydrodynamic regime, ~! � 1.
Near the horizon u ’ 1, the leading contributions of the

differential equation (79) are

0 ¼ �00 � 1

1� u
�0 þ ~!2

ð1� uÞ2 �: (84)

Then, the leading terms of two independent solutions of
(79) are

�ð ~!;uÞ ¼ C1ð1� uÞ�i ~! þC2ð1� uÞi ~!

’~!�1
C1ð1� i ~! ln ð1� uÞÞ þC2ð1þ i ~! ln ð1� uÞÞ;

(85)

where C1 and C2 are the integration constants. Imposing
the ingoing boundary condition, C2 must vanish [15,35].
For ~! � 1, � can be expanded as a series of ~!2 as

�ð ~!; uÞ ¼ �0ðuÞ þ ~!2�2ðuÞ þ ~!4�4ðuÞ þ � � � ; (86)

and the coefficients �nðuÞ can be solved recursively.
The differential equation for �0 is

0 ¼ �00
0 þ

�
p

u
� 1

1� u

�
�0
0 �

k2

u2ð1� uÞ�0; (87)

and the solution is8

�0 ¼ ~C1u
�
2F1ð�;�;�þ�;uÞ þ ~C2u

�
2F1ð�;
;�þ
;uÞ;

(88)

where ~C1 and ~C2 are the integration constants, 2F1 is the
Gauss’ hypergeometric function and

� ¼ 1

2
ð1� p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ2 þ 4k2

q
Þ; (89)

8When �þ � 2 Zðl 2 7ZÞ, the solution of (87) is not given
by (88) [43]. In this paper, we do not deal with this exceptional
case.
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� ¼ 1

2
ð1þ p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ2 þ 4k2

q
Þ; (90)

� ¼ 1

2
ð1� pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ2 þ 4k2

q
Þ; (91)


 ¼ 1

2
ð1þ pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ2 þ 4k2

q
Þ: (92)

The expansion of the Gauss’ hypergeometric function

2F1ða; b; c;uÞ around u ¼ 1 is special when aþ b ¼ c.
It is given by [43]

2F1ða; b;aþ b;uÞ

¼ �ðaþ bÞ
�ðaÞ�ðbÞ

X1
n¼0

ðaÞnðbÞn
ðn!Þ2 ½2c ðnþ 1Þ � c ðaþ nÞ

� c ðbþ nÞ � ln ð1� uÞ�ð1� uÞn; (93)

where c ðnÞ is the digamma function and

ðaÞn ¼ aðaþ 1Þðaþ 2Þ � � � ðaþn� 1Þ; ðaÞ0 ¼ 1; (94)

c ð1Þ¼��e¼�0:57721��� ; ð�e: Euler constantÞ: (95)

Thus, near the horizon u ’ 1, �0 becomes

�0 ’u!1 ~C1

�ð�þ�Þ
�ð�Þ�ð�Þ ½�2�e � c ð�Þ � c ð�Þ � ln ð1� uÞ�

þ ~C2

�ð�þ 
Þ
�ð�Þ�ð
Þ ½�2�e � c ð�Þ � c ð
Þ � ln ð1� uÞ�:

(96)

This can be summarized in the form of (85). Since C2 ¼ 0
from the ingoing boundary condition, we find

~C2¼� ~C1

�ð�þ�Þ
�ð�Þ�ð�Þ

�ð�Þ�ð
Þ
�ð�þ
Þ

1þ i ~!ð2�eþc ð�Þþc ð�ÞÞ
1þ i ~!ð2�eþc ð�Þþc ð
ÞÞ

’~!!0� ~C1

�ð�þ�Þ
�ð�Þ�ð�Þ

�ð�Þ�ð
Þ
�ð�þ
Þ ð1þ i ~!ðc ð�Þþc ð�Þ

�c ð�Þ�c ð
ÞÞÞ: (97)

Imposing the Dirichlet boundary condition at the cutoff
surface,

�ð ~!; ucÞ ¼ ��ð ~!Þ; (98)

the solution is

�ð ~!; uÞ ¼ ��ð ~!Þ
F

�
u�2F1ð�;�;�þ �; uÞ

� �ð�þ �Þ
�ð�Þ�ð�Þ

�ð�Þ�ð
Þ
�ð�þ 
Þ ð1þ i ~!ðc ð�Þ þ c ð�Þ

� c ð�Þ � c ð
ÞÞÞu�2F1ð�; 
;�þ 
; uÞ
�

þOð ~!2Þ; (99)

where

F ¼ u�c 2F1ð�;�;�þ �;ucÞ � �ð�þ �Þ
�ð�Þ�ð�Þ

�ð�Þ�ð
Þ
�ð�þ 
Þ

� ð1þ i ~!ðc ð�Þ þ c ð�Þ � c ð�Þ � c ð
ÞÞÞ
� u�c 2F1ð�; 
;�þ 
; ucÞ: (100)

B. Tensor mode

Now, we solve the equations of motion, and calculate
the on-shell action. We first consider the tensor mode.
The equation of motion for the tensor mode b is

0 ¼ f�1z
9
5@zðfz�9

5@zbÞ � f�2@20b� 4

25
lðlþ 7Þf�1z�2b:

(101)

For the tensor mode, the angular momentum must satisfy
l 	 2. Using the Fourier transformation,

bðt; uÞ ¼
Z d!

2�
bð!; uÞe�i!t; (102)

and the coordinate uwhich is defined by (82), the equation
of motion (101) becomes

0 ¼ f�1ðfb0Þ0 þ ~!2u�9
7f�2b� lðlþ 7Þ

49
u�2f�1b; (103)

where ~! is the dimensionless frequency,

~! ¼ 5z0
14

! ¼ !

4�TH

: (104)

The prime 0 denotes the derivative with respect to u. From
the result of Sec. IVA, the solution of (103) for ~! � 1 is

bð ~!; uÞ ¼ �bð ~!Þ u�l
7FðuÞ � Xð ~!Þu1þl

7 ~FðuÞ
u
�l

7
c FðucÞ � Xð ~!Þu1þl

7
c ~FðucÞ

; (105)

where uc ¼ ðzc=z0Þ14=5 and
�bð ~!Þ � bð ~!; ucÞ; (106)

FðuÞ � 2F1

�
� l

7
;� l

7
;� 2l

7
; u

�
;

~FðuÞ � 2F1

�
1þ l

7
; 1þ l

7
; 2þ 2l

7
;u

�
;

(107)

Xð ~!Þ � �ð� 2l
7 Þ

�ð� l
7Þ2

�ð1þ l
7Þ2

�ð2þ 2l
7 Þ
�
1þ 2�i ~! cot

�
l�

7

��
: (108)

The on-shell action for b is

2�2Son-shell ¼ 7

5
~R
9
5z

�14
5

0 D2

Z
u¼uc

dt½fbb0 � u�1ð1þ fÞb2�:

(109)
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Derivation of the on-shell action is given in Appendix B 1. Hereafter, we do not consider the contact term, which does not
contribute to the dissipative behavior. Inserting (105) into the on-shell action, we find

2�2Son-shell¼7

5
~R
9
5z

�14
5

0 D2

Z d!

2�
ð1�ucÞ �bð�!Þ �bð!Þ��

l
7u

�1
c FðucÞþF0ðucÞ�Xu

2l
7
c ðð1þ l

7Þ ~FðucÞþuc ~F
0ðucÞÞ

FðucÞ�Xu
1þ2l

7
c ~FðucÞ

: (110)

C. Vector modes

Next, we consider the vector modes. In this case, the
vector modes consist of metric components b0, bz and R-R
1-form a. There are four equations of motion for these
fields,

0 ¼ @2zb
0 þ f�2@0@zb

z �
�
19

5
z�1 � 2f�1@zf

�
@zb

0

�
�
9

5
z�1f�2 þ f�3@zf

�
@0b

z

� 4

25
ððlþ 1Þðlþ 6Þ � 49Þz�2f�1b0

þ 14

5
gs ~R

�14
5 z

9
5f�1@za; ðl 	 1Þ; (111)

0 ¼ �f�2@20b
z þ ð2z�1 � f�1@zfÞ@0b0 � @0@zb

0

� 4

25
ðlþ 8Þðl� 1Þf�1z�2bz � 14

5
gsz

9
5 ~R�14

5 f�1@0a;

ðl 	 1Þ; (112)

0¼@zðf@zaÞþ9

5
z�1f@za�f�1@20a�

4

25
ðlþ1Þðlþ6Þz�2a

þ14

5
g�1
s

~R
14
5 z�19

5 ½@zðfb0Þþf�1@0b
z�2z�1fb0�;

ðl	1Þ; (113)

0 ¼ @0b
0 þ @zb

z � 19

5
z�1bz; ðl 	 2Þ: (114)

The Eq. (114) can be derived from (111) and (112). Since
two Eqs. (112) and (113) contain the second order time
derivative, there are two physical degrees of freedom in the
vector modes. The other Eq. (114), or equivalently (111),
gives a constraint on the boundary conditions. Therefore,
these equations of motion yield two second order differen-
tial equations and one first order equation. The solution has
five integration constants which can be fixed by two
incoming boundary conditions at the horizon and three
Dirichlet boundary conditions on the cutoff surface for
b0, bz, and a.

Let us set [26]

â ¼ �gsa; (115)

b̂ ¼ � 5

14
~R
14
5 z�9

5ðz2@zðz�2fb0Þ þ f�1@0b
zÞ: (116)

Then, the Eqs. (111)–(113) become

0 ¼ @zb̂þ @zâþ 2

35
ðlþ 8Þðl� 1Þ ~R14

5 z�19
5 b0; (117)

0 ¼ @0b̂þ @0â� 2

35
ðlþ 8Þðl� 1Þ ~R14

5 z�19
5 bz; (118)

0¼ z
1
5@zðz9

5f@zâÞ� z2f�1@20â�
4

25
ðlþ 1Þðlþ 6Þâþ 196

25
b̂:

(119)

Inserting (117) and (118) into (116), we find

0 ¼ z
1
5@zðz9

5f@zðâþ b̂ÞÞ � z2f�1@20ðâþ b̂Þ
� 4

25
ðlþ 8Þðl� 1Þb̂: (120)

Using (119), the Eq. (120) becomes

0 ¼ z
1
5@zðz9

5f@zb̂Þ � z2f�1@20b̂þ 4

25
ðlþ 1Þðlþ 6Þâ

� 4

25
ððlþ 8Þðl� 1Þ þ 49Þb̂: (121)

Thus, we have obtained two Eqs. (119) and (121) for â and

b̂, which represent the two physical degrees of freedom of
the vector modes.
To solve the equations, let us set

b ¼ â

b̂

 !
; (122)

M ¼ ðlþ 1Þðlþ 6Þ �49

�ðlþ 1Þðlþ 6Þ ðlþ 8Þðl� 1Þ þ 49

 !
: (123)

Then, the Eqs. (119) and (121) can be summarized in the
following form:

0 ¼ z
1
5@zðz9

5f@zbÞ � z2f�1@20b� 4

25
M � b: (124)

Since the eigenmatrix of M is

� ¼ U�1MU; ¼ ðlþ 1Þðl� 1Þ 0

0 ðlþ 6Þðlþ 8Þ

 !
;

(125)

where

U ¼ 1 1
lþ1
7 � lþ6

7

 !
; (126)
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the Eq. (124) can be diagonalized as

0 ¼ z
1
5@zðz9

5f@zaÞ � z2f�1@20a� 4

25
� � a; (127)

where

a � â1

â2

 !
¼ U�1b: (128)

Therefore, we obtain the diagonalized equations of motion,

0 ¼ f�1u�9
7ðu9

7fâ01Þ0 þ f�2u�9
7 ~!2â1

� ðlþ 1Þðl� 1Þ
49

f�1u�2â1; (129)

0 ¼ f�1u�9
7ðu9

7fâ02Þ0 þ f�2u�9
7 ~!2â2

� ðlþ 6Þðlþ 8Þ
49

f�1u�2â2; (130)

where we have used the Fourier transformations of â1
and â2.

From (117), (118), and (128), the original modes â, b0,
and bz are

â ¼ â1 þ â2; (131)

b0 ¼ �7

�
z0
~R

�14
5
u2
�

â01
l� 1

� â02
lþ 8

�
; (132)

bz ¼ �7i ~!

�
z0
~R

�14
5
u

19
14

�
â1

l� 1
� â2

lþ 8

�
: (133)

From the result of Sec. IVA, the solutions of the diago-
nalized equations of motion for ~! � 1 are

â1ð ~!; uÞ ¼ �a1ð ~!Þ u�1
7�l

7F1ðuÞ � X1ð ~!Þu�1
7þl

7 ~F1ðuÞ
u
�1

7�l
7

c F1ðucÞ � X1ð ~!Þu�1
7þl

7
c ~F1ðucÞ

;

(134)

â2ð ~!; uÞ ¼ �a2ð ~!Þ u�8
7�l

7F2ðuÞ � X2ð ~!Þu6
7þl

7 ~F2ðuÞ
u
�8

7�l
7

c F2ðucÞ � X2ð ~!Þu6
7þl

7
c ~F2ðucÞ

;

(135)

where �a1;2ð ~!Þ � â1;2ð ~!; ucÞ and

F1 � 2F1

�
� 1

7
� l

7
;
8

7
� l

7
; 1� 2l

7
; u

�
;

~F1 � 2F1

�
� 1

7
þ l

7
;
8

7
þ l

7
; 1þ 2l

7
; u

�
;

(136)

F2 � 2F1

�
� 8

7
� l

7
;
1

7
� l

7
;�1� 2l

7
; u

�
;

~F2 � 2F1

�
6

7
þ l

7
;
15

7
þ l

7
; 3þ 2l

7
;u

�
;

(137)

X1 �
�ð1� 2l

7 Þ
�ð� 1

7 � l
7Þ�ð87 � l

7Þ
�ð� 1

7 þ l
7Þ�ð87 þ l

7Þ
�ð1þ 2l

7 Þ
ð1þ i ~!SlÞ;

(138)

X2 �
�ð�1� 2l

7 Þ
�ð� 8

7 � l
7Þ�ð17 � l

7Þ
�ð67 þ l

7Þ�ð157 þ l
7Þ

�ð3þ 2l
7 Þ

ð1þ i ~!SlÞ;

(139)

Sl �
� sin ð2l7 �Þ

sin ðl�1
7 �Þ sin ðlþ1

7 �Þ : (140)

The on-shell action for the vector modes is

2�2Son-shell¼ ~R
19
5 z

�24
5

0 D1

Z
u¼uc

dt

�
1

2
z0u

�19
14bz@0b

0

þ
�
2

5
�7

5
f�1

�
u�12

7 ðbzÞ2þ7

5
u�12

7 fðð1þfÞðb0Þ2

�fub0ðb0Þ0Þ
�
�7

5
~Rz�2

0 D1

Z
u¼uc

dtu�5
7fb0â

þ7

5
~R�9

5z
4
5

0D1

Z
u¼uc

dtfu
9
7ââ0: (141)

Derivation of the on-shell action is given in Appendix B 2.
The first line of (141) is of the order of ~!2 because bz is
proportional to ~! from (133). Since we only consider the
solutions of the equations of motion to the linear order of
~!, we neglect these terms. Suppressing the contact terms
of (141), the on-shell action which we should analyze is

2�2Son-shell ¼ � 7

5
~R
19
5 z

�24
5

0 D1

Z
u¼uc

dtf2u�5
7b0ðb0Þ0

þ 7

5
~R�9

5z
4
5

0D1

Z
u¼uc

dtfu
9
7ââ0: (142)

To evaluate the on-shell action, we need to express ðb0Þ0
and â0 in terms of �b0 � b0ðucÞ and �a � aðucÞ. In order to
do this, we define the following functions:

G1 ¼ u
8
7þl

7ðu�1
7�l

7F1Þ0; (143)

~G1 ¼ u
8
7�l

7ðu�1
7þl

7 ~F1Þ0; (144)

G2 ¼ u
15
7þl

7ðu�8
7�l

7F2Þ0; (145)

~G2 ¼ u
1
7�l

7ðu6
7þl

7 ~F2Þ0; (146)

H1 ¼ u
15
7þl

7ðu�8
7�l

7G1Þ0; (147)

~H1 ¼ u
15
7�l

7ðu�8
7þl

7 ~G1Þ0; (148)

H2 ¼ u
22
7þl

7ðu�15
7�l

7G2Þ0; (149)
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~H2 ¼ u
8
7�l

7ðu�1
7þl

7 ~G2Þ0; (150)

and

F 1 ¼ u
�1

7�l
7

c ðF1ðucÞ � X1u
2l
7
c ~F1ðucÞÞ; (151)

F 2 ¼ u
�8

7�l
7

c ðF2ðucÞ � X2u
2þ2l

7
c ~F2ðucÞÞ; (152)

G1 ¼ u
�8

7�l
7

c ðG1ðucÞ � X1u
2l
7
c
~G1ðucÞÞ; (153)

G2 ¼ u
�15

7�l
7

c ðG2ðucÞ � X2u
2þ2l

7
c

~G2ðucÞÞ; (154)

H 1 ¼ u
�15

7�l
7

c ðH1ðucÞ � X1u
2l
7
c ~H1ðucÞÞ; (155)

H 2 ¼ u
�22

7�l
7

c ðH2ðucÞ � X2u
2þ2l

7
c ~H2ðucÞÞ: (156)

Then, one finds

â01;2ðucÞ ¼ �a1;2
G1;2

F 1;2

; (157)

â001;2ðucÞ ¼ �a1;2
H 1;2

F 1;2

: (158)

From (131) and (132), �a1 and �a2 are

�a1 ¼ F 1

Q

�
� G2

lþ 8
gs �a� 1

7

� ~R
z0

�14
5
u�2
c F 2

�b0
�
; (159)

�a2 ¼ F 2

Q

�
� G1

l� 1
gs �aþ 1

7

� ~R
z0

�14
5
u�2
c F 1

�b0
�
; (160)

where

Q ¼ F 1G2

lþ 8
þF 2G1

l� 1
: (161)

Taking the derivative of (131) and (132) with respect to u
and using (157)–(160), we find

ðb0Þ0ju¼uc ¼
2

uc
�b0 þ

�b0

Q

�
F 2H 1

l� 1
þF 1H 2

lþ 8

�

� 7u2cgs �a

ðl� 1Þðlþ 8ÞQ
�
z0
~R

�14
5 ðG1H 2 �H 1G2Þ;

(162)

â0ju¼uc ¼
F 1G2�F 2G1

7u2cQ

� ~R
z0

�14
5 �b0� 2lþ7

ðlþ8Þðl�1Þ
G1G2

Q
gs �a:

(163)

Since the first term of (162) becomes a contact term in the
on-shell action, we will suppress it. In terms of F 1;2, G1;2,

H 1;2, and Q, the on-shell action (142) is expressed as

2�2Son-shell ¼ � 7

5
~R
19
5 z

�24
5

0 D1

Z
u¼uc

d!

2�
u�5

7ð1� uÞ2 1
Q

�
F 2H 1

l� 1
þF 1H 2

lþ 8

�
�b0ð�!Þ �b0ð!Þ

þ 49

5
gs ~Rz

�2
0 D1

Z
u¼uc

d!

2�
u

9
7ð1� uÞ2 G1H 2 �H 1G2

ðl� 1Þðlþ 8ÞQ
�b0ð�!Þ �að!Þ

� 1

5
gs ~Rz

�2
0 D1

Z
u¼uc

d!

2�
u�5

7ð1� uÞF 1G2 �F 2G1

Q
�b0ð�!Þ �að!Þ

þ 7

5
g2s ~R

�9
5z

4
5

0D1

Z
u¼uc

d!

2�
u

9
7ð1� uÞ 2lþ 7

ðl� 1Þðlþ 8Þ
G1G2

Q
�að�!Þ �að!Þ: (164)

D. The case of uc ’ 1

In the previous section, we have calculated the on-shell
action on the cutoff surface at uc. Since the solutions are
expressed in terms of the hypergeometric functions, it is
difficult to discuss properties of the linear response for
arbitrary uc. Hence, we focus on two regions, uc ’ 1 and
uc ’ 0. We first consider the case of uc ’ 1 in which the
cutoff surface is near the horizon. This corresponds to
putting a cutoff at the low energy scale in the matrix theory
side. Following [16,38], we evaluate the linear responses of
matrix theory in terms of the proper quantities on the cutoff
surface. According to [16,38], the stress tensor and R-R
1-form current are given by

T �� ¼ 
Son-shellffiffiffiffiffiffiffiffi��
p


���

; (165)

J � ¼ 
Son-shellffiffiffiffiffiffiffiffi��
p


 �A�

; (166)

where ��� and �A� are the induced metric and R-R 1-form

on the cutoff surface, respectively. These expressions can
be understood in terms of the quasilocal charges. In fact,
the expression (165) is the same as the definition of the
Brown-York stress tensor [44].
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1. Tensor mode

Here, we consider the tensor mode. Expanding (110)
around uc ¼ 1, the on-shell action becomes

Son-shell ¼ 1

16�G

1

2

� ~R
z0

�9
5
D2

Z
uc’1

d!

2�
i! �bð�!Þ �bð!Þ;

(167)

up to the linear order of !. Here, we have suppressed the
contact terms in the action.

Let us define the proper frequency as

w ¼ !ffiffiffiffiffiffiffiffiffiffiffi�g00
p : (168)

Then, the on-shell action can be written as

Son-shell ¼ 1

16�G

1

2

� ~R
z0

�9
5
D2

Z
uc’1

d!

2�

ffiffiffiffiffiffiffiffiffiffiffi�g00
p

iw �bð�!Þ �bð!Þ:

(169)

The tensor mode of the metric perturbation �bð!Þ is coupled
to the tensor mode of the stress tensor T ð!Þ in matrix
theory.9 According to Sec. III C and (165), the linear
response of the stress tensor is

T ð!Þ ¼ 1

16�G

�
r0
R

�9
2
iw �bð!Þ; (170)

which is the same as (31) with

� ¼ 1

16�G

�
r0
R

�9
2
: (171)

Therefore, the linear response obeys the hydrodynamics on
S8 when uc ’ 1. Since the entropy density on the horizon in
AdS frame is

s ¼ SBH
V8

¼ 1

4G

�
r0
R

�9
2
; (172)

we find10

�

s
¼ 1

4�
; (173)

which is the same as the shear viscosity to entropy density
ratio in the membrane paradigm [2] or the AdS/CFT
correspondence [15].

2. Vector modes

Next, we consider the vector mode for uc ’ 1.
Expanding F 1;2, G1;2, H 1;2, and Q around uc ¼ 1 and

suppressing the contact terms, the on-shell action
becomes11

2�2Son-shell ¼ 1

2

� ~R
z0

�9
5
D1

Z
uc’1

d!

2�

ffiffiffiffiffiffiffiffiffiffiffi�g00
p ðlþ8Þðl�1Þ

R2

iw�D
	ðlþ8Þðl�1Þ

R2 � 14ð2l2þ14l�7Þ
ð2lþ7ÞSlR2


 �b
~0ð�!Þ �b~0ð!Þ;

� 7gs
R

D1

Z
uc’1

d!

2�

ffiffiffiffiffiffiffiffiffiffiffi�g00
p iwþD 14ðl2þ7lþ1Þ

ð2lþ7ÞSlR2

iw�D
	ðlþ8Þðl�1Þ

R2 � 14ð2l2þ14l�7Þ
ð2lþ7ÞSlR2


 �b~0ð�!Þ �að!Þ

þ g2s
2

�
z0
~R

�9
5
D1

Z
uc’1

d!

2�

ffiffiffiffiffiffiffiffiffiffiffi�g00
p

�að�!Þ �að!Þ

�
D2

	ðl�1Þðlþ1Þ
R2 � 14l

SlR
2


	ðlþ6Þðlþ8Þ
R2 � 14ðlþ7Þ

SlR
2



� iwD

	
2l2þ14lþ47

R2 � 14ð2lþ7Þ
SlR

2



�w2

iw�D
	ðlþ8Þðl�1Þ

R2 � 14ð2l2þ14l�7Þ
ð2lþ7ÞSlR2


 ; (174)

where ~0 is the proper time index (namely, �b~0 ¼
�b0=

ffiffiffiffiffiffiffiffiffiffiffi�g00
p

) and

D � 1

4�T
¼

ffiffiffiffiffiffiffiffiffiffiffi�g00
p
4�TH

: (175)

Here, T is the proper temperature.
The vector modes of the source fields �b0ð!Þ and �að!Þ

are coupled to the vector modes of the stress tensor and

R-R 1-form current in matrix theory, respectively.
According to Sec. III C and (165) and (166), the linear
responses of the vector modes of the stress tensor and R-R
1-form current are

9The tensor mode of the stress tensor is the Fourier coefficient
of the tensor harmonics Yij in the spherical harmonic expansion
of the stress tensor T ij.

10The dimensionless transport coefficients such as �=s do not
depend on a choice of the frame.
11Strictly speaking, we should neglect the Oðw2Þ term in the
numerator of the last term in (174), since we have calculated
only to linear order of w. Although this term could possibly
receive corrections if we calculate Oðw2Þ contributions, we can
see that this term is consistent with charged fluid.
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T ~0 ¼ 1

16�G

�
r0
R

�9
2

ðlþ8Þðl�1Þ
R2

iw�D
	ðlþ8Þðl�1Þ

R2 � 14ð2l2þ14l�7Þ
ð2lþ7ÞSlR2


 �b~0

� 7gs
16�GR

iwþD 14ðl2þ7lþ1Þ
ð2lþ7ÞSlR2

iw�D
	ðlþ8Þðl�1Þ

R2 � 14ð2l2þ14l�7Þ
ð2lþ7ÞSlR2


 �a;
(176)

J ¼ g2s
16�G

�
R

r0

�9
2
iw �a� 49Dg2s

16�GR2

�
R

r0

�9
2

� iw� V

iw�D
	ðlþ8Þðl�1Þ

R2 � 14ð2l2þ14l�7Þ
ð2lþ7ÞSlR2


 �a

þ 7gs
16�GR

iwþD 14ðl2þ7lþ1Þ
ð2lþ7ÞSlR2

iw�D
	ðlþ8Þðl�1Þ

R2 � 14ð2l2þ14l�7Þ
ð2lþ7ÞSlR2


 �b~0;
(177)

where we have suppressed the contact terms and

V ¼ 18

ð2lþ 7ÞSl
�
iw�D

l2 þ 7l� 1

R2

�

þ 28D
ð2lþ 7Þ2S2l

11l2 þ 77l� 7

R2
: (178)

Comparing the linear responses to the hydrodynamic
stress tensor and current on S8 with radius R, which are
given by (33) and (34), we find the following:

(i) Compared to the diffusion pole in (33) and (34), the
denominators in (176) and (177) possess an extra

term, 14ð2l
2þ14l�7Þ

ð2lþ7ÞSlR2 . However, the quantityDmatches

with the diffusion constant (24). In fact, using the
thermodynamic relation, ��þ �p ¼ Ts, and �=s ¼
1=4�, the diffusion constant becomes

D ¼ �

��þ �p
¼ �

s
� 1
T
¼ 1

4�T
¼ D: (179)

(ii) Except for the extra term in the denominator, the
first term of (176) agrees with the first term of (33)
because the shear viscosity is given by (171).

(iii) Except for the extra terms in the denominator and
numerator, the second term of (176) and the third
term of (177) agree with the second term of (33)
and the third term of (34), respectively, because
from (56), the charge density on the horizon in AdS
frame is

�n ¼ q

V8

¼ 7gs
16�GR

: (180)

(iv) Except for the extra terms in the denominator and
numerator, the second term of (177) agrees with the
second term of (34) because

�n2

��þ �p
¼
�

7gs
16�GR

�
2 1

Ts
¼ 49Dg2s

16�GR2

�
R

r0

�9
2
: (181)

(v) The first term of (177) agrees with the first term of
(34) if


 ¼ g2s
16�G

�
R

r0

�9
2
: (182)

(vi) The extra terms which appear in (176) and (177) are
decoupled if we take l as large with l=R fixed
(S�1

l is of the order of 1). This means that the linear

responses of the vector modes locally obey the
hydrodynamics.

Although we have obtained charged fluid, the fluid
should have universal structure near the horizon. Such
universal structures appear if we take the Rindler limit.
In the next subsection, we see that by taking a Rindler
limit, (176) and (177) become the hydrodynamic stress
tensor and current with �n ¼ 0 in the 8-dimensional flat
space.

3. Rindler limit

Let us look at a local region of S8, which can be
approximated by R8. Then, the metric of the
8-dimensional space is replaced by

R2d�2
8 ! dxidxi: (183)

The magnitude of the momentum in the flat 8-dimensional
space is

k ¼ l

R
: (184)

The Rindler limit is defined as follows: setting

1� u ¼
�
7

5 ~R

�
2
"2r̂2; (185)

xi ¼ "x̂i; (186)

and sending " ! 0, the metric (50) becomes conformal to
the Rindler metric,

ds2s ¼ "2dŝ2; (187)

dŝ2 ¼ ��2r̂2dt2 þ dr̂2 þ dx̂idx̂i; (188)

where � ¼ 2�TH gives the Hawking temperature of the
Rindler spacetime, TH. Since we have magnified a small
region in S8, the proper frequency, momentum, and
proper temperature are also rescaled. Those in the
Rindler spacetime are related to the original ones as

ŵ ¼ "w; (189)

k̂i ¼ "ki; (190)
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T̂ ¼ "T: (191)

The ð0; iÞ component of the metric perturbation in the
Rindler spacetime is related to the original one as

h0i ¼ "ĥ0i; (192)

because t is not rescaled by " [38]. The Newton constant

G� g2sl
8
s is also rescaled as G ¼ "8Ĝ, where Ĝ is the

Newton constant in the Rindler spacetime because the

string length in the Rindler spacetime is l̂s ¼ ls=". In this
limit, the stress tensor (176) and the R-R 1-form current
(177) become

T ~0i ¼ 1

16�Ĝ"9

�
r0
R

�9
2 k̂2

iŵ� D̂k̂2
ĥ
~0i

� 7gs

16�ĜR"8
iŵ

iŵ� D̂k̂2

Ai; (193)

J i ¼ g2s

16�Ĝ"9

�
R

r0

�9
2
iŵ
Ai

� 49D̂g2s

16�ĜR2"7

�
R

r0

�9
2 iŵ

iŵ� D̂k̂2

Ai

þ 7gs

16�ĜR"8
iŵ

iŵ� D̂k̂2
ĥ
~0i; (194)

where ĥ
~0i ¼ �r̂ĥ0i and D̂ � 1

4�T̂
. We have omitted the bar

(�) which denotes the perturbations on the cutoff surface.
Since the stress tensor and current in the Rindler spacetime
are related to the original ones as

T̂
~0i ¼ "9T ~0i; (195)

Ĵ i ¼ "9J i; (196)

we find

T̂
~0i ¼ 1

16�Ĝ

�
r0
R

�9
2 k̂2

iŵ� D̂k̂2
ĥ
~0i; (197)

Ĵ i ¼ g2s

16�Ĝ

�
R

r0

�9
2
iŵ
Ai: (198)

Note that the second term in (193) and the second and third
terms in (194) are decoupled in the limit of " ! 0.
Therefore, in the Rindler limit, (176) and (177) exactly
match with the hydrodynamic stress tensor and current on
R8 with no charge density. This result is consistent with the
previous works on a Rindler fluid [16,38]. In a Rindler
fluid, there is no charge density because the Rindler metric
is a solution of the vacuum Einstein equation.

E. The case of uc ’ 0

We consider the case in which the cutoff surface is far
from the horizon. At first, we calculate the linear responses

in terms of the proper quantities on the cutoff surface as in
the previous section.
When we do not put the cutoff surface but consider the

asymptotic boundary at r ! 1, or equivalently, in the limit
of uc ¼ 0, the divergent warp factor in the gravity side
should be excluded from the correspondence [31,32]. In
our case, since the dual geometry of matrix theory is
essentially AdS2 (S8 is interpreted as the internal space
in matrix theory), we have to care about the time-time
component of the metric. We take into account the metric
of matrix theory and obtain the linear responses of the
stress tensor and R-R 1-form current. Then, we compare
the linear responses with the hydrodynamic stress tensor
and current on S8 and discuss the differences between
them.

1. Tensor mode

Here, we consider the tensor mode. Expanding (110)
around uc ¼ 0, the on-shell action becomes

Son-shell ¼ 1

16�G

1

2

�
r0
R

�9
2
D2

Z d!

2�
i!

�ð1þ l
7Þ4

�ð1þ 2l
7 Þ2

� u
2
7l
c
�bð�!Þ �bð!Þ; (199)

to the linear order of !. Expressing this in terms of the
proper quantities, we find

Son-shell ¼ 1

16�G

1

2

�
r0
R

�9
2
D2

Z d!

2�

ffiffiffiffiffiffiffiffiffiffiffi�g00
p

iw
�ð1þ l

7Þ4
�ð1þ 2l

7 Þ2

� u
2
7l
c
�bð�!Þ �bð!Þ: (200)

Although the factor u
2l
7
c is usually absorbed into the field

redefinition �b ! u
�l

7
c

�b, we do not consider such a wave
function renormalization because it does not change our
conclusion. Namely, �b is a bare field in an energy scale
which is determined by uc.
Therefore, the linear response of the tensor mode of the

stress tensor in terms of the proper quantities is

T ð!Þ ¼ 1

16�G

�
r0
R

�9
2
iw

�ð1þ l
7Þ4

�ð1þ 2l
7 Þ2

u
2
7l
c
�bð!Þ: (201)

Comparing this with (170), we find the extra factor

�ð1þ l
7Þ4=�ð1þ 2l

7 Þ2 except for the factor u
2l
7
c , which could

be absorbed into the field redefinition of �b.
Taking into account the metric of matrix theory, the

linear response becomes

T ð!Þ ¼ 1

16�G

�
r0
R

�9
2
i!

�ð1þ l
7Þ4

�ð1þ 2l
7 Þ2

u
2
7l
c
�bð!Þ: (202)
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This is different from the hydrodynamic stress tensor (31) even if we absorb the factor u
2l
7
c into the field redefinition, because

the shear viscosity � does not depend on l. Therefore, for the tensor mode, the linear response of the D0-branes cannot be
explained by the hydrodynamics when the cutoff surface is far from the horizon.

2. Vector modes

Here, we consider the vector modes. Expanding (164) around uc ¼ 0, the on-shell action becomes

2�2Son-shell ¼ � 7

5
~R
19
5 z

�24
5

0 D1

Z d!

2�
�b0ð�!Þ �b0ð!Þu�19

7�2l
7

c
2lþ 7

18lðl� 1ÞB2
� 2l

2 þ 23l� 7þ 2
7 lð2lþ 7Þðl� 1ÞB2u

2l
7
c i ~!

i ~!� 7ð2lþ7Þ
9ðl�1ÞB2 u

�1�2l
7

c

;

� 7

5
gs ~Rz

�2
0 D1

Z d!

2�
�b0ð�!Þ �að!Þu�12

7�2l
7

c
2lþ 7

9lðl� 1ÞB2
� 7�

2
7 lð2lþ 7Þðl� 1ÞB2u

2l
7
c i ~!

i ~!� 7ð2lþ7Þ
9ðl�1ÞB2 u

�1�2l
7

c

;

þ 7

5
g2s ~R

�9
5z

4
5

0D1

Z d!

2�
�að�!Þ �að!Þu�5

7�2l
7

c
ð2lþ 7Þ2

18lðl� 1ÞB2
� lþ 1� 2

7 lðl� 1ÞB2u
2l
7
c i ~!

i ~!� 7ð2lþ7Þ
9ðl�1ÞB2 u

�1�2l
7

c

; (203)

to the linear order of ~!, where

B � �ð� 1
7 þ l

7Þ�ð87 þ l
7Þ

�ð1þ 2l
7 Þ

: (204)

According to Sec. III C and (165) and (166), the linear
responses of the vector modes of the stress tensor and R-R
1-form current in terms of the proper quantities are

T ~0 ¼ 1

16�G

�
r0
R

�9
2
u
�9

7�2l
7

c
2lþ7

18lðl�1ÞB2

�
49
R2 ð2l2þ23l�7Þþ 2

Rlð2lþ7Þðl�1ÞB2iwu
� 5

14þ2l
7

c

iw� 49ð2lþ7Þ
9ðl�1ÞB2R

u
� 9

14�2l
7

c

�b
~0

� 7gs
16�GR

ð2lþ7Þ2
63uc

iw� 343
2lð2lþ7Þðl�1ÞB2R

u
5
14�2l

7
c

iw� 49ð2lþ7Þ
9ðl�1ÞB2R

u
� 9

14�2l
7

c

�a;

(205)

J ¼ g2s
16�G

�
R

r0

�9
2 ð2lþ 7Þ2

9
u
� 5

14
c

49ðlþ1Þ
2lðl�1ÞB2R2 u

5
14�2l

7
c � iw

R

iw� 49ð2lþ7Þ
9ðl�1ÞB2R

u
� 9

14�2l
7

c

�a

þ 7gs
16�GR

ð2lþ 7Þ2
63uc

iw� 343
2lð2lþ7Þðl�1ÞB2R

u
5
14�2l

7
c

iw� 49ð2lþ7Þ
9ðl�1ÞB2R

u
� 9

14�2l
7

c

�b
~0:

(206)

Taking into account the metric of matrix theory, the linear
responses become

T 0 ¼ 1

16�G

�
r0
R

�9
2
u
�9

7�2l
7

c
2lþ 7

18lðl� 1ÞB2

�
49
R2 ð2l2 þ 23l� 7Þ þ 5z0

R2 lð2lþ 7Þðl� 1ÞB2u
2l
7
c i!

i!� 98ð2lþ7Þ
45z0ðl�1ÞB2 u

�1�2l
7

c

�b0

� 7gs
16�GR

ð2lþ 7Þ2
63uc

i!� 343
5z0lð2lþ7Þðl�1ÞB2 u

�2l
7

c

i!� 98ð2lþ7Þ
45z0ðl�1ÞB2 u

�1�2l
7

c

�a;

(207)

J ¼ g2s
16�G

�
R

r0

�9
2
u
�5

7
c

2ð2lþ 7Þ2
45

49ðlþ1Þ
5lðl�1Þz20B2 u

�2l
7

c � i!
z0

i!� 98ð2lþ7Þ
45z0ðl�1ÞB2 u

�1�2l
7

c

�a

þ 7gs
16�GR

ð2lþ 7Þ2
63uc

i!� 343
5z0lð2lþ7Þðl�1ÞB2 u

�2l
7

c

i!� 98ð2lþ7Þ
45z0ðl�1ÞB2 u

�1�2l
7

c

�b0:

(208)

These expressions are quite different from the linear
responses in the case of uc ’ 1 or the hydrodynamic stress

tensor and current on S8. Especially, there is no pole
structure in (207) and (208) [or (205) and (206)] in the
low frequency region because in any l 	 1, the factor

u
�1�2l

7
c (or u

� 9
14�2l

7
c ) is very large when uc ’ 0. It is important

to note that this fact is independent of the field redefinitions

of �b0 and �a. On the other hand, in hydrodynamics, there is a
diffusion pole in the low frequency region.
In order to look at the pole structure in the vector modes,

let us consider the denominators in the above expressions
for arbitrary uc. In general uc, the denominators of the
linear responses in the vector modes vanish when (161)
equals zero. Namely, it is when
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i ~! ¼ K1 � B�1
1

~B1K2 � B�1
2

~B2K3 þ B�1
1

~B1B
�1
2

~B2K4

SlðB�1
1

~B1K2 þ B�1
2

~B2K3 � 2B�1
1

~B1B
�1
2

~B2K4Þ
;

(209)

where

K1 ¼ F1G2

lþ 8
þ F2G1

l� 1
; (210)

K2 ¼ u
2l
7

� ~F1G2

lþ 8
þ F2

~G1

l� 1

�
; (211)

K3 ¼ u2þ2l
7

�
F1

~G2

lþ 8
þ ~F2G1

l� 1

�
; (212)

K4 ¼ u2þ4l
7

� ~F1
~G2

lþ 8
þ ~F2

~G1

l� 1

�
; (213)

and

B1 ¼
�ð� lþ1

7 Þ�ð8�l
7 Þ

�ð1� 2l
7 Þ

; (214)

~B1 ¼
�ðl�1

7 Þ�ðlþ8
7 Þ

�ð1þ 2l
7 Þ

; (215)

B2 ¼
�ð� lþ8

7 Þ�ð1�l
7 Þ

�ð�1� 2l
7 Þ

; (216)

~B2 ¼
�ðlþ6

7 Þ�ðlþ15
7 Þ

�ð3þ 2l
7 Þ

: (217)

Figure 1 shows the value of the right-hand side of (209)
against uc. Since ~! ’ !=TH ¼ w=T, the left-hand side of
(209) does not depend on the redshift. When uc ’ 1, the
value of the right-hand side of (209) is close to zero for

any l. Therefore, we can find a pole structure in the low
frequency region when the cutoff surface is close to the
horizon. However, as uc approaches zero, the value of the
right-hand side of (209) becomes large and exceeds 1.
Therefore, within the low frequency approximation, we
cannot find the pole structure when the cutoff surface is
far from the horizon.

V. SUMMARYAND COMMENTS

We have studied the linear responses of the near-
extremal D0-branes in the low frequency region by using
the gauge/gravity correspondence. We have analyzed the
tensor mode and vector modes. We have found that when
the cutoff surface, on which matrix theory is defined, is
close to the horizon, the linear responses of the stress
tensor and R-R 1-form current in matrix theory take forms
similar to the hydrodynamic stress tensor and current on S8

with radius R. By taking the Rindler limit, the linear
responses of matrix theory exactly agree with the hydro-
dynamic stress tensor and current on R8, which is consis-
tent with the previous result on a Rindler fluid [16,38]. This
is the limit in which the fluid takes the universal form for
many black holes, but our results show that without taking
the Rindler limit, the fluid keeps properties of D0-branes,
such as the correct background charge. We have also found
that when the cutoff surface is far from the horizon, the
linear responses of matrix theory do not correspond to the
hydrodynamic stress tensor and current on S8. Especially,
we have found that in the low frequency region, the vector
modes of the linear responses do not possess the pole
structure, although the vector modes of the hydrodynamic
stress tensor and current possess the diffusion pole. This
fact does not depend on the field redefinitions of the source
fields. From our results, we conclude that the linear
responses of the D0-branes cannot be explained by
hydrodynamics.
Three comments are in order. Firstly, we have analyzed

the linear responses of matrix theory in the AdS frame,
which is not the conventional frame, such as the Einstein
frame or string frame. However, the choice of the frame
does not change the dimensionless transport coefficients
such as �=s, which are the physically sensible quantities.
Secondly, if we were able to absorb the extra factor

�ð1þ l
7Þ4=�ð1þ 2l

7 Þ2 in (200) into the field redefinition of
�b, the tensor mode of the linear responses for uc ’ 0 would
take the same form as the hydrodynamic stress tensor.
However, since the discussion of the pole structure in the
vector modes is independent of the field redefinitions, our
conclusion does not change.
Finally, to understand what occurs in the D0-branes in

the time-dependent external sources, we also need to
analyze the linear responses in the high frequency region
(or full frequency region). If we obtain the linear responses
of the D0-branes in the high frequency region, we might
be able to discuss the fast scrambling time via the

0.0 0.2 0.4 0.6 0.8 1.0
uc

1

2

3

4

5
iΩ

FIG. 1 (color online). The right-hand side of (209) is plotted
against uc when l ¼ 2 (bold line), l ¼ 5 (normal line), and l ¼
10 (dashed line).
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gauge/gravity correspondence [5,6]. This should be
investigated in a future work.
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APPENDIX A: SPHERICAL HARMONICS ON S8

We briefly summarize the definitions and properties of
the spherical harmonics on S8 according to [26].

A scalar field �̂ on S8 with radius R can be expanded as

�̂ ¼ X
I

’IðRÞYIðxiÞ; (A1)

where I denotes the angular momentum indices and
xiði ¼ 1; . . . ; 8Þ are the spherical coordinates on the sphere.
The function YI is called the scalar harmonic. In terms
of the normalized Cartesian coordinates fxmjm ¼
1; . . . ; 9; xmxm ¼ 1g, the explicit form of YI is given by

YI ¼ CI
m1...ml

xm1 . . . xml ; ðl ¼ 0; 1; . . .Þ; (A2)

where CI
m1...ml

are totally symmetric and traceless in the

indices (m1; . . . ; ml). The scalar harmonic satisfies

ririY
I ¼ � lðlþ 7Þ

R2
YI; ðl 	 0Þ; (A3)

where ri is the covariant derivative on the sphere.

A vector field Âi on the sphere can be expanded as

Âi ¼
X
I

aIðRÞYI
i ðxiÞ þ

X
I

�aIðRÞriY
IðxiÞ: (A4)

The function YI
i , which is divergentless riY

i
I ¼ 0, is called

the vector harmonic. In terms of the normalized Cartesian
coordinates, the explicit form is given by

YI
n ¼ CI

nm1...ml
xm1 . . . xml ; ðl ¼ 1; 2; . . .Þ; (A5)

where the coefficients CI
nm1...ml

are antisymmetric under the

exchange of n and m1 and totally symmetric and traceless
with respect to the indices (m1; . . . ; ml). The vector har-
monic satisfies

ririYI
j ¼

�lðlþ 7Þ þ 1

R2
YI
j ; ðl 	 1Þ: (A6)

If we impose the gauge condition riÂ
i ¼ 0, the second

term of (A4) vanishes. Then, the harmonic expansion is
simplified as follows:

Âi ¼
X
I

aIYI
i : (A7)

A symmetric traceless tensor on the sphere can be
expanded as

hij � 1

8
gijh

k
k ¼

X
I

bIðRÞYI
ijðxiÞ

þX
I

�bIðRÞðriY
I
j þrjY

I
i ÞðxiÞ

þX
I

b
¼IðRÞ

�
rirj � 1

8
gijrkrk

�
YIðxiÞ:

(A8)

The function YI
ij, which is symmetric, traceless, and diver-

gentless, is called the tensor harmonic. In terms of the
normalized Cartesian coordinates, the explicit form is
given by

YI
n1n2 ¼ CI

n1n2m1...ml
xm1 . . . xml ; ðl ¼ 2; 3; . . .Þ; (A9)

where the coefficients CI
n1n2m1...ml

are antisymmetric under

the exchange of ðn1; m1Þ, symmetric under the exchange of
ðn1; n2Þ, and totally symmetric and traceless with respect to
m1; . . . ; ml. The tensor harmonic satisfies

ririYI
jk ¼

�lðlþ 7Þ þ 2

R2
YI
jk; ðl 	 2Þ: (A10)

If we impose the gauge condition riðhij � 1
8gijh

k
kÞ ¼ 0,

the harmonics expansion is simplified as follows:

hij � 1

8
gijh

k
k ¼

X
I

bIYI
ij: (A11)

APPENDIX B: DERIVATION
OF ON-SHELL ACTION

1. Tensor mode

We insert

g�� ¼ �g�� þ h��; (B1)

A� ¼ �A� þ Â�; (B2)

� ¼ ��þ �̂; (B3)

into the action (64) and expand the action around the
background fields up to the quadratic order of the pertur-
bations. Using the mode expansions (76)–(78) and the
formulas for the spherical harmonics in Appendix A, we
obtain for the tensor mode,

2�2S0IIA ¼ 2D2

Z
d2x

ffiffiffiffiffiffiffiffiffiffi� �g2
p

�

��
�63

25
� 1

25
lðlþ 7Þ

�
~R�2b2

þ brarabþ 3

4
rabrab

�
; (B4)

where a, b ¼ 0, z; � ¼ e�6
7
�� ¼ ð ~R=zÞ95; ffiffiffiffiffiffiffiffiffiffi� �g2

p
is the

square root of the determinant of �gab; and na is the unit
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normal to the cutoff surface. By varying the action (B4)
with respect to b, we find the covariant form of the
equation of motion (101),

0 ¼ �rarabþra�rabþ 2rara�b

� 4

25
~R�2�ð63þ lðlþ 7ÞÞb: (B5)

Inserting the equation of motion (B5) into the action (B4),
we find

2�2S0IIA ¼ 2D2

Z
z¼zc

dt
ffiffiffiffiffiffiffiffiffiffiffi� �g00

p �
� 3

4
na�brab

þ 1

2
nara�b2

�

¼ � 3

2
~R
9
5D2

Z
z¼zc

dtz�9
5fb@zb

� 9

5
~R
9
5D2

Z
z¼zc

dtz�14
5 fb2: (B6)

Besides, we have to add the Gibbons-Hawking term (65)
to the action. For the tensor mode, the Gibbons-Hawking
term is

2�2SGB ¼ � ~R
9
5D2

Z
z¼zc

dtz�14
5 fb2

þ 1

2
~R
9
5D2

Z
z¼zc

dtz�9
5f0b2

þ 2 ~R
9
5D2

Z
z¼zc

dtz�9
5fb@zb: (B7)

Therefore, the total on-shell action is

2�2Son-shell ¼ 2�2ðS0IIA þ SGBÞ
¼ 1

2
~R
9
5D2

Z
z¼zc

dtz�9
5fb@zb

� 7

5
~R
9
5D2

Z
z¼zc

dtz�14
5 ð1þ fÞb2; (B8)

which is the same as (109).

2. Vector modes

In the same way, we calculate the on-shell action for the
vector modes. Up to the quadratic order of the vector
modes, the action is

2�2S0IIA ¼ D1

Z
d2x

ffiffiffiffiffiffiffiffiffiffi� �g2
p

e�6
7�

��
� 18

25
f� 47

25
� 2

25
lðlþ 7Þ

�
~R�2baba � bararbb

b � ðrab
aÞ2 � barbrab

b

þ 2barbrbba � 1

2
rbbarabb þ 3

2
rbbarbba þ 16

49
ð@a ��@b ��Þbabb � 14

5
gs ~R

�14
5 z

9
5�abbarba

� g2s
2

~R�18
5 z

18
5raaraa� 2

25
g2sz

18
5 ~R�28

5 ðlþ 1Þðlþ 6Þa2
�
; (B9)

where �0z ¼ �ð� �g2Þ�1=2 ¼ � ~R�2z2, �0z ¼ ð� �g2Þ1=2 ¼
~R2z�2, and rc�

ab ¼ 0. By varying the action with respect
to ba and a, we obtain the covariant forms of the equations
of motion (111)–(113),

0¼
�
�94

25
� 36

25
f� 4

25
lðlþ 7Þ

�
~R�2�ba

þ 32

49
ð@a ��@b ��Þ�bb �rarb�bb �rbra�bb

þ 2rbrb�ba �rb�rabb þrb�rbba ��rbrabb

þ�rbrbba � 14

5
gs ~R

�1�abrba; (B10)

0 ¼ 14

5
g�1
s

~R
14
5 z�19

5 �abrbba þ ~R2z�19
5raðz9

5raaÞ

� 4

25
ðlþ 1Þðlþ 6Þz�2a: (B11)

Inserting these equations into the action (B9), we find

2�2S0IIA ¼ D1

Z
z¼zc

dt
ffiffiffiffiffiffiffiffiffiffiffi�g00

p
na

�
�barbb

b þ 1

2
�bbrbb

a

� 3

2
�bbrabb � 7

5
gs ~R

�1�abbba

þ g2s
2

~R�9
5z

9
5araaþra�bbb

b �rb�bbba
�
;

(B12)

¼ ~R
19
5D1

Z
z¼zc

dt

�
z�19

5 bz@0b
0�z�24

5 ðbzÞ2þ1

2
f�1f0z�19

5 ðbzÞ2

þ1

2
z�19

5 b0@0b
z�1

5
z�24

5 f2ðb0Þ2þz�19
5 ff0ðb0Þ2

þ3

2
z�19

5 f2b0@zb
0

�
þ7

5
gs ~RD1

Z
z¼zc

dtz�2fb0a

þg2s
2
~R�9

5D1

Z
z¼zc

dtfz
9
5a@za: (B13)

Since the Gibbons-Hawking term for the vector modes is
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2�2SGB ¼ ~R
19
5D1

Z
z¼zc

dt

��
3z�24

5 f2 � 3

2
z�19

5 ff0
�
ðb0Þ2 � 2z�19

5 f2b0@zb
0

�
; (B14)

the total on-shell action for the vector modes is

2�2Son-shell ¼ ~R
19
5D1

Z
z¼zc

dt

�
1

2
z�19

5 bz@0b
0þ2

5
z�24

5 ðbzÞ2�7

5
f�1z�24

5 ðbzÞ2þ7

5
z�24

5 f2ðb0Þ2þ7

5
z�24

5 fðb0Þ2�1

2
z�19

5 f2b0@zb
0

�

þ7

5
gs ~RD1

Z
z¼zc

dtz�2fb0aþg2s
2
~R�9

5D1

Z
z¼zc

dtfz
9
5a@za: (B15)
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