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We add smeared D0 charges to the D4 background and discuss the Sakai-Sugimoto model under this

background. The corresponding gauge theory is in a state with an expectation value of htrðF��
~F��Þi. The

D8-branes go less deep than in the original S-S model and massless Goldstones are still found in

the spectrum. The effects of this condensate on the meson spectra, pion decay constant, and couplings of

the vector mesons and Goldstones in this background state are then investigated.
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I. INTRODUCTION

Confinement as a nonperturbative phenomenon of QCD
attracts lots of attention from theoretical physicists. There
are many mechanisms proposed as the possible cause of
the confinement. See [1] for a review. Among these mecha-
nisms, some classical or semi-classical gauge field con-
figurations could play an important role, such as some
topologically nontrivial solutions, including monopoles,
instantons, etc. There could also be solutions with constant
field strength for the classical equation of motion (EOM).
Self-dual field strength is studied in [2–5], and was pro-
posed to be a mechanism for the confinement [6]. So there
could be states with nonzero trðF��

~F��Þ background

where F�� is the field strength and ~F�� its dual, and they

may play a role in the confinement.
Such states may also be produced in heavy ion

collisions. There were some proposals that the P-or
CP-odd bubble may be created during the collisions
[7–9]. A metastable state with nonzero QCD vacuum �
angle or trðF��

~F��Þ could be produced in some space-time

region in the hot and dense condition when deconfinement
happens. Then, with the rapid expansion of the bubble, it
cools down and the metastable state freezes inside the
bubble [8]. Then a P- or CP-odd bubble may form. It
will soon decay into the true vacuum.

As nonperturbative phenomena in QCD, the effects of
the states with nonzero trðF��

~F��Þ must be studied using

nonpertubative methods. String-gauge duality provides a
way to study this kind of phenomena. To add htrðF��

~F��Þi
condensate in N ¼ 4 SUSY YM corresponds to adding
smeared Dð�1Þ charges into D3-brane configurations.
Supersymmetric (SUSY) Dð�1Þ-D3 background was
studied in [10,11] and was proposed to correspond to gauge
field theory with a self-dual background field strength [10].
Non-SUSY Dð�1Þ-D3 was studied in [11,12] and corre-
sponds to adding a temperature to the corresponding gauge

theory. By introducing D7 probe branes into the back-
ground geometry, according to the proposal of Karch and
Katz [13], flavors can also be introduced into these back-
grounds, and then quark condensates and meson spectra
can be studied [12,14–18]. Also by introducing baryonic
D5-branes, studies can be carried out on baryon properties
in the glue condensates [19–23].
Another holographic construction of the QCD-like

theory is to use the D4 background initiated by Witten
[24]. By compactifying the D4-brane on a circle, four-
dimensional Yang-Mills theory can be obtained from the
five-dimensional Yang-Mills theory, and by imposing the
antiperiodic boundary condition on the fermions, super-
symmetry is broken. Flavors can be added into the Yang-
Mills by introducing flavor D6- [25] or D8-branes [26]. In
particular, Sakai-Sugimoto(S-S) [26] proposed a model

with D8� D8 probe branes, where the spontaneous break-
ing of chiral symmetry is geometrically realized as the
joining of Nf D8-branes and Nf anti-D8-branes into Nf

D8-branes at the tip. Massless Goldstones with the right
quantum numbers can be found in the spectrum. Meson
spectra and interactions then can be studied along these
lines [27]. Baryons can also be easily realized as instantons
in this model such that the nucleon interactions can also be
modeled [28–31]. As in theDð�1Þ-D3 background, adding
condensate htrðF��

~F��Þi in the gauge theory corresponds

to adding smeared D0 charges into the D4 background.
The gauge theory in this background is studied in [32,33].
Putting the Sakai-Sugimoto model (S-S model) into this
background allows us to study the hadron phenomena in
the nonzero htrðF��

~F��Þi background. In the present pa-

per, as a first step, we study the meson spectra and the
interactions of the lowest-lying vector mesons and
Goldstones in this background. To keep the htrðF��

~F��Þi
dependence in the large Nc, we require it to be ofOðNcÞ as
in [10], ~�� htrðF��

~F��Þi=Nc. There are still massless

Goldstone modes indicating the massless nature of the
flavor quarks. We analyze the lowest-lying scalar and
vector meson spectra in this model and the three point
couplings for the lowest-lying vector mesons and
Goldstones and find out that ~� really enters the formulas
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for these quantities. The detailed results are presented in
Secs. IV, V, and VI.

This paper is organized as follows: In Sec. II, we review
the D0-D4 background and its relation to the gauge field
theory. In Sec. III we put D8 probe branes into this back-
ground and study the stability of the configuration. In
Secs. IV and V, we study the scalar and vector meson
spectra with one flavor, respectively. In Sec. VI, we extend
our discussion to the multiflavor case, and the interactions
of vector mesons and Goldstones are studied. Section VII
is the conclusion and discussion.

II. THE D0-D4 BACKGROUND

Some of the results in this section are already presented
in [32]. The solution of D4- branes with smeared D0
charges in Type IIA supergravity in the Einstein frame is
[32,33]

ds2 ¼ H
�3

8

4 ð�H
�7

8

0 fðUÞd�2 þH
1
8

0ððdx0Þ2 þ ðdx1Þ2 þ � � �

þ ðdx3Þ2ÞÞ þH
5
8

4H
1
8

0

�
dU2

fðUÞ þU2d�2
4

�
; (1)

e�ð���0Þ ¼ ðH4=H
3
0Þ14; (2)

f2 ¼ A

U4

1

H2
0

dU ^ d�; (3)

f4 ¼ B�4; (4)

where

A ¼ ð2�‘sÞ7gsN0

!4V4

; B ¼ ð2�‘sÞ3Ncgs
!4

; (5)

H4 ¼ 1þU3
Q4

U3
; H0 ¼ 1þU3

Q0

U3
;

fðUÞ ¼ 1�U3
KK

U3
:

(6)

d�4, �4, and!4 ¼ 8�2=3 are the line element, the volume
form, and the volume of a unit S4. UKK is the coordinate
radius of the horizon, and V4 the volume of the D4-brane.
N0 and Nc are the numbers of D0 and D4 branes, respec-
tively. D0 branes are smeared in the x0; . . . ; x3 directions.

In string frame the metric reads

ds2 ¼ H
�1

2

4 ð�H
�1

2

0 fðUÞd�2 þH
1
2

0dx
2Þ

þH
1
2

4H
1
2

0

�
dU2

fðUÞ þU2d�2
4

�
; (7)

where dx2 ¼ ðdx0Þ2 þ ðdx1Þ2 þ � � � þ ðdx3Þ2 is used. The
EOM requires

A2 ¼ 9U3
Q0ðU3

Q0 þU3
KKÞ; B2 ¼ 9U3

Q4ðU3
Q4 þU3

KKÞ;
(8)

which can be solved,

U3
Q0 ¼

1

2

0
@�U3

KK þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U6

KK þ 4

9
A2

s 1
A; (9)

U3
Q4 ¼

1

2

0
@�U3

KK þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U6

KK þ 4

9
B2

s 1
A: (10)

We have required UKK to be the horizon and no bare
singularity, and then U3

Q0 > 0, U3
Q4 > 0 are chosen. To use

this solution in the Sakai-Sugimoto model, we make a double
wick rotation in � and x0 directions and the metric becomes

ds2 ¼ H
�1

2

4 ðH�1
2

0 fðUÞd�2 þH
1
2

0dx
2Þ

þH
1
2

4H
1
2

0

�
dU2

fðUÞ þU2d�2
4

�
; (11)

where dx2 ¼ �ðdx0Þ2 þ ðdx1Þ2 þ � � � þ ðdx3Þ2 now. In
fact, the metric is a bubble geometry and the space-time
ends at U ¼ UKK.
In order not to have the conical singularity, the period of

� should be

� ¼ 4�

3
UKKH

1=2
0 ðUKKÞH1=2

4 ðUKKÞ: (12)

We can then define a Kaluza-Klein mass scale
MKK ¼ 2�=�, which indicates the UV cutoff of the gauge
theory. The D4-brane tension can be related to the five-
dimensional Yang-Mills coupling constant,

1

g25
¼ ð2�	0Þ2

ð2�Þ4‘5sgs
¼ 1

ð2�Þ2‘sgs
: (13)

Then, by dimensional reduction to four dimensions,
the four-dimensional Yang-Mills coupling constant can
be expressed as

1

g2YM
¼ �

g25
¼ �

4�2gs‘s
: (14)

In another way, the string coupling constant can be
expressed using gauge theory parameters,

gs ¼ g2YM
2�MKK‘s

¼ 


2�MKKNc‘s
; (15)

where 
 ¼ g2YMNc is the ’t Hooft coupling. Substituting
this into (9), we have

H0ðUKKÞ ¼ 1

2
ð1þ ð1þ C�2Þ1=2Þ;

C � ð2�‘2sÞ6
2 ~�2=U6
KK:

(16)

In order to keep the backreaction of the D0-brane,
we require N0 to be of order Nc as in [10] and define
~� ¼ N0=ðNcV4Þ. It is easy to see that H0ðUÞ � 1.
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Going to the near horizon limit by taking U=	0 and
UKK=	

0 finite, we have

U3
Q4 ! �	03=2gsNc ¼ �g2YMNc‘

2
s

4�
� R3; (17)

H4ðUKKÞ ! R3

U3
KK

; (18)

� ! 4�

3
U�1=2

KK R3=2H1=2
0 ðUKKÞ; (19)

MKK ! 3

2
U1=2

KKR
�3=2H�1=2

0 ðUKKÞ: (20)

The metric in string frame then becomes

ds2 ¼
�
U

R

�
3=2ðH1=2

0 ðUÞ���dx
�dx� þH�1=2

0 ðUÞfðUÞd�2Þ

þH1=2
0

�
R

U

�
3=2
�

1

fðUÞdU
2 þU2d�2

4

�
; (21)

and the dilaton,

e� ¼ gs

�
U

R

�
3=4

H3=4
0 : (22)

From (17) and (19) we have

�1=2 ¼ 2

3
�1=2U�1=2

KK 
1=2‘sH
1=2
0 ðUKKÞ; (23)

or

� ¼ 4�
‘2s
9UKK

H0ðUKKÞ; MKK ¼ 9

2

UKK


‘2sH0ðUKKÞ
: (24)

Since H0ðUKKÞ � 1, UKK � 2
‘2sMKK=9.
From this equation, � can be solved, and comparing

with (24) we have

� ¼ 4�
‘2s
9UKK

1

1� ð2�‘2s Þ8
81U8

KK


4 ~�2
;

H0ðUKKÞ ¼ 1

1� ð2�‘2s Þ8
81U8

KK


4 ~�2
:

(25)

If we define D ¼ 2
9�
‘

2
s=UKK and use the definition of C

in (16), � then can be expressed as � ¼ 2D=ð1� CD2Þ
and H0ðUKKÞ ¼ 1=ð1� CD2Þ. Since H0 > 0 and
CD2 � 1, this gives a constraint for ~�,

j~�j � 9U4
KK

ð2�‘sÞ4
2
¼ 
2M4

KKH
4
0ðUKKÞ

93�4
: (26)

If we fix �, 
, from (24), UKK goes the same as H0ðUKKÞ.
And together with (25), H0ðUKKÞ and ~� can be related,

H8
0ðUKKÞ �H7

0ðUKKÞ ¼ 96�8 ~�2


4M8
KK

¼ 96�8�2: (27)

For future convenience, we have defined a dimensionless
quantity �,

� � j~�j

2M4

KK

: (28)

Since we fix 
 andMKK, changing ~� is equivalent to chang-
ing �. The left-hand side of (27) is a monotonic function
increasing from zero for H0ðUKKÞ � 1. So for each ~�, there
is only one solution ofH0ðUKKÞ, going up as ~� increases (see
Fig. 1), and UKK is similar. Since we are interested in the
region with 
 � 1, if we choose 
� 10 and j~�j<M4

KK, �
should be within 0< �< 0:01. And the corresponding
H0ðUKKÞ falls in 1<H0ðUKKÞ< 5:3. So in future numeri-
cal analysis we constrain ourselves in this region.
This background actually introduces another free parame-

ter ~� in the Sakai-Sugimoto model. This string theory back-
ground is not dual to thevacuumstate of thegauge theory. The
dual statemaydescribe some excited statewith some constant
homogeneous field strength background, which gives the
expectation value of trðF��

~F��Þ. On the supergravity side,

~�Nc is the flux or charge of f2. Since C1 is coupled to
trðF��

~F��Þ in the Euclidean Chern-Simons action,

SCS ¼ i
�4

2
ð2�	0Þ2

Z
d�C� ^ trðF ^ FÞ: (29)

~� characterizes the expectation value of the Euclidean
trðF��

~F��Þ. Just as in [10], by rotating to the Euclidean space
and naively using the classical EOM of C1, we have the real
Euclidean condensate,

htrðF��
~F��Þi ¼ 8�2Nc~�: (30)

We suppose this is a stochastic average over the background
fields in all directions so that the hFi is still zero and the four-
dimensional space-time translation invariance and proper
Lorentz invariance are preserved, which is manifest in the
string background solution. Obviously the P and CP invar-
iances are violated, which is similar to the situation in [10].
Self-dual constant homogeneous backgrounds in the gauge
theory are studied in [2–5] and may be related to the
confinement. However, the field strength may not be self-
dual in the present paper since the gravity background is

0 0.005 0.01

1

3

5

H0 0

FIG. 1. The relation between ~H0ð0Þ and parameter �.
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nonsupersymmetric, and sowewill not take it as a necessary
assumption. Whether the background field strength is self-
dual or not is beyond the scope of this paper. Our interest is
to put the S-S model in this background to study the ~�
dependence of the meson spectra and couplings.

Now we have the following independent parameters on
the gravity side: R3, U3

Q0, UKK, and gs, and ‘s will be

canceled out in the final physical results. We also have the
following parameters on the gauge theory side: Nc, MKK,

, and ~�. We have seen that ~� can be related to H0ðUKKÞ,
and we can useH0ðUKKÞ to represent ~�. The final results on
the gauge theory side can be expressed using Nc, MKK, 
,
and H0ðUKKÞ. We collect the relations here,

R3 ¼ 
‘2s
2MKK

; gs ¼ 


2�MKKNc‘s
;

UKK ¼ 2

9
MKK
‘

2
sH0ðUKKÞ:

(31)

We fix the gauge theory parameters MKK, Nc, and 
, and
then change ~�. This corresponds to fixing the following
parameters on the gravity side: R3, gs, H0ðUKKÞ=UKK, and
changing H0ðUKKÞ or UKK.

Similar to the discussion of the D4-soliton background
[25] in the S-S model, we can discuss the reliability of the
background. First we require the curvature near the horizon
to be small compared to the string scale 1=jðR‘2sÞj � 1.
The curvature at UKK is

RðUKKÞ � 9

R3=2U1=2
KKH

1=2
0 ðUKKÞ

�
2� 3

H0ðUKKÞ
�
: (32)

We have used U3
KK=R

3 � ‘6s=‘
2
s ! 0. Then using (31), we

have

1 �
�������� 1

R‘2s

���������
�������� R3=2U1=2

KKH
1=2
0 ðUKKÞ

9‘2sð2� 3=H0ðUKKÞÞ
��������

�
�������� g2YMNcH0ðUKKÞ
27ð2� 3=H0ðUKKÞÞ

��������: (33)

Since the factor jH0ðUKKÞ=ð27ð2� 3=H0ðUKKÞÞj � 1=27
is bounded from below for H0ðUKKÞ> 1, g2YMNc � 1
satisfies this inequality. However, the denominator ð2�
3=H0ðUKKÞÞ could be zero for H0 near 3=2. This may
indicate that the gravity may not correspond to the strong
coupling region. Nevertheless, by analyzing the scalar
R��R

��‘4s � 1, we can conclude that near H0 ¼ 3=2,

the corresponding gauge theory is really in the strong ’t
Hooft coupling region,

1 � 1=jR��R
��‘4s j ’ 
2H4

0ðUKKÞ
729ðH2

0 �H0 þ 1Þ : (34)

However, H0 cannot be arbitrarily large. We require
the factor H4

0=ð729ðH2
0 �H0 þ 1Þ to be of Oð1Þ, which

corresponds to H0ðUKKÞ � 30. Notice that previously
j~�j<M4

KK and large 
 requires 1 � H0ðUKKÞ< 5:3,

which falls in this region. So the smallness of the curvature
corresponds to the large ’t Hooft coupling in the gauge
theory in 1 � H0 < 5:3.
Next we require e� � 1 to suppress the string loop

effect. From e� ¼ gsH
3=4
0 H�1=4

4 , we have

UH0ðUÞ � g�4=3
s R: (35)

Since 1 � H0 �Oð1Þ, this means U � g�4=3
s R � Ucrit.

This introduces no new information to the D4 soliton
results. To repeat, the critical radius can be expressed

as Ucrit ’ ð2�4=3‘2sN
1=3
c MKKÞ=g2YM, and we require

Ucrit � UKK. So, we have

g4YM � 1

g2YMNc

� 1: (36)

This just suggests that the supergravity solution is a valid
dual description of the strong coupling region of the four-
dimensional gauge theory in the ’t Hooft limit.
Before ending this section, let us discuss a little about the

meaning of changing ~� or the D0 charge density on the
gauge theory side.We have related the D0 charge density to
the condensate in (30). In fact, it can also be related to the �
angle in the gauge theory as discussed in [32]. So the
background is dual to a state with nonzero htrðF ~FÞi expec-
tation value in the gauge theory with nonzero � angle, and
these two quantites are not independent. Similar to the
situation in Liu et al.’s paper, this is not the vacuum state,
since in the true vacuum state, � should be zero and there is
no htrðF ~FÞi condensate (as an abuse of terminology, we use
‘‘condensate’’ to denote the expectation value of trðF ~FÞ not
only in the vacuum state but also in the excited state). Thus,
changing ~� can also be viewed as changing the � angle and
hence changing the background state. We assume that there
could exist such excited states in the corresponding gauge
theory, and we are interested in the hadron properties in
these states. These states may have some possibilities of
being created in the heavy ion collisions as we stated in the
Introduction. In the next few sections, we will turn on
the massless probe flavors and study the ~� dependence of
the hadron physics. As is well known, one can make a phase
rotation to eliminate the theta dependence in the gauge
theory. So changing � does not make sense anymore with
massless flavors turned on. However, this does notmean that
one can rotate away the condensate of the background state.
htrðF ~FÞi is a physical observable, which should not be
rotated away by an unobservable phase rotation. The back-
reaction of the probe flavors on the background is ignored
and hence the condensate in the backgound state should not
be affected. In fact, in this situation, neither � nor the
expectation value of �0 in this state (we use �0 to denote
its expectation value from now on) has a physical meaning,

but the combination �þ �0 ffiffiffiffiffiffiffiffiffi
2Nf

p
=f� does. Only this com-

bination could appear in the physical observables. By almost
the same reasoning as in Sec. 5.8 of [26], taking the field
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strength ofC1 corresponding to theD0charge in our paper as

gauge invariant, one can show that �þ �0 ffiffiffiffiffiffiffiffiffi
2Nf

p
=f� is really

related to ~�, which is an observable in our paper. Since ~�

appears also in the metric, the dependence on �þ
�0 ffiffiffiffiffiffiffiffiffi

2Nf

p
=f� in the free energy comes not only from the

kinetic part of C1 as in [26], but also from the other parts
of the action. We will not go further into the analysis of the
free energy which is beyond the scope of our paper. As a
further support to our argument, in [34], Witten argued that
the � dependence of the low-energy effective action of
glueballs in the pure gauge theory should be changed to

the dependence on �þ �0 ffiffiffiffiffiffiffiffiffi
2Nf

p
=f� after the switch-on of

the flavor quarks. Suppose there is a state in the pure gauge
sector corresponding to theD0-D4 background and this state
has a nonzero value of � and htrðF ~FÞi condensate.When the
probe flavors are turned on, the � angle is replaced by that
combined quantity. So it is this combined quantity which
takes the value that the original � takes in the original pure
gauge theory and the physical observable htrðF ~FÞi should
not be changed. In this situation, changing the condensate
can effectively be viewed as changing that combination of �
and �0, which is a parameter of the theory.

III. SAKAI-SUGIMOTO MODEL IN D0-D4
BACKGROUND

Now we embed the D8-brane into the background with
U ¼ Uð�Þ. The metric then becomes

ds2 ¼
�
U

R

�
3=2

H0ðUÞ�1=2

�
fðUÞþ

�
R

U

�
3H0ðUÞ
fðUÞ U

02
�
d�2

þ
�
U

R

�
3=2

H1=2
0 ðUÞ���dx

�dx�þH1=2
0

�
R

U

�
3=2

U2d�2
4;

(37)

where U0 ¼ dU=d�. Substitute this into the D8-brane
action, and we have

SD8 � 1

gs

Z
d4xd�H0ðUÞU4

�
fðUÞ þH0ðUÞ

fðUÞ
�
R

U

�
3
U02

�
1=2

;

(38)

from which the equation of motion can be obtained,

d

d�

 
H0ðUÞU4fðUÞ

½fðUÞ þ H0ðUÞ
fðUÞ ðRUÞ3U02	1=2

!
¼ 0; (39)

which is just the conservation of the energy. With initial
conditionsUð0Þ ¼ U0 andU

0ð0Þ ¼ 0 at � ¼ 0, �ðUÞ can be
solved,

�ðUÞ ¼ EðU0Þ
Z U

U0

dU
H1=2

0 ðUÞðRUÞ3=2
fðUÞðH2

0ðUÞU8fðUÞ � E2ðU0ÞÞ1=2
;

(40)

where EðU0Þ ¼ H0ðU0ÞU4
0f

1=2ðU0Þ.

The difference between the present background and the
D4-soliton background is the H0ðUÞ factor in all the
equations. If we set H0ðUÞ ! 1, all the results degenerate
to the original S-S model. For the antipodal case the
profile is the same as the original S-S model, with �ðUÞ ¼
�=4. As the D8-D8 moves away from the antipodes, the
profile goes less deep than in the original S-S model
(Fig. 2). In this paper, as a first step, we constrain our-
selves to the antipodal case to see the effects of the
condensate htrðF��

~F��Þi.
As in the S-S model, we introduce the new coordinate

ðr; �Þ or ðy; zÞ,

y ¼ r cos�; z ¼ r sin �; U3 ¼ U3
KK þUKKr

2;

� ¼ 2�

�
� ¼ 3

2

U1=2
KK

R3=2H1=2
0 ðUKKÞ

�; (41)

and then the metric in the ðy; zÞ plane becomes

ds2�;U ¼ 4

9

R3=2

U3=2

H0ðUKKÞ
H1=2

0 ðUÞ ½ð1� hðrÞy2Þdy2

þ ð1� hðrÞz2Þdz2 � 2yzhðrÞdydz	; (42)

where

hðrÞ ¼ 1

r2

�
1�UKKH0ðUÞ

UH0ðUKKÞ
�
: (43)

In the antipodal case, the D8-brane is put along x0, x1, x2,
x3 and z direction at y ¼ 0, wrapping the S4. We can also
study the fluctuations of the D8-brane in the y direction to
examine the stability of this configuration. Then y is con-
sidered as a function of x and z, yðx; zÞ. The induced metric
then reads

ds2 ¼ ds25d þH1=2
0 ðUÞR3=2U1=2d�2

4 (44)

12 14 16 18 20
U

0.2

0.1

0.1

0.2

FIG. 2. The profile of the D8-brane. The dashed lines denote
the profile with ~� � 0 and the solid lines, with zero ~�. With
~� � 0, the D8-brane goes less deep.
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ds25d ¼ H1=2
0 ðUÞ

�
U

R

�3
2

�
��� þ 4

9

�
R

U

�
3 H0ðUKKÞ

H0ðUÞ @�y@�y

�
dx�dx�

þ 4

9

�
R

U

�3
2 H0ðUKKÞ
H1=2

0 ðUÞ
�
UKKH0ðUÞ
UH0ðUKKÞ þ _y2 þ hðzÞðy2 � 2zy _yÞ

�
dz2 þ 8

9

�
R

U

�3
2 H0ðUKKÞ
H1=2

0 ðUÞ @�y½ _y� zyhðzÞ	dx�dzþOðy4Þ:

(45)

And the Dirac-Born-Infeld (DBI) action of the D8-brane turns out to be

SD8¼� ~TH3=2
0 ðUKKÞ

Z
d4xdz

�
H3=2

0 ðUzÞ
H3=2

0 ðUKKÞ
U2

z þ H1=2
0 ðUzÞ

H1=2
0 ðUKKÞ

�
2

9

R3

Uz

���@�y@�yþ U3

2UKK

_y2þ1

2

�
1þ 1

H0ðUzÞ
�
y2
��

þOðy4Þ;

(46)

where we have defined Uz ¼ UKKð1þ z2=U2
KKÞ1=3, ~T ¼ 2

3gs
T8�4U

1=2
KKR

3=2, with T8 ¼ ðð2�Þ8‘9sÞ�1 the tension of the
D8-brane. Then the energy density of the fluctuations in the y direction can be read off,

E ’ ~TH3=2
0 ðUKKÞ

Z
dz

H1=2
0 ðUzÞ

H1=2
0 ðUKKÞ

�
2

9

R3

Uz

X3
i¼0

ð@iyÞ2 þ U3

2UKK

_y2 þ 1

2

�
1þ 1

H0ðUzÞ
�
y2
�
� 0: (47)

So adding the D0 flux does not affect the stability of the
D8-brane probe configuration with respect to small
fluctuations.

IV. SCALAR MESON SPECTRUM

Using the results of the previous section, we are ready
to discuss the scalar spectrum for the one -flavor case.
The fluctuations of y can be expanded in terms of some
orthogonal basis nðzÞ,

yðx�; zÞ ¼ X1
n¼1

UðnÞðx�ÞnðzÞ: (48)

We now define the dimensionless Z ¼ z=UKK, K ¼ 1þ
Z2 ¼ ðUz=UKKÞ3, U3

z ¼ U3
KKð1þ Z2Þ, and ~H0ðZÞ ¼

H0ðUzÞ. The orthogonal condition for m reads

4

9
~TR3 ~H0ð0Þ

Z
dZ ~H1=2

0 ðZÞK�1=3ðZÞmn ¼ �mn; (49)

and mðm � 1Þ are eigenfunctions of equation
K1=3ðZÞ

�
� ~H�1=2

0 ðZÞ@Zð ~H1=2
0 ðZÞKðZÞ@ZnðZÞÞ

þ
�
1þ 1

~H0ðZÞ
�
nðZÞ

�
¼ 
nnðZÞ: (50)

Then the D8 action can be written as

SD8 ¼ �
Z

d4x
1

2

X1
n¼1

@�UðnÞ@�UðnÞ

þ 1

2
M2

KK
~H0ð0Þ

X1
n¼1


nðUðnÞÞ2; (51)

from which we can read off the mass for scalar mesons,

m2
n ¼ M2

KK
~H0ð0Þ
n: (52)

We see that the ~� dependence of the mass is through the
~H0ð0Þ factor and is also hidden in 
n as a result of the
eigenvalue equation (50).
Now, we proceed to solve the eigenvalue equation.

Similar to the method in Sakai and Sugimoto’s original
paper, from (50) we first find out the asymptotic behavior
of nðZÞ as Z goes to infinity,

n � 1

Z2
: (53)

Then we can define

Z � e�; ~nð�Þ � e2�nðe�Þ; (54)

such that ~n is of OðZ0Þ. So the equation for ~n reads

d2 ~n

d�2
þG

d~n

d�
þ F~n ¼ 0; (55)

where

F ¼ 6� 3

1þ e�2�
� 3

1þ ~H0ð0Þe�2�
þ 
ne

�2�=3

ð1þ e�2�Þ4=3

� X1
k¼0

Fke
�2k�=3;

G ¼ �5þ 1

1þ e�2�
þ 1

1þ ~H0ð0Þe�2�
� X1

k¼0

Gke
�2k�=3:

(56)

The first few nonvanishing coefficients are listed below:

F1 ¼ 
n; F3 ¼ 3þ 3 ~H0ð0Þ; F4 ¼ � 4

3

n; . . .

G0 ¼ �3; G3 ¼ �1� ~H0ð0Þ; . . . : (57)

Next we expand ~n as

CHAO WU, ZHIGUANG XIAO, AND DA ZHOU PHYSICAL REVIEW D 88, 026016 (2013)

026016-6



~ n � 1þ X1
k¼1

�ke
�2k�=3: (58)

And it is easy to verify that

�1 ¼ � 9

22

n; �2 ¼ 81

1144

2
n;

�3 ¼ � 3

10
� 3

10
~H0ð0Þ � 81

11440

3
n; . . . :

(59)

We then solve the eigenvalue equation using the
‘‘shooting’’ method with � running from 0 to 0.01. As in
S-S’s original paper [26], we choose the eigenfunction to
be even or odd for n � 1,

Even : @Znð0Þ ¼ 0; Odd: nð0Þ ¼ 0: (60)

As a result, the eigenfunctions are even for odd n, and odd
for even n. The charge conjugate C and parity properties
are the same as in the S-S model. Then the lightest scalar
meson has CP ¼ þþ and the next level, CP ¼ �� . The
� dependence of the lowest two 
n and masses are shown
in Figs. 3 and 4, respectively.

From these figures, we can see that even though the first
two eigenvalues go down as � increases, the contributions
from ~H0ð0Þ overcome the eigenvalue contributions and
make the mass grow with �. This is different from the
results using the Dð�1Þ-D3 background in [14]. In their
model, the Liu-Tseytlin [10] background is used, which is

supersymmetric, and in the corresponding gauge theory,
the condensate is claimed to be self-dual hF��F

��i ¼
hF��

~F��i � q. Also, the current quark mass is nonzero.

In our model, the background is not supersymmetric and it
is highly possible that the field strength is not self-dual. And
since the Goldstone is massless, the current quark mass is
also zero. So the difference is not surprising. In their model,
the meson mass is only determined by the eigenvalue of the
fluctuation, which is going down with increasing q. In our
model, though the eigenvalues have the same tendency as
theirs, the masses are also proportional to ~H0ð0Þ, which is
increasing and dominates in the contributions.

V. GAUGE FIELD FLUCTUATIONS AND
VECTOR MESON SPECTRA

Now we consider the gauge field excitations on the
D8-brane in this background. As in the S-S model, we
are only interested in the SO(5) singlets, A� (� ¼ 0, 1,

2, 3) and Az, which are independent of the angular coor-
dinates of the S4. We consider only one flavor in this
section. The DBI action can be cast into

SD8 ¼ � ~Tð2�	0Þ2
Z

d4xdzH1=2
0 ðUÞ



�
1

4

R3

U
F��F

�� þ 9

8

U3

UKK

F�zF
�z

�
: (61)

0 0.005 0.01

2.4

2.8

3.2

1

model result

0 0.005 0.01

4.4

4.8

5.2

2

S-S

FIG. 3. The � dependence of 
1 and 
2.

0 0.005 0.01

1.8

2.4

3.

3.6
m1 MKK

0 0.005 0.01

2

3

4

5

m2 MKK

FIG. 4. The � dependence of m1 and m2.
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As in the S-S model, we expand the gauge field A�ð� ¼
0; 1; 2; 3Þ and Az in terms of some orthogonal basis,

A�ðx; zÞ ¼
X1
n¼1

BðnÞ
� ðxÞc nðzÞ;

Azðx; zÞ ¼
X1
n¼0

’ðnÞðxÞ�nðzÞ;
(62)

and the orthogonal conditions are

~Tð2�	0Þ2R3
Z

dZ
~H1=2
0 ðZÞ

K1=3ðZÞ c mc n ¼ �mn; (63)

~Tð2�	0Þ2R3M2
KK

~H0ð0ÞU2
KK

Z
dZ ~H1=2

0 ðZÞKðZÞ�m�n

¼ �mn: (64)

The eigenvalue equation for c m is

� ~H�1=2
0 ðZÞK1=3ðZÞ@Zð ~H1=2

0 ðZÞKðZÞ@Zc mÞ ¼ �mc m;

(65)

with �n the eigenvalue. The eigenfunction �nðzÞ can be
chosen as

�n ¼ 1

MnUKK

@Zc n ¼ 1

Mn

_c nðzÞ;

Mn ¼ �1=2
n MKK

~H1=2
0 ð0Þ;

(66)

for n � 0, and for n ¼ 0,

�0 ¼ c

~H1=2
0 ðZÞKðZÞ ;

c ¼
�
~Tð2�	0Þ2R3M2

KK
~H0ð0ÞU2

KK



Z

dZ ~H�1=2
0 ðZÞK�1ðZÞ

��1=2

¼ 9ð3�Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffi
2
Nc

p

M2

KK‘
2
s
~H3=2
0 ð0Þ

1ffiffiffiffiffiffiffi
F 0

p ; (67)

with

F 0 � F
�
�

2
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~H�1

0 ð0Þ
q �

;

F ð�; kÞ �
Z �

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin 2�

p ;

the elliptic integrals of the first kind. The DBI action of the
D8-brane can be recast into

SD8 ¼ �
Z

d4x

�X1
n¼1

�
1

4
FðnÞ
��FðnÞ�� þ 1

2
M2

nB
ðnÞ
� B�ðnÞ

�Mn@�’
ðnÞB�ðnÞ

�
þ X1

n¼0

1

2
@�’

ðnÞ@�’ðnÞ
�
: (68)

By replacing BðnÞ
� ! BðnÞ

� þM�1
n @�’

ðnÞ through a gauge

transformation, the action becomes

SD8 ¼ �
Z

d4x

�X1
n¼1

�
1

4
FðnÞ
��FðnÞ�� þ 1

2
M2

nB
ðnÞ
� B�ðnÞ

�

þ 1

2
@�’

ð0Þ@�’ð0Þ
�
: (69)

We see that the masses for the massive vector bosons are

justMn and there is a massless pseudoscalar ’ð0Þ, which is
just the Nambu-Goldstone boson. For the Uð1Þ case here,
this Goldstone boson is just like the �0 in the real world.
Due to the Uð1ÞA anomaly, its mass is related to the
topological susceptibility of the pure Yang-Mills theory.
This has already been discussed in [32] and met some
difficulties in obtaining the analytic results. So we will
not go deep in this direction.
We can now analyze the ~� dependence of the mass

spectrum of the vector mesons by performing the same
procedure as in the previous section. First we find out the
asymptotic behavior when Z approaches infinity,

c n � 1

Z
; (70)

and define a new function,

~c nð�Þ ¼ e�c nðe�Þ; (71)

which satisfies the equation

d2 ~c n

d�2
þG0 d ~c n

d�
þ F0 ~c n ¼ 0; (72)

where

F0 ¼ 2� 1

1þ e�2�
� 1

1þ ~H0ð0Þe�2�
þ �ne

�2�=3

ð1þ e�2�Þ4=3

� X1
k¼0

F0
ke

�2k�=3;

G0 ¼ �3þ 1

1þ e�2�
þ 1

1þ ~H0ð0Þe�2�

� X1
k¼0

G0
ke

�2k�=3; (73)

in which the first few nonvanishing components are

F0
1 ¼ �n; F0

3 ¼ 1þ ~H0ð0Þ; F0
4 ¼ � 4

3
�n; . . .

G0
0 ¼ �1; G0

3 ¼ �1� ~H0ð0Þ; . . . : (74)

With these coefficients we can work out the expansion of
c n,

c nðZÞ � 1

Z
þ �0

1

Z5=3
þ �0

2

Z7=3
þ �0

3

Z2
þ � � � ; (75)

where
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�0
1 ¼ � 9

10
�n; �0

2 ¼
81

280
�2

n;

�0
3 ¼ � 1þ ~H0ð0Þ

6
� 27

560
�3

n; . . . :

(76)

Using the shooting method to solve this two-point
boundary value problem, we obtain the evolutions of the
first two eigenvalues with respect to �, which are shown in
Fig. 5, and the corresponding masses are shown in Fig. 6.

Similar to the scalar meson cases, the contributions from
the eigenvalues are not comparable to the one from the
H0ðUKKÞ factor: the trend of the eigenvalues for large � is
downward, while the trend for the final masses is upward.

This result is also different from theDð�1Þ-D3 case [14] in
which the vector mass is independent of q.
As Sakai and Sugimoto did in their original paper [26],

we could also consider the mass ratios,

M2
2

M2
1

¼ �2

�1

;
m2

1

M2
1

¼ 
1

�1

: (77)

With the lowest two vector mesons assigned to ð770Þ and
a1ð1260Þ, and the lowest-lying scalar assigned to isospin
one a0ð1450Þ, these two ratios can be estimated to be 2.51
and 3.61 [26], respectively. Our results for these ratios are
plotted in Fig. 7. It is interesting to see that the first
estimated ratio can be reached by tuning the ~� parameter

0 0.005 0.01

0.45

0.55

0.65

1

0 0.005 0.01

1.56

1.57

1.58

2

FIG. 5. The � dependence of �1 and �2.

0 0.005 0.01

2.4

2.8

3.2

M2
2 M1

2

0 0.005 0.01

4.6

4.7

4.8

4.9

m1
2 M1

2

FIG. 7. The � dependence of M2
2=M

2
1 and m2

1=M
2
1.

0 0.005 0.01

0.8

1.2

1.6

M1 MKK

0 0.005 0.01

1

2

3

M2 MKK

FIG. 6. The � dependence of M1 and M2.
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to some certain value, and the second ratio in our result is
closer to the experimental value with ~� turned on.
However, this should not be taken seriously, since the
experimental value is in the true vacuum in which the
condensate htrðF��

~F��Þi may be almost zero.

VI. MULTIFLAVOR CASE

As in theS-Smodel,wecan extend the previous discussion
to themultiflavor case, i.e.,Nf > 1.Wewill see that themass

formulas for vector mesons are the same as in the one-flavor
case, and there is no new information for the vector meson
mass spectrum. However, we can study the ~� dependence of
f� and the couplings of vectors and Goldstones. Since we
closely follow S-S’s original paper in the deduction, we will
be brief and refer the readers to S-S’s paper [26].

In the multiflavor case, the gauge fluctuations on
Nf-flavor D8-branes are non-Abelian, and the DBI action

becomes

SD8 ¼ �T̂ð2�	0Þ2
Z

d4xdz2H1=2
0 ðUzÞTr



�
1

4

R3

Uz

F��F
�� þ 9

8

U3
z

UKK

Fz�F
z�

�
; (78)

where

T̂ � ~T

2
¼ 1

3gs
T8�4U

1=2
KKR

3=2 ¼ MKKNc
~H1=2
0 ð0Þ

432�5‘6s
; (79)

with field strength FMN ¼ @MAN � @NAM þ ½AM; AN	 for
UðNÞ gauge field AM on the D8-branes. The contractions
for � and � are done by using ���.

The Uðx�Þ � exp f2i�=f�g field in the usual chiral
Lagrangian is realized as

Uðx�Þ ¼ P exp

�
�
Z 1

�1
dz0Azðx�; z0Þ

�
¼ ��1þ ðx�Þ��ðx�Þ;

(80)

where ��1� ðx�Þ � P exp f�R�1
0 dz0Azðx�; z0Þg is defined

for convenience.

A. Pion Lagrangian

In ��ðx�Þ ¼ 1 gauge, one can expand the non-Abelian
gauge field as

A�ðx�; zÞ ¼ U�1ðx�Þ@�Uðx�Þ 1þ ĉ 0ðzÞ
2

þ X
n�1

BðnÞ
� ðx�Þc nðzÞ; (81)

where

ĉ 0ðzÞ ¼
R
Z
0 dZ

~H�1=2
0 ðZÞK�1ðZÞR1

0 dZ ~H�1=2
0 ðZÞK�1ðZÞ

¼ 1

F 0

F
�
arctan

z

UKK

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~H�1

0 ð0Þ
q �

; (82)

with F and F 0 the elliptic integrals defined in (68). Now
since we are only interested in the pion field, all the excited

vector modes BðnÞ
� (n � 1) can be omitted, and the field

strength can be written as

F�� ¼ ½U�1@�U;U�1@�U	 ĉ
2
0 � 1

4
;

Fz� ¼ U�1@�U
@z ĉ 0

2
:

(83)

Substituting (83) into (78), we obtain the effective action
for pion

SD8 ¼ �T̂ð2�	0Þ2
Z

d4xTrðAðU�1@�UÞ2

þ B½U�1@�U;U�1@�U	2Þ; (84)

with

A �
Z

dz
9

4

U3
z

UKK

H1=2
0 ðUzÞ

�
@z ĉ

2

�
2 ¼ 9UKK

~H1=2
0 ð0Þ

8F 0

;

B �
Z

dz
R3

2Uz

H1=2
0 ðUzÞ

�
ĉ 2

0 � 1

4

�
2 ¼ R3

32F 4
0

bð ~H0ð0ÞÞ:

(85)

Here bð ~H0Þ is an integral constant defined by

bð	Þ�
Z
dZ

ð	þZ2Þ1=2
ð1þZ2Þ5=6

2
4F 2

0
@arctanZ;

ffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

	

s 1
A�F 2

0

3
52

:

(86)

Comparing this result with the Skyrme model [35] in
which the action is

S¼
Z
d4xTr

�
f2�
4
ðU�1@�UÞ2þ 1

32e2
½U�1@�U;U�1@�U	2

�
;

(87)

we can read off f2� and the dimensionless e2,

f2� ¼ 4T̂ð2�	0Þ2A ¼ ~H2
0ð0Þ

108�3F 0


NcM
2
KK;

e2 ¼ 1

32T̂ð2�	0Þ2B ¼ 216�3F 4
0

~H0ð0Þbð ~H0ð0ÞÞ
1


Nc

:

(88)

Now the pion decay constant f� and the parameter e are
both affected by the glue condensate ~�. As before, we use �
defined in (28) instead of ~�, and the � dependence of f�
and e is shown in Fig. 8 where we have defined

~f� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
108�3


NcM
2
KK

s
f� ¼ ~H0ð0Þffiffiffiffiffiffiffi

F 0

p ;

~e �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nc

216�3

s
e ¼ F 2

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~H1=2
0 ð0Þbð ~H0ð0ÞÞ

q
(89)
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for convenience. We can see that f� goes up while e
declines with �.

B. Vector mesons

Next we consider the first excited vector mode Bð1Þ
�

which is identified as the  meson. In the ��1þ ðx�Þ ¼
��ðx�Þ ¼ exp ði�ðx�Þ=f�Þ gauge, A� can be expanded as

A�ðx�; zÞ ¼ i

f�
@��ðx�Þĉ 0ðzÞ þ 1

2f2�
½�ðx�Þ; @��ðx�Þ	

þ v�ðx�Þc 1ðzÞ (90)

where v� ¼ Bð1Þ
� . Thus the field strength is

F�� ¼ i

f�
ð½@��; v�	 þ ½v�; @��	Þc 1 ĉ 0

þ 1

f2�
½@��; @��	ð1� ĉ 2

0Þ þ ð@�v� � @�v�Þc 1

þ ½v�; v�	c 2
1 þOðð�; v�Þ3Þ;

Fz� ¼ i

f�
@��@z ĉ 0 þ v�@zc 1: (91)

The effective action involving � and v� up toOðð�; v�Þ3Þ
can be obtained

SD8 ¼
Z

d4xf�a�2Trð@��@��Þ
þ av2ðTrð@�v� � @�v�Þ2 þm2

vTrv
2
�Þ

þ av3Trð½v�; v�	ð@�v� � @�v�ÞÞ
þ av�2Trð½@��; @��	ð@�v� � @�v�ÞÞ
þOðð�; v�Þ4Þg: (92)

Then we determine all the coefficients one by one. The
coefficient before the kinetic term of pion is

a�2 ¼ 2T̂ð2�	0Þ2
f2�

Z
dz

9

8

U3
z

UKK

H1=2
0 ðUzÞð@z ĉ 0Þ2 ¼ 1

(93)

due to the definition of f� in (88). Next, we redefine

�1ðZÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T̂ð2�	0Þ2R3

q
c 1ðUKKZÞ; (94)

so that it is properly normalized and the coefficient before
the vector kinetic term is

av2 ¼ T̂ð2�	0Þ2
Z

dz
R3

Uz

H1=2
0 ðUzÞc 2

1ðzÞ

�
Z

dZK�1=3ðZÞ ~H1=2
0 ðZÞ�2

1ðZÞ ¼ 1 (95)

by the orthogonal condition (63). This leads to

m2
v ¼ av2m2

v

¼ T̂ð2�	0Þ2
Z

dz
9

4

U2
z

UKK

H1=2
0 ðUzÞ

�
dc 1ðzÞ
dz

�
2

¼ �1M
2
KK

~H0ð0Þ � M2
1; (96)

which is in agreement with Eq. (66) except for a redefini-

tion of T̂. So the ~� dependence of the vector mass is the
same as in the one-flavor case. The three-point self-
coupling for the vector field is

av3 ¼ T̂ð2�	0Þ2
Z

dz
R3

Uz

H1=2
0 ðUzÞc 3

1ðzÞ

¼ ð6�Þ3=2ffiffiffiffiffiffiffiffiffi

Nc

p Iv3ð ~H0ð0ÞÞ: (97)

Similarly, the vector-Goldstone-Goldstone(VGG) three-
point coupling is

av�2 ¼ T̂ð2�	0Þ2
f2�

Z
dz

R3

Uz

H1=2
0 ðUzÞc 1ð1� ĉ 2

0Þ

¼ �ð3�Þ3=2
M2

KK

ffiffiffiffiffiffiffiffiffiffiffiffi
2
Nc

p Iv�2ð ~H0ð0ÞÞ: (98)

Here we have defined

0 0.005 0.01

0.8

2

3.2

f

0 0.005 0.01

0.3

0.4

0.5

0.6

e

FIG. 8. The � dependence of ~f� and ~e.

SAKAI-SUGIMOTO MODEL IN D0-D4 BACKGROUND PHYSICAL REVIEW D 88, 026016 (2013)

026016-11



Iv3ð ~H0ð0ÞÞ ¼ 1

~H1=4
0 ð0Þ

Z
dZ

ð ~H0ð0Þ þ Z2Þ1=2
ð1þ Z2Þ5=6 �3

1ðZÞ;

Iv�2ð ~H0ð0ÞÞ ¼ 2F 0

� ~H7=4
0 ð0Þ

Z
dZ

�
1� 1

F 2
0

F 2ðarctanZ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~H�1

0 ð0Þ
q

Þ
� ð ~H0ð0Þ þ Z2Þ1=2

ð1þ Z2Þ5=6 �1ðZÞ:
(99)

We can see that the couplings depend on ~� both explicitly
in ~H0ð0Þ in the integrands and the coefficients before the
integrals, and implicitly in eigenfunction c 1 through the
appearance of ~H0ðZÞ in the eigenvalue equation. The de-
pendence is illustrated in Fig. 9. So both the three-point
self-interaction of the vector meson and the VGG coupling
are becoming weaker when ~� is turned on.

VII. CONCLUSION AND DISCUSSION

In this paper, we have studied the S-S model in the D0-D4
background which corresponds to the gauge theory in an
excited state with a nonzero expectation value of
htrðF��

~F��Þi. The effects of this quantity on the meson

spectra, pion decay constant, and the lowest-lying three-
vector and vector-Goldstone-Goldstone couplings are
studied. The dependence of these quantities on ~� comes in
two parts: one is an explicit dependence in the H0ðUKKÞ
factor in the formulas and the other is implicit in the eigen-
values and eigenfunctions [see (52), (65), and (99)]. The ~�
dependence of the mass spectra are different from the
Dð�1Þ-D3 case in [14]. On the gravity side, this ~� depen-
dence comes from the backreaction of theD0 charges to the
metric and takes effect by coupling the metric to the flavor
branes in the DBI action. On the field theory side, the glue
condensate comes into play through its backreaction on the
glue fluctuations, which couple to the flavors through glue-
quark couplings. Itmust be a strong couplingnonperturbative
phenomenon to have sizable effects on the mass spectra and
the couplings. So these two pictures seem to be consistent.
However, the ~� dependence in the metric always appears in
~�2, the squared form. TheChern-Simons termswithC1 form
field for D8 is zero since it involves fluctuations in the S4
directions. So there is no explicit P or CP breaking terms in
the effective Lagrangian from DBI action—no P or CP

violating mixings and interactions, which seem to be strange
since P or CP is broken due to nonzero condensate ~�. One
tends to give a hand-waving argument as follows: Since the
condensate is in the pure glue sector, there could be P orCP
violating mixings of glueballs when ~� is nonzero. The P or
CP violating mixings of mesons in this model only happen
through intermediate glueball mixing, and due to the OZI
rule, this process may be suppressed in the large Nc.
In this paper we have not studied the Chern-Simons term

containing f4. This term can produce more interaction
terms [27] and is also related to the baryons in this model
[28,29]. It is easy to extend the discussions to this term in
the D0-D4 background, which allows one to learn more
interactions and the baryon properties with regard to the
condensate ~�. However, to introduce deconfinement tem-
perature into this model is a little difficult since this needs a
background with a horizon to give the deconfinement
temperature in the four-spacetime also with the form field
C�d� in the fifth direction, which may not be easy to find.
The string theory background used in this paper corre-

sponds to a gauge theory with a real Euclidean condensate
htrðF��

~F��Þi as in [10] in which the gauge theory back-

ground was claimed to be self-dual. Since our background
here is not supersymmetric, the self-dual property is not
clear at present. Considering the quantum effect there could
be some modification to ~�. The situation that a nonextremal
gravity background can lead to a non-self-dual field
strength has been studied in [36] in the context of the
localized instanton case. We leave this direction for future
research. The absolute value of the quantities studied in this
paper may not be of much significance. But the tendency of
these quantities as ~� is turned on may capture the qualita-
tive effect of the real Euclidean condensate in this model.
However, a real Euclidean condensate may not be realistic
in the real world, which is Minkowski. The string theory
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background for gauge theory with real Minkowski conden-
sates can also be found. However, there could arise some
other problems. We are still working on this possibility. The
preliminary result is that the real Minkowski condensate
may have opposite effects, compared to the Euclidean one,
on the quantities studied in this paper. This needs to be
confirmed in future work.

ACKNOWLEDGMENTS

This work is supported by the NSF of China under Grant
No. 11105138 and 11235010 and also by the Fundamental
Research Funds for the Central Universities under Grant
No. WK2030040020. We also thank S.-J. Sin for helpful
discussion.

[1] Yu. A. Simonov, Usp. Fiz. Nauk 166, 337 (1996) [Phys.
Usp. 39, 313 (1996)].

[2] H. Leutwyler, Phys. Lett. 96B, 154 (1980); Nucl. Phys.
B179, 129 (1981).

[3] P. Minkowski, Nucl. Phys. B177, 203 (1981).
[4] C. A. Flory, Phys. Rev. D 28, 1425 (1983).
[5] P. van Baal, Commun. Math. Phys. 94, 397 (1984).
[6] G. V. Efimov, A. C. Kalloniatis, and S.N. Nedelko, Phys.

Rev. D 59, 014026 (1998).
[7] D. Kharzeev, R. D. Pisarski, and M.H.G. Tytgat, Phys.

Rev. Lett. 81, 512 (1998); arXiv:hep-ph/9808366; arXiv:
hep-ph/0012012.

[8] K. Buckley, T. Fugleberg, and A. Zhitnitsky, Phys. Rev.
Lett. 84, 4814 (2000).

[9] D. Kharzeev, Phys. Lett. B 633, 260 (2006).
[10] H. Liu and A.A. Tseytlin, Nucl. Phys. B553, 231

(1999).
[11] A. Kehagias and K. Sfetsos, Phys. Lett. B 456, 22

(1999).
[12] K. Ghoroku, T. Sakaguchi, N. Uekusa, and M. Yahiro,

Phys. Rev. D 71, 106002 (2005).
[13] A. Karch and E. Katz, J. High Energy Phys. 06 (2002) 043.
[14] I. H. Brevik, K. Ghoroku, and A. Nakamura, Int. J. Mod.

Phys. D 15, 57 (2006).
[15] K. Ghoroku and M. Yahiro, Phys. Lett. B 604, 235 (2004).
[16] K. Ghoroku, M. Ishihara, and A. Nakamura, Phys. Rev. D

74, 124020 (2006).
[17] J. Erdmenger, K. Ghoroku, and I. Kirsch, J. High Energy

Phys. 09 (2007) 111.
[18] J. Erdmenger, A. Gorsky, P. N. Kopnin, A. Krikun, and

A.V. Zayakin, J. High Energy Phys. 03 (2011) 044.

[19] K. Ghoroku and M. Ishihara, Phys. Rev. D 77, 086003
(2008).

[20] K. Ghoroku, M. Ishihara, A. Nakamura, and F. Toyoda,
Phys. Rev. D 79, 066009 (2009).

[21] S.-J. Sin, S. Yang, and Y. Zhou, J. High Energy Phys. 11
(2009) 001.

[22] B. Gwak, M. Kim, B.-H. Lee, Y. Seo and S.-J. Sin, Phys.
Rev. D 86, 026010 (2012).

[23] S.-J. Sin and Y. Zhou, J. High Energy Phys. 05 (2009) 044.
[24] E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998).
[25] M. Kruczenski, D. Mateos, R. C. Myers, and D. J. Winters,

J. High Energy Phys. 05 (2004) 041.
[26] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843

(2005).
[27] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 114, 1083

(2005).
[28] H. Hata, T. Sakai, S. Sugimoto, and S. Yamato, Prog.

Theor. Phys. 117, 1157 (2007).
[29] K. Hashimoto, T. Sakai, and S. Sugimoto, Prog. Theor.

Phys. 120, 1093 (2008).
[30] K. Hashimoto, T. Sakai, and S. Sugimoto, Prog. Theor.

Phys. 122, 427 (2009).
[31] V. Kaplunovsky and J. Sonnenschein, J. High Energy

Phys. 05 (2011) 058.
[32] J. L. F. Barbón and A. Pasquinucci, Phys. Lett. B 458, 288

(1999).
[33] K. Suzuki, Phys. Rev. D 63, 084011 (2001).
[34] E. Witten, Nucl. Phys. B156, 269 (1979).
[35] I. Zahed and G. E. Brown, Phys. Rep. 142, 1 (1986).
[36] E. Bergshoeff, A. Collinucci, A. Ploegh, S. Vandoren, and

T. Van Riet, J. High Energy Phys. 01 (2006) 061.

SAKAI-SUGIMOTO MODEL IN D0-D4 BACKGROUND PHYSICAL REVIEW D 88, 026016 (2013)

026016-13

http://dx.doi.org/10.3367/UFNr.0166.199604a.0337
http://dx.doi.org/10.1070/PU1996v039n04ABEH000140
http://dx.doi.org/10.1070/PU1996v039n04ABEH000140
http://dx.doi.org/10.1016/0370-2693(80)90234-8
http://dx.doi.org/10.1016/0550-3213(81)90252-2
http://dx.doi.org/10.1016/0550-3213(81)90252-2
http://dx.doi.org/10.1016/0550-3213(81)90388-6
http://dx.doi.org/10.1103/PhysRevD.28.1425
http://dx.doi.org/10.1007/BF01224833
http://dx.doi.org/10.1103/PhysRevD.59.014026
http://dx.doi.org/10.1103/PhysRevD.59.014026
http://dx.doi.org/10.1103/PhysRevLett.81.512
http://dx.doi.org/10.1103/PhysRevLett.81.512
http://arXiv.org/abs/hep-ph/9808366
http://arXiv.org/abs/hep-ph/0012012
http://arXiv.org/abs/hep-ph/0012012
http://dx.doi.org/10.1103/PhysRevLett.84.4814
http://dx.doi.org/10.1103/PhysRevLett.84.4814
http://dx.doi.org/10.1016/j.physletb.2005.11.075
http://dx.doi.org/10.1016/S0550-3213(99)00259-X
http://dx.doi.org/10.1016/S0550-3213(99)00259-X
http://dx.doi.org/10.1016/S0370-2693(99)00431-1
http://dx.doi.org/10.1016/S0370-2693(99)00431-1
http://dx.doi.org/10.1103/PhysRevD.71.106002
http://dx.doi.org/10.1088/1126-6708/2002/06/043
http://dx.doi.org/10.1142/S0218271806007651
http://dx.doi.org/10.1142/S0218271806007651
http://dx.doi.org/10.1016/j.physletb.2004.10.048
http://dx.doi.org/10.1103/PhysRevD.74.124020
http://dx.doi.org/10.1103/PhysRevD.74.124020
http://dx.doi.org/10.1088/1126-6708/2007/09/111
http://dx.doi.org/10.1088/1126-6708/2007/09/111
http://dx.doi.org/10.1007/JHEP03(2011)044
http://dx.doi.org/10.1103/PhysRevD.77.086003
http://dx.doi.org/10.1103/PhysRevD.77.086003
http://dx.doi.org/10.1103/PhysRevD.79.066009
http://dx.doi.org/10.1088/1126-6708/2009/11/001
http://dx.doi.org/10.1088/1126-6708/2009/11/001
http://dx.doi.org/10.1103/PhysRevD.86.026010
http://dx.doi.org/10.1103/PhysRevD.86.026010
http://dx.doi.org/10.1088/1126-6708/2009/05/044
http://dx.doi.org/10.1088/1126-6708/2004/05/041
http://dx.doi.org/10.1143/PTP.113.843
http://dx.doi.org/10.1143/PTP.113.843
http://dx.doi.org/10.1143/PTP.114.1083
http://dx.doi.org/10.1143/PTP.114.1083
http://dx.doi.org/10.1143/PTP.117.1157
http://dx.doi.org/10.1143/PTP.117.1157
http://dx.doi.org/10.1143/PTP.120.1093
http://dx.doi.org/10.1143/PTP.120.1093
http://dx.doi.org/10.1143/PTP.122.427
http://dx.doi.org/10.1143/PTP.122.427
http://dx.doi.org/10.1007/JHEP05(2011)058
http://dx.doi.org/10.1007/JHEP05(2011)058
http://dx.doi.org/10.1016/S0370-2693(99)00607-3
http://dx.doi.org/10.1016/S0370-2693(99)00607-3
http://dx.doi.org/10.1103/PhysRevD.63.084011
http://dx.doi.org/10.1016/0550-3213(79)90031-2
http://dx.doi.org/10.1016/0370-1573(86)90142-0
http://dx.doi.org/10.1088/1126-6708/2006/01/061

