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Leading finite-size effects on some three-point correlators in 7sT-deformed AdSs X S°
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We compute the leading finite-size effects on the normalized structure constants in semiclassical three-
point correlation functions of two finite-size giant magnon string states and three different types of “light”
states: primary scalar operators, the dilaton operator with nonzero momentum, and singlet scalar operators
on higher string levels. This is done for the case of the TsT-transformed, or y-deformed, AdSs X S° string
theory background, dual to N' = 1 super Yang-Mills theory in four dimensions, arising as an exactly
marginal deformation of N' = 4 super Yang-Mills theory.
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L. INTRODUCTION

The AdS/CFT duality [1] between string theories on
curved spacetimes with anti—de Sitter subspaces and confor-
mal field theories in different dimensions has been actively
investigated in the last few years. A lot of impressive
progress has been made in this field of research based mainly
on the integrability structures discovered on both sides of the
correspondence (for a recent overview of the AdS/CFT dual-
ity, see Ref. [2]). The most studied example is the correspon-
dence between type IIB string theory on AdSs X S° target
space and the N = 4 super Yang-Mills theory (SYM) in
four spacetime dimensions. However, many other cases are
also of interest, and have been investigated intensively.

Different classical string solutions play important roles in
checking and understanding the AdS/CFT correspondence
[3]. To establish relations with the dual gauge theory, one
has to take the semiclassical limit of large conserved
charges [4]. A crucial example of such a string solution is
the so-called ““giant magnon,” discovered by Hofman and
Maldacena in the R, X S subspace of AdSs X S° [5]. It
gave a strong support for the conjectured all-loop SU(2)
spin chain arising in the dual N" = 4 SYM, and made it
possible to get a deeper insight into the AdS/CFT duality.
A characteristic feature of this solution is that the string
energy E and the angular momentum J; go to infinity, but
the difference £ — J; remains finite and related to the
momentum of the magnon excitations in the dual spin chain
in 2N =4 SYM. This string configuration has been ex-
tended to the case of a dyonic giant magnon, a solution for a
string moving on R, X $° and having a second nonzero
angular momentum J, [6]. A further extension to R, X §°
has been also worked out in Ref. [7]. It was also shown
there that such types of string solutions can be obtained
by the reduction of the string dynamics to the Neumann-
Rosochatius integrable system by using a specific ansatz.

An interesting issue to solve is to find the finite-size effect,
i.e., a large but finite J;, related to the wrapping interactions
in the dual field theory [8]. For (dyonic) giant magnons living
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in AdSs X §3 this was done in Refs. [9,10]. The corresp-
onding string solutions, along with the (leading) finite-size
corrections to their dispersion relations, have been found.
Here, we are going to consider the leading finite-size
effects on some three-point correlation functions in a
y-deformed [11] or TsT-transformed [12] AdSs X S°
string theory background. To this end, we will need to
use our knowledge about the properties of the finite-size
(dyonic) giant magnon solutions on this target space. The
corresponding information can be found in Refs. [13,14].
In this paper we will be interested in the case of three-
point correlators, when two of the “heavy’ string states are
finite-size giant magnons, while the third state is a “light”
one." We will consider three different types of “light”
states: primary scalar operators, a dilaton operator with
nonzero momentum, and singlet scalar operators on higher
string levels. The finite-size effects on such correlation
functions in T'sT-transformed AdSs X S° were found in
Refs. [17,18]. There, the normalized structure constants in
these correlators were given in terms of several parameters
and hypergeometric functions of two variables depending
on them. On the other hand, it is important to know their
dependence on the conserved string charges J;, J, and the
worldsheet momentum p, because namely these quantities
are related to the corresponding operators in the dual
N =1 SYM, and the momentum of the magnon excita-
tions in the dual spin chain. This is why we are going to
find this dependence here. Unfortunately, this cannot be
done exactly for the finite-size case due to the complicated
dependence between the above-mentioned parameters
and J;, J,, p. Because of this, we will consider only the
leading-order finite-size effects on the three-point correla-
tors of this type. Moreover, due to computational compli-
cations, we will restrict ourselves to the case of J, = 0.
This paper is organized as follows. In Sec. II, we give a
short review of the finite-size (dyonic) giant magnon’s
solution on y-deformed AdSs X S°. Also, we give the

"The first papers in which three-point correlation functions of
two ‘“heavy” operators and a “light” operator were computed
are Refs. [15,16].
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corresponding exact semiclassical results for the three-
point correlators we are interested in, found in
Refs. [17,18]. Section III is devoted to the computation
of the leading-order finite-size effects on the three-point
correlators given in Sec. II in terms of the conserved string
angular momentum J; and the worldsheet momentum p.
In Sec. IV we conclude with some final remarks.

IL. FINITE-SIZE GIANT MAGNONS ON
TsT-DEFORMED AdS; X S5 AND SOME
THREE-POINT CORRELATORS

A. Short review of the giant magnon solutions

Investigations on AdS/CFT duality for the cases with
reduced or without supersymmetry is of obvious importance
and interest. An example of such a correspondence between
gauge and string theory models with reduced supersymmetry
is provided by an exactly marginal deformation of N = 4
SYM and string theory on a B-deformed AdSs X S3 back-
ground suggested by Lunin and Maldacena in Ref. [11].
When 8 = vy is real, the deformed background can be
obtained from AdSs X S° by the so-called 7'sT transfor-
mation on S°. It includes T duality on one angle variable,
a shift of another isometry variable, then a second T duality
on the first angle [12]. The AdSs part of the background is
untouched, so the conformal invariance remains.

An essential property of the 7'sT transformation is that it
preserves the classical integrability of string theory on
AdSs X $° [12]. The y dependence enters only through
the rwisted boundary conditions and the level-matching
condition. The last one is modified since a closed string
in the deformed background corresponds to an open string
on AdSs X S° in general.

The parameter ¥, which appears in the string action, is
related to the deformation parameter y as

y =2aTy =y,

where T is the string tension and A is the t"Hooft coupling.
The effect of introducing vy on the field-theory side of
the duality is to modify the super potential as follows:

W Tr(ei”7®1®2®3 - €7i7y®]®3®2).

This leads to reduction of the supersymmetry of the SYM
theory from N =4 to N = 1.

Since we are going to consider three-point correlation
functions with two vertices corresponding to giant magnon
states, we can restrict ourselves to the subspace R, X 537 of
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the AdSs X 557 background. Then one can show that by
using the ansatz

(7, 0) = KT, o(r, o) = 6(&),
(1, 0) = ;7 + f;(§), §=ao+ BT, 2.1)
K, @, @, B = constants, j=1,2,

the string Lagrangian in conformal gauge, on the
y-deformed three-sphere S3, can be written as [19] (a prime
is used for d/d§)

L, =(a®- 52)[90 " Gsinze(f’l -
Bw, )2

a2_182

Bw, )2

a2 _ BZ
+ Gcos29<f§ -

2
_ @ 26502 20002
WG(Q)ISIH 0+ w;COS 0)

+ 2ayGsin?fcos 2

aZ _ :82
where

1

G = .
1 + ?sin%0cos 6

By using Eq. (2.2) and the Virasoro constraints, one can
find the following first integrals of the string equations of
motion:

fi=

Q, 1 [vW—uK
2

S — (1 = 7K) - wX],
X

al—-v

Q 1 K
fh =_1—2|:—— uv(l — ¥K) — yv*W + 7(1 _X):I’
a l—vLy

,_2\/1—u2
X = 1_112 ’\/(Xp

Xp T Xm T X0 =

=00 = X)X = Xa), (2.3)
where
Q
x =cos’0, v=-0/a, MZQ—?,
Kk \2 C, &)
w=(~-), k=—2, 0 =o(1+7—2>)
<Ql) CYQ] ! wl( yawl)
. C
Q, = w2<1 — y—), C,, C, = constants.
aw-y
Also, the following equalities hold:
|
2—(1+vH)W — u?
1 —u? ’
1— 0+ )W+ (vW — ukK)?* — K?
3 , (2.4)

XpXm T XpXn t XmXn =

XpXmXn = —

1 —u?

1—u
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The case of dyonic finite-size giant magnons corresponds to
o<u<l],

0<wv<l, o<w<l,
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0<xm<x<x,<l, Xn <O0.

The AdS; part of the giant magnon solution, in Euclidean Poincare coordinates, can be written as® (t = VWr, it = 76)3

1
= ———F—F——_X0e
cosh (vVWr,) 0

= tanh (vW1,),

;=0 i=123.

Let us also write down the exact expressions for the conserved charges and the angular differences,

e 27E _ (1— )W K(1 — ¢ 25)

\/X V1 — u? \/Xp_/\/n’ .

2wy 2 1 — x, — v(vW — uk)
7= == K - €~ T o] 2.6)
_ 27, _ 2 uy, — vk _ _ B
T, = 7 m[ = K( —¢€) + u/x, — x,E( e):l, 2.7)
— _ _ = 2 vW —uk CXp " Xm |,
~[vl - 5K) + wmj}% =R -l @)
— A, = (L) =2 K X |y
P2 = A¢2 ¢2(L) ¢2( L) \/l——uz{/\/pm]:[(l Xp 1 E)

- [MU + ?U(UW - MK) - '7(1 - Xn)]\l/(% - ;)7'\//\/]7 — Xn E(l - 6)}: (2.9)

where the following notation has been introduced:
Xm — Xn

€ = " —-———

Xp — Xn

(2.10)

Here, E, J,, are the string energy and angular momenta.
K(1 —¢€), E(1 — €), and TI(1 — ;‘(— 1 — €) are the com-
plete elliptic integrals of the first, Second, and third kind.
The parameter L appearing above is related to the size of
the giant magnons. For finite-size giant magnons L is finite,
while for infinite-size giant magnons L — oo.

Let us also point out that for the y-deformed case even
the giant magnon with J, = 0 lives on Sf/. This happens

because that is the smallest consistent reduction due to the
twisted boundary conditions [13].

The dyonic giant magnon dispersion relation, including
the leading finite-size correction, can be written as [14]

€= T\ =T} + 4sin(p/2)
sin*(p/2)

€ = l6exp |:—

_ cos (D)e, (2.11)
VT3 + 4sin?(p/2)
where
|
2Ty + /T3 + 4sin 2(;:/2))V{§ + 4sin*(p/2)sin 2(p/2)i|. 2.12)
J3 + 4sin*(p/2)

>The Euclidean continuation of the time-like directions to t, = it, xo, = ix, will allow the classical trajectories to approach the
AdSs boundary z = 0 when 7, — *o00, and to compute the corresponding correlation functions.

*We set o = Q; = 1 for simplicity.
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The second term in Eq. (2.11) represents the leading finite-size
effect on the energy-charge relation, which disappears for e —
0, or equivalently 7| — oo. It is nonzero only when 7 is
finite. The y-deformation effect is represented by cos (®).

In the next section, we will restrict our considerations to
the case J, = 0. Then Eq. (2.11) simplifies to

£— 7, =2sin(p/2) - %SmS(p/z) cos (D)e,  (2.13)
where

e=16exp[— Ji —2],

sin (p/2)

S (2.14)
®=2ﬂ<n2—%j1), n2€Z
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B. Semiclassical three-point correlation functions

It is known that the correlation functions of any
conformal field theory can be determined in principle
in terms of the basic conformal data {A;, C;;}, where A,
are the conformal dimensions defined by the two-point
correlation functions,

Ci26;;

lx, — x2|2A"’

<@,T(x1)@j(x2)> =

and Cjj; are the structure constants in the operator
product expansion,

Cijk

<(9i(x1)(9j(x2)(9k(x3)> =

Therefore, the determination of the initial conformal data
for a given conformal field theory is the most important
step in the conformal bootstrap approach.

The three-point functions of two “heavy’” operators and
a “light” operator can be approximated by a supergravity
vertex operator evaluated at the “‘heavy” classical string
configuration [20,21],

(VH(xl ) VH(XZ)VL (X3)> = VL (XS)classical-

For |x;| = |x;] =1, x3 =0, the correlation function

reduces to

<VH(X1)VH(X2)VL(O)> = |
X1

Then, the normalized structure constants

Cc
o=
Ciy

can be found from

C = CA VL (O)classical’

were ¢, is the normalized constant of the corresponding
“light” vertex operator.

Until now, investigations of the finite-size effects in the
three-point correlators have been performed in Refs. [17-
19,22-24]. This was done for the cases when the “heavy”
string states are finite-size giant magnons, with one or two
angular momenta,* and for three different “light” states:

(1) Primary scalar operators: V, = VI".

(2) Dilaton operator: V, = V¢.

(2.15)

4See also Ref. [25], where the finite-size correction to a three-
point correlation function was found when the “heavy” state is
not a giant magnon one.

P R N R R N o e

[
(3) Singlet scalar operators on higher string levels:
VL = V4,
According to Ref. [20], the corresponding (unintegrated)
vertices are given by

VP = (Y, + Y5) "2 (X, + iX,)

X [272(9x,,dx™ — 0z37) — 0X,dX,],  (2.16)

where the scaling dimension is A, = ;. The corresponding
operator in the dual gauge theory is Tr(Z/),’

VI = (Y, + Ys) (X + iX,)

X [272(dx,,dx™ + 9zdz) + 0X,4X,]  (2.17)
where now the scaling dimension A; =4 + j to the
leading order in the large—\/x expansion. The correspond-
ing operator in the dual gauge theory is proportional
to Tr(F3,Z/ +---), or for j=0, just to the SYM
Lagrangian,

Vi = (Y, + Ys) 2(0X,0X,)". (2.18)

This operator corresponds to a scalar string state at level
n = g — 1, and to the leading order in the \/LX expansion

A, = 2(\/(41 —DVA+1-— %q(q — 1)+ 1). (2.19)

The value n = 1(g = 2) corresponds to a massive string
state on the first exited level and the corresponding opera-
tor in the dual gauge theory is an operator contained within

Zisa complex scalar.
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the Konishi multiplet. Higher values of n label higher X 1 5
string levels. Y, = Pk Y,= 2—Z(X "X, + 27— 1),
In Egs. (2.16), (2.17), and (2.18) we denoted with Y, X 1
the coordinates in AdS and the sphere parts of the AdSs X Ys = 2 (" x,, + 27+ 1),
S5 background,
. o . ip
Y| + i¥; = sinh p sin ne'?!, where x"x,, = —x3 + x;x;, withm = 0,1,2,3and i = 1,
Y5 + iY, = sinh p cos ne'¢2, 2, 3.

The semiclassical results found in Refs. [17,18] for the
normalized structure constants (2.15), in the case of finite-
The coordinates Y are related to the Poincare coordinates  size giant magnons on the y-deformed AdSs X S5 and the

Ys + iY, = cosh pe'’.

by above three vertices, are given by
J
rd 1 - vy 1 1
o = /2 1(3). (=X {[ L ~2—(1+ )W - 2«71{)]
P JT=d0r, —x b 7T W0 =)
. Xom 2 . - -
XF((1/2,1/2,—j/2;1;1 — €1 -~ ————|1 — YK — u(u — yuK + yoW
(17217231 Xp) T =l YKl K oWl
X F1<1/2, 1/2,-1-j/2;1:1— ¢ 1 — ﬂ)} (2.20)
Xp
| NEai /2
Cd = 2724 ) Xr [1— §K — u(u + W — uK))]x,

e [T @ W, - x)

X F,(1/2, 1/2,-1-j/2;1:1— ¢ 1 — ﬁ) —(1-w- )7K)F1(1/2, 1/2,—j/2:1;1 — e 1 — ﬁ)} 2.21)

Xp P
A
e —2A)? d ! B\K 11

¢ = ¢y 22 - () R Gy ka1 -2m) @)

1"( 42 )(1 _ v2)q—1\/(1 _ UZ)W(Xp _ /\/n) k=0k'(q - k) A 22 Xp

where
1

A=1- E(l + V)W — JK, B=1—%K — ulu — ¥(Ku — vW)], (2.23)

and F,(a, by, by; c; 21, 7,) is one of the hypergeometric functions of two variables (Appell F,).

III. LEADING-ORDER FINITE-SIZE CORRECTIONS

From now on, we restrict ourselves to the case J, = 0 and with [ large but finite, i.e., J; >> +/A. This means that
the problem reduces to considering the limit € — 0, since € = 0 corresponds to the infinite-size case, i.e., J| = o [see
Eq. (2.14)]. To this end, we introduce the expansions

Xp = Xpo T (Xp1 + xpplog(e))e, X = Xmo T (X1 + xm2log(€))e, Xy = xuo + (X1 + X2 log(€))e,
v=uvy+ (v; + vylog(e)e, u = ug + (u; + uylog(€))e,
W =W, + (W, + W,log (€))e, K = Ky + (K; + K, log (€))e. (3.1)
To be able to reproduce the dispersion relation for the infinite-size giant magnons, we set
Xmo = Xno = Ko =0, Wy = 1. (3.2)

Also, it can be proved that if we keep the coefficients x,», X2, W», and K, nonzero, the known leading correction to the
giant magnon energy-charge relation in Eq. (2.13) will be modified by a term proportional to J3. This is why we choose
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Xm2 = X2 = Wy =K, =0. (3.3)
In addition, since we are considering for simplicity giant magnons with one angular momentum (/, = 0), we also set
uy =0, (3.4)
because the leading term in the € expansion of 7, is proportional to u,. Thus, Eq. (3.1) simplifies to

Xp :Xp0+()(p1 +Xp210g(€))6’ Xm = Xml16 Xn = Xn6 U:UO+(UI +U210g(€))6’ (35)
u = (u; + u,log(e)e, W=1+ W K =K e

By replacing Eq. (3.5) in Egs. (2.4) and (2.10), one finds

v
Xpo = 1 - U(Zy Xpl = ]_—Ovz[vo\/(l - U%)4 - 4K%(1 - U%) —2(1 = U%)Ul]y Xp2 = —2vyv,,
0

=(1—v32+J(1—vg4—4K§(1—vg _ (=03 - ) - 4K -
/\/ml 2(1 _ U%) ’ an 2(1 —_ U%) ’ (36)
o V(I = vd)t — 4K} (1 — v})
! 1-— v% '

The expressions for the other parameters in Egs. (3.5) and (3.6) can be derived in the following way.
First, we impose the conditions .7, = 0 and p; to be independent of €. This leads to four equations,

vy (1 = v3)* — 4K3(1 — v3)(1 — log 16) vy (1 — v3)* — 4K3(1 — v3)
oo 40— ) ConT 41— ) :
_ Kjyglog4 _ K vg
=T _ .2 Up = — ﬂ,

(3.7)

1 .2
1 — w5

where

P1
= —. 3.8
v = cos > (3.8)

Second, expanding J; and p, = 27mn, (n, € 7)° to the leading order in €, we obtain [compare with Eq. (2.14)]

J 1. sp . y
€= 16exp(— sin%‘ — 2), K, = 551n371 sin @, b = 277(1’12 - Ejl)' (3.9

Now, we are going to use the above results to find the leading-order finite-size effects on the normalized structure
constants in terms of 7, = 7, p; = p, and ®.

A. Giant magnons on AdS; X Sf, and primary scalar operators

As was pointed out in Ref. [24], where the undeformed case was considered, j = 1 and j = 2 are special values. This is
why the corresponding normalized structure constants can be found in the Appendix. Here, we will deal with j = 3, when
we can use the following representation of F(a, b, by; ¢; 2y, 22) [26]:

— (a).(b,)
Fi(a by, byicizy,z0) = Y — 2k

k

Z
SRR F(a+ kbt kzy) 2. (3.10)
& (c)k 241 1 1 k!

For all cases we are going to consider—primary, dilaton, and higher string level vertices—only b, is different, while the
other parameters and arguments of F; are the same [see Eqs. (2.20), (2.21), and (2.22)],

“This follows from the periodicity condition on ¢,.
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1
o c=1, z1=1—¢ mzl_ﬁ

1
by =—, . 3.11
1=3 X (3.11)

a =

Then, by expanding ,F,(} + k,3:1 + k;1 — €)(1 — x,,/ x,)* around € = 0 one finds

11 Yo\ T(1+k) 1
2F1<§+ k,z;l +k1— E)(l ——) ziilog@) —Hk,% —%[2)([,0 + (dky,, — (1 +2k))(po)(10g(4) —Hk,%)]e

Xp)  JTLG+k)
+2k -2
—log(e) — Xro Xpo Xml)elog(e)} (3.12)
4Xp0
where H, is defined as [26]
H,=¢(z+1)+ 7.
The replacement of Eq. (3.12) in Eq. (3.10), and taking into account Eq. (3.11), gives
11 Xm
F1< by 11 — €, 1 — > Cy + Cie + Cyelog(e) + C;log (e), (3.13)
2'2 Xp
where
I'(=by) log (16)
Cy = + Fy(by, 1),
oA
111 \/_F(—l
O = [ G+ 20am) + 8108 @200 = 20 Foll + b, 1] = 201 — log () ol 1)
4 XpO 1—‘(2 bz)
1
G = _47[/\/,;01}70([92, 1) + 2by(xpo = 2Xm1)1 Fo(1 + by, 1], C3 = —— Fy(by, 1). (3.14)
TX p0 !

Here, | F,(b, z) is one of the hypergeometric functions.

In the normalized structure constants (2.20), there are two hypergeometric functions F (%, % by;1;1—¢1—4 ’") with
b, = —j/2and b, = —1 — j/2. By using Egs. (3.13) and (3.14) in Eq. (2.20) and expanding it about € = 0, we can write
down the following approximate equality for j = 3:

Cl = Ag + Aje + Ayelog (e), (3.15)
where the coefficients are given by
I(})? 1(j—1)
= P LAY 2 _
AO Cj 1—,(1+])1—,(3+]) .]/\/ (1 Uy XpO)v
c TATE = 1) 13
Ay = — A2 2(] ){4(W1 + XmD)Xpo — 2X 0 — X1 (1 = 05 = xpo) + Xpo(l — vo(vg + 8vy + 2uoWy)

J 4 r(l+])r(3+]) pO
- XpO(l - 2W1)) - 2(1 - U(Z) + XpO)/\/pl]j + [an - 4U0U1Xp0 + /\/ml(1 - U(Z) - XpO)

U(Z)(an + WlXpO - 3/\/1;1) - 3/\/[)1 + Xp()(_/\/nl + Wl(_l + XpO) + Xpl)]jz + (1 - U(z) - XpO)Xp1j3
+ Fl4K  x 0 + 2xp0(K1 — 2(Ky + vour) xp0))j + Cxpo(wouts xpo — Ki(1 = x,0)) i1

wm T2

1-3) . .
Ay = —¢ o AR X zj [4vovax,0 + (1 = 05 + xpo)Xp2 — (1= U§ = Xp0)Xp2 — 2FVot2 X0 (3.16)
2THEITED

Now, our goal is to express Eq. (3.15) in terms of 7, p, and ®. To this end, we replace Egs. (3.6), (3.7), (3.8), and (3.9) in
Eq. (3.16). This leads to the following final result for the normalized structure constants Cﬁ.’; for j = 3:
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i’r 787 % sin <§)Hj|:4(j — I)F(% — l)cos (®) — 5/I‘(%)<4 sin (g) — j(1 + cos (p))j) sin ((D)]e.
(3.17)

pr
Cj?"’

Let us point out that Eq. (3.17) reduces exactly to the result found for the undeformed case in Ref. [24] when ¥ = O,
@ = 0. Moreover, it generalizes it for any j = 3. The cases j = 1 and j = 2 will be considered separately in the Appendix.

B. Giant magnons on AdS; X Si, and the dilaton operator

Since the hypergeometric functions in Eq. (2.21) are the same as in Eq. (2.20) (only the coefficients in front of them are
different), we can use Egs. (3.13) and (3.14) for the case under consideration, with b, = —j/2 and b, = —1 — j/2. Thus,
by expanding Eq. (2.21) to the leading order in €, one finds (j = 1)

7 I - , _ 16 J
Cly = CZ”\/T— F(i) Xio {6[4W1 @+ D@m= xpo) + 47K1]10g?1F0<_ 2 1)
')

1_,(3+]) [ZJXpO + (2Xml X po + W1(2 + ](2 - XpO))l + J(Xml + xm t (1 + J)Xpl)

+wm¢wmr%&+vwmwme+mvuuﬂ—wwWﬂwd%d} (3.18)

By taking into account Egs. (3.6), (3.7), (3.8), and (3.9) in Eq. (3.18) one finally derives

oL = o rGred

y .1 . .
el /A gl = 30+ cosp

— j(I + j)(1 + cos p)csc (p/2))T cos® — y(4sin(p/2) — j(1 + cos p)J) sin CD]E}.

C. Giant magnons on AdS;s X S§, and singlet scalar operators on higher string levels

For this case, we were not able to obtain a general formula for the leading finite-size corrections to the three-point
correlation functions in terms of 7, p, and ®, for any ¢ = 1. This is why we are going to present here the results for
g=1,...,5 (string levels n =0, 1, 2, 3, 4).

Let us ﬁrst point out that the hypergeometric functions F (2, ,—k1;1—€1— );—1) entering Eq. (2.22) can be

expressed in terms of the complete elliptic integrals K(1 — €), E(1 — €) of the first and second kind. For example,

Lo X\ _ 2
Fl(i’i’oa 131 6,1 p)_ﬂ'K(l E),
Fl( =, 1’1,1 ell_X_m)zg(Xm_f/\/p)K(l_6)_(in_Xp)E(l_E),
22 Xp m (I_E)Xp
F(l L osni-el Xm) L G- ax -4
~oAy LTl m— )= T €)Xm — A€Xm
2’2 Xp 37(1 _6)2/\/%7 X XmXp

— (1 =36)ex;)K( =€) —4(x — x,)(2 — €)x,n + (1 —2€)x,)E(l — )]

Then, Eq. (2.22) can be written in terms of hypergeometric functions of the type ,F, with the argument 1 — €. However,
this is just a much more complicated representation of the semiclassically exact result.

Here, we are interested in the small-€ (or, equivalently, large-7) limit. So, we will expand everything in €. Since the
computations are similar to the previously considered cases, we will write down the final results only. They are given by the
following approximate equalities:
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RN X CD) _ 202
Cy=~ca~g 2 (1+A)51n(p/2){16 8T csc(p/2) +[4—(2(1 —cosp + J*cot?(p/2))
+ J(5—cosp)csc(p/2))cos® + 89 Tsin?(p/2)sin®]e},
A)
C2 A7£F€1(+A ){8(25in(p/2)—3j)+[125in(p/2)+(2(27+5008p)sin(p/2)

—JB1+13cosp+3T(1+cosp)esc(p/2)))cos® —8ysin(p/2)(8sin(p/2) — F(7+ cos p))sin®]e},

G VT T
7R 120 ()

—J(187+97cosp+ 15T (1 +cosp)csc(p/2)))cos® — 12ysin(p/2)(48sin(p/2) — T (23 — T cos p))sin P e},

C4 ~ VT F(A4)
“CA AN 340 F(1+A )

—2107%cot?(p/2))cos® — 16¥(424sin(p/2) — 3T (79 +9cos p))sin®)]e},

{8(38sin(p/2) —157) +[60sin(p/2) + (18(13 + 19cos p)sin(p/2)

{1264sin(p/2) — 8407 + [sin(p/2)(420 + (4730 + 2054 cos p — J (1837 + 1207 cos p)csc(p/2)

As
CS Ca, 2\42_0 (1(+A) ){8(90251n(p/2) —3157) +[1260sin(p/2) + (2(6093 4 7667 cos p)sin(p/2) — F (6343 4 4453 cos p

+3157(1 +cosp)csc(p/2)))cos® —20¥sin(p/2)(1376sin(p/2) — J (523 — 107 cos p)) sin D ]e}.

IV. CONCLUDING REMARKS

In this article, we have derived the leading finite-size effects on the normalized structure constants in some semiclassical
three-point correlation functions in AdSs X S?Y—dual to N = 1 SYM theory in four dimensions—arising as an exactly
marginal deformation of N =4 SYM, expressed in terms of the conserved string angular momentum 7, and the
worldsheet momentum p, identified with the momentum p of the magnon excitations in the dual spin chain. More
precisely, we found the leading finite-size effects on the structure constants in the three-point correlators of two “heavy”
giant magnons’ string states and the following three “light” states:

(1) Primary scalar operators;

(2) Dilaton operator with nonzero momentum (j = 1);

(3) Singlet scalar operators on higher string levels.

It would be interesting to investigate other cases for which the finite-size corrections to the giant magnon’s dispersion
relations are known, like AdS, X CP?, AdS, X CP}, AdSs X T"!, or AdSs X T".

APPENDIX: GIANT MAGNONS ON AdS; X Si, AND PRIMARY
SCALAR OPERATORS WITH j =1AND j =2

Let us start with the case j = 1. Expanding the coefficients in Cp; according to Eq. (3.5), one can rewrite it in the
following form:

201
=~ cg"z { (1/2 1/2,-1/2:1;1 — ¢, 1 — XmL )
Xp XPO

X[(1 = vd)xue + 2 — (dvgvy + 3W; + 49K )e — v3(2 + Wi€))x 0 — 4vovax o€log(e)]
Xml

pO

- F1<1/2, 1/2,-3/2;1;1 — €1 — E)[4Xp0 + 2(x — (W) +29%(Ky + vouy)) xp0 + 2X,p1)€
+ 4(x,2 — oz x )€ log (e)]}. (Al)

In order to represent C‘l’; as a function of 7, p, and ®, one would have to use Egs. (3.6), (3.7), (3.8), and (3.9) in Eq. (A1).
This leads to
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pr L 1
e = = Tosin (p/2){8F1<1/2, 1/2.23/2:151 = € 1= 21 + cos (D)e)
1
- 4F1<1/2, 2 -1/2 01— 1 - (1 + cos(b)e)
1
+ [FI(I/Z, 1/2,—-1/2;1;1 — €1 — 5(1 + cos dD)e)(l —cos®(O +2cosp + J(1 + cos p)esc(p/2))
1
+ 4% sin(p/2)sin ®) — F1<1/2, 1/2,-3/2;1;1— €1 — 5(1 + cos(I))e)(Z —2cos®(5+2cosp
+ J( + cos p)esc (p/2)) + y(T(1 + cos p) + 4sin(p/2)) sin (I)):IE}. (A2)
For the undeformed case, when ¥ = 0, ® = 0, Eq. (A2) simplifies to

2
= —c’fr% sin (p/2)[3sin(p/2) + sin(3p/2) + J(1 + cos p)]e>. (A3)

This is in accordance with the result C" = 0 found in Ref. [24], where only the leading order in € was taken into account.
Now, let us consider the case j = 2, when Eq. (2.20) reduces to

- —gcg‘ 2 12 13— (1 + 209)W — 39K1(1 — l(xm — x,)E(I — €)
(1 = e/ = )W(x, — x,)
= (Xm — X, K0 — &) + (1 —u(u — y(Ku — vW)) — yK)2(x, = Xu)(2 — ) x, + (1 —2€) x,)E(1 — €)
+ (B = xm — 4xmxpe — x3(1 —36)e)K(1 — e)]} (A4)
By expanding Eq. (A4) in €, and taking into account Eqgs. (3.6), (3.7), (3.8), and (3.9), one finds
Cgri, ~ %cgrsinz(p/Z)DJcos ® — §(2sin(p/2) — J(1 + cos p))sin (p/2) sin D]e. (A5)

Obviously, the result for the undeformed case [24] is properly reproduced by the above formula.
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