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We continue our study of open-string perturbation theory on the lightcone worldsheet lattice, which is

an M� N rectangular grid. Here M is the number of Pþ units, and N is the number of ixþ units. We

extend our previous analysis to the bosonic open-string one-planar-loop self-energy. We find that, when all

open-string coordinates satisfy Neumann conditions, the ultraviolet worldsheet divergences associated

with the closed-string tachyon and boundary effects can be canceled by renormalization of bulk (AM1)

and boundary (BM0) worldsheet ‘‘cosmological constants.’’ The bulk divergence for the open string

matches that for the closed string. The open-string tachyon mass shift displays the dilaton logarithmic

divergence with the correct coefficient for its consistent absorption by renormalization of the string

tension. The ultraviolet contribution to the open-string gluon mass shift vanishes, in accord with its

interpretation as a gauge particle. We also find that when the bosonic string ends on a D-brane, additional

negative powers of lnM multiply the bulk and boundary divergences. These can no longer be canceled by

the ‘‘cosmological constants,’’ perhaps pointing to the need, in the presence of D-branes, for the

cancellations of divergences provided by supersymmetry.
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I. INTRODUCTION

The lightcone parameterization of the string worldsheet
[1,2] provides a framework for the description of multi-
loop interacting string diagrams [3]. The definition of the
lightcone worldsheet path integrals on a worldsheet lattice
[4] then provides a concrete nonperturbative method to
study this multiloop expansion numerically. Monte Carlo
methods should be particularly apt when the diagrams are
restricted to planar open-string multiloop diagrams, for
which string interactions decorate the worldsheet lattice
in a local manner. This restricted sum of diagrams defines
the ’t Hooft large-N limit [5] of the interacting string
theory, where N is the size of the Chan-Paton matrices
associated with constraining the ends of each open string
to move on a stack of N D-branes. In the case where these
D-branes are coincident D3-branes, the open-string spec-
trum contains a massless UðNÞ gauge particle in four
spacetime dimensions. This then indicates that the zero-
slope limit �0 ! 0 [6] of this sum of diagrams could
describe large-N QCD [7]. In this article we restrict our
worldsheet lattice studies to the bosonic string. We should
keep in mind that the bosonic open-string tachyon could
make applications to QCD problematic, either through a
failure to stabilize the vacuum or through a stabilization
that breaks the UðNÞ gauge invariance. If so, these prob-
lems might be cured by replacing the bosonic open string
with the even G-parity bosonic sector of the Ramond-
Neveu-Schwarz model [8–10].

Given that wewill focus on the bosonic string, which has
open-string tachyons and has not been shown to stabilize, it

is necessary, for our studies, to impose an infrared cutoff
that temporarily stabilizes the theory. As we will describe
shortly, there is a nice way to do this in the context of the
worldsheet lattice. In effect, we can naturally impose an
energy cost to the existence of each open-string end such
that virtual open strings can only exist for relatively short
times. Note that closed-string tachyons are not affected by
this infrared cutoff. But closed strings do not propagate
within the planar open-string diagrams: in fact, their ex-
istence is only felt in their disappearance into the vacuum
as described by the holes in the multiloop worldsheet.
Indeed, if we interpret the holes as closed-string emis-
sion/absorption by the vacuum, each planar multiloop
diagram can be interpreted as a closed-string tree in a
closed-string condensate. Thus, the ’t Hooft limit just
provides us with the subset of diagrams which might
stabilize the vacuum via closed-string condensation. The
divergences, which one would normally think of as infra-
red properties of the closed-string amplitudes, are actually
ultraviolet divergences on the open-string worldsheet,
which are regulated by the worldsheet lattice itself.
Over the last two years, we have been critically analyz-

ing the continuum limit of the lattice path integrals for the
simplest one-loop open-string worldsheets [11,12], and
this article is a continuation of these studies. Our motiva-
tion is to clearly understand the UV divergence structure
emerging from the continuum limit of the lattice and to
determine whether all UV divergences can be consistently
dealt with, either through cancellation against naturally
defined worldsheet counterterms or through renormaliza-
tion of the physical parameters of the theory, the string
tension T0 or the ’t Hooft coupling Ng2. Our previous
articles [11,12] discussed these issues in the context of
the one-loop open-string corrections to the closed-string
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propagator. Because the only boundary was that of the slit
describing the open-string loop, the UV divergences, in
this case, arise only from the limit that the slit length
vanishes. For the open-string propagator analyzed in the
present article, there are additional UV divergences arising
from the collision of the slit with the boundaries of the
open-string worldsheet. The method of Ref. [11], which
took a string field theory approach to the construction of
the one-loop propagator proved insufficiently precise to
deal with these boundary divergences. But here we suc-
cessfully apply the worldsheet methods introduced in
Ref. [12] to this problem. The key is to represent the lattice
worldsheet propagator in terms of normal modes in dis-
crete time rather than normal modes in discrete space as
was done in Ref. [12]. This makes the discrete space
dependence explicit, so that the boundary contributions
to the UV divergence structure can be efficiently analyzed.

The Giles-Thorn (GT) discretization of the worldsheet
[4] begins with a representation of the free closed- or open-
string propagator as a lightcone worldsheet path integral
defined on a lattice. The lattice replaces the transverse
coordinates of the string xð�; �Þ, living on a rectangular

Pþ � T domain, with discretely labeled coordinates xjk ¼
xðkaT0; jaÞ, living on an M� N grid with spacing a,
where Pþ ¼ MaT0 and T ¼ aðN þ 1Þ. The free-string
propagator is then simply a Gaussian integral

D0 ¼
Z Y

kj

dxjke
�S;

S ¼ T0

2

X
kj

½ðxkjþ1 � xjkÞ2 þ ðxkþ1
j � xk

jÞ2�

� T0

2
xT ���1x; (1)

where the MN �MN matrix � is the lattice worldsheet
propagator. Then, up to an overall normalization factor,

D0 ¼ det�ðD�2Þ��1, where D is the spacetime dimension
(D ¼ 26 for the bosonic string).

At zero loops, the UV divergences arising in the con-
tinuum limit of the GT lattice representation of the open-
and closed-string propagators reside in bulk and boundary
contributions to the ground-state energies. The lightcone

energy is P� ¼ ðP0 � P1Þ= ffiffiffi
2

p
, and one finds in the con-

tinuum limit [4]

aP�
closed;G � ðD� 2Þ

�
�0M� �

6M
þOðM�2Þ

�
; (2)

aP�
open;G � ðD� 2Þ

�
�0M� �0 � �

24M
þOðM�2Þ

�
: (3)

For the GT lattice, one has specifically �0 ¼ 2C=� and

�0 ¼ ln ð1þ ffiffiffi
2

p Þ, where C is Catalan’s constant.
Remembering thatPþ ¼ aMT0, we see that the 1=M terms
precisely account for the tachyonic masses of the free
closed and open strings. As explained in Ref. [4], the

�0M term enters time evolution as an exponential of the
combination TP� ¼ ðN þ 1ÞM�0 which is simply propor-
tional to the discretized area ðN þ 1ÞM of the lattice: �0 is
just a contribution to the worldsheet bulk ‘‘cosmological
constant’’ expected in any quantum field theory. Because
the interactions preserve this discrete area, one can harm-
lessly introduce a bare bulk cosmological constant Awhich
is ultimately chosen to cancel all bulk contributions to the
string energies. Similarly, the�0 can be associated with the
free ends of the open string because it enters the evolution
as an exponential of the combination ��0ðN þ 1Þ propor-
tional to the length of the worldsheet boundary. Then we
can consistently introduce a bare worldsheet-boundary
cosmological constant B chosen to cancel all these bound-
ary contributions to the string energies. Unlike the bulk
cosmological constant, this boundary term alters the dy-
namics. It is this parameter that provides the infrared cutoff
we alluded to earlier. It is naturally nonzero: even at zero
loops it is necessary to absorb boundary divergences. For
the purposes of our lattice studies, we are free to choose it
large enough to suppress the open-string tachyonic
instability.
On the GT lattice, the sum of all open-string multiloop

planar diagrams can be obtained by summing over all
patterns of missing spatial bonds. Formally, this is

achieved by introducing Ising-like variables Sjk ¼ 0, 1

and taking the worldsheet action to be

SPlanar ¼ T0

2

X
ij

½ðxijþ1 � xi
jÞ2 þ Si

jðxiþ1
j � xi

jÞ2�

þ ðD� 2ÞBX
kj

ð1� SjkÞ �
X
ij

½Sijð1� Si
jþ1Þ

þ Si
jþ1ð1� Si

jÞ� ln g (4)

� T0

2
xT � ½��1 þ VðSÞ�xþ AðfSgÞ: (5)

The terms in AðfSgÞ insert the coupling constant g in the
appropriate way and allow for an open-string self-energy
counterterm B. Then we have

D ¼ D0

X
fSg
det�12ðI þ V�Þe�AðfSgÞ: (6)

When V is a sparse matrix, i.e., when there is a relatively

small number of missing bonds [e.g.,
P

kjð1� SjkÞ � M,

which can be arranged by taking B � 1], this will be a
particularly efficient way to evaluate the terms of pertur-
bation theory. Holding B sufficiently large serves as a
physical and convenient infrared regulator in our studies
of the properties of the planar diagrams.
The planar open-string loop expansion organizes the

sum over spins in Eq. (6) as a power series in g2, with
the number of loops equal to the number of ‘‘holes’’ in the
lattice. Orient the worldsheet so that the time axis (�) is
horizontal and the space axis (�) vertical. Then each hole
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is a horizontal row of contiguous missing links. The num-
ber of missing links is the number of time steps the broken
string lasts. In this article we study exclusively one-loop
corrections to the open-string self-energy, or, in this lan-
guage, a single row of contiguous missing links, as we can
see in Fig. 1. Since we are concerned here with energy
shifts to the free-string spectrum, the initial and final states
are energy eigenstates with the same energy, so we can
(and do) take the total number of time steps N ! 1,
keeping the slit’s size finite and its location in the vicinity
of N=2. Then a given diagram is characterized by the total
number of steps in space (i.e., the number of string bits)M,
the length of the slit in lattice units (or number of missing
links) (K � 1), and the number of spatial stepsM1 between
the slit and one of the open-string boundaries. The world-
sheet path integral will depend on M, K, M1, and in
principle K should be summed from 1 to1 andM1 should
be summed from 1 to M� 1. Of course, M is just propor-
tional to the fixed Pþ of the string state whose energy shift
is being calculated. The presence of the open-string
tachyon renders the K sum exponentially divergent.

The nature of this tachyonic divergence is easy to see.
In the one-loop correction to the open-string propagator,
the slit represents the propagation of two open strings
as an intermediate state. The initial and final state is a
single open string, say with ðmassÞ2 ¼ 2�ðn� 1ÞT0 with
n ¼ 0; 1; 2; . . . the mode number of the state. The
intermediate state is two open strings with ðmassÞ2 ¼
2�ðn1 � 1ÞT0, 2�ðn2 � 1ÞT0. If the two open strings last
for a time ðK � 1Þa, then the amplitude acquires a factor
exp f�aðK � 1Þ�P�g, where

a�P� ¼ �ðn1 � 1Þ
M1

þ �ðn2 � 1Þ
M�M1

� �ðn� 1Þ
M

: (7)

If n1 ¼ 0 (or n2 ¼ 0), �P� becomes negative for small
enoughM1 (orM�M1). IfM1,M�M1, andM are all of
order M in the continuum limit, the coefficient of (K � 1)

is of order M�1 so as long as K � M, which is the
ultraviolet region we study here, the exponent stays small.
On the other hand, eitherM1 orM�M1 can be as small as
1, in which case the coefficient of (K � 1) in the exponen-
tial growth is of order 1, even when K � M. These large
exponential factors cause practical difficulties with nu-
merical studies, but we will show that they are absent
from the order-M and order-M�1 contributions to the
self-energy.
Because the K sum is divergent, we suspend the sum

over K, keeping it fixed while we study the large-M
behavior. The ultraviolet structure that we wish to analyze
is defined by slits much shorter than Pþ, or in lattice units
K � M. The continuum limit is M ! 1, so we focus on
obtaining the limit of our calculations in the regime 1 �
K � M. As we contemplate numerical studies of multi-
loop diagrams, it is natural to restrict the hole size summa-
tions by simply taking B sufficiently large, rather than by
literally suspending them. With B large enough, the
tachyonic instability is stabilized, at the expense of losing
Lorentz invariance. Thus, our conclusions strictly apply to
this Lorentz-violating cutoff model.
We close this introduction with a brief summary of the

results of our previous work and an outline of the rest of
this paper. In Refs. [11,12] we analyzed the one-loop
correction to the closed-string energy. In this case, the
sum over M1 is trivial: it just supplies a factor of M.
Then the self-energy correction has the form of a single
sum over the slit length K,

�P� ¼ X1
K¼2

�P�
K ; (8)

and we found for M large at fixed K,

a�P�
K � �ðKÞMþ cðKÞ

M
þ dðKÞ

M3
þ � � � : (9)

We determined the large-K dependence of the coefficients
numerically to be �ðKÞ � K�3 and cðKÞ � K�1. Thus, the
coefficient of M summed over K is finite. This term in
the energy is a quadratic divergence, corresponding to the
closed-string tachyon. Here we see that it is in fact
harmless.1 The K�1 behavior of the 1=M term signals the
UV logarithmic divergence due to the closed-string dilaton.
This divergence is, of course, real but can be absorbed in the
slope parameter �0 ¼ 1=ð2�T0Þ. To prove this, it is impor-
tant that the divergence be universal for all states. Our work
on the closed-string self-energy showed that cðKÞ ¼ 0 for
the graviton and had the appropriate value for selected
massive closed-string states to be absorbable into T0.
In this article, we deal with the extra complications

of the open-string boundaries. In this case, the large-M
expansion at fixed K has many more terms:

M1

1

M

J K L

FIG. 1. One-loop open-string self-energy diagram on the lat-
tice worldsheet. A single open string splits at time J and rejoins
at time J þ K, with total time N þ 1 ¼ J þ K þ L ! 1 and J,
L� N=2. Thus the diagram is characterized by the number of
missing links K � 1, their positionM1, and total string lengthM.

1The harmlessness of the tachyon divergence in the continuum
amplitudes is usually argued by analytic continuation [13].
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a�P�
K � �0ðKÞMþ bðKÞ þ c0ðKÞ

M
þ d0ðKÞ

M2
þ � � � : (10)

Here we will show that �0ðKÞ ¼ �ðKÞ, necessary to show
the harmlessness of the bulk divergences. We also show
that c0ðKÞ ¼ cðKÞ=4, as required for the consistent absorp-
tion of the logarithmic divergences into the Regge slope
parameter. Moreover, we are able to obtain the large-K
behavior of the coefficients analytically, using the Fisher-
Hartwig formula for the asymptotic behavior of Toeplitz
determinants [14]. In obtaining these results it is crucial to
show that the exponential divergences, due to an inter-
mediate open-string tachyon with Pþ=ðaT0Þ ¼ Oð1Þ, do
not contribute to either the M term or the 1=M term. This
happens because, before theM1 sum, the expansion has the
form aþ b=M2, and the order-M term only arises by
summing M1 over a range of order M, and similarly for
the 1=M term, which comes from summing the 1=M2 term
over a similar range. We show that the dangerous expo-
nential divergences contribute only to the OðM0Þ and
higher orders in 1=M, starting at OðM�4Þ. The constant
term can be absorbed in a renormalization of B, but the
exponential factors multiplying the OðM�4Þ and higher
powers of 1=M raise practical obstacles to purely numeri-
cal efforts to extract the physically relevant coefficient of
M�1. Since these obstacles are directly associated with the
open-string tachyon instability, there is at least some hope
that if a stabilizing mechanism can be identified, the nu-
merical difficulties would be surmounted.

In Sec. II we review and generalize the representations
for the worldsheet propagator given in Ref. [12]. We then
use these results to analyze the open-string self-energy for
the tachyon (Sec. III) and the gluon and selected excited
states (Sec. IV). Then, in Sec. V we obtain the large-K
behavior of the coefficients in the 1=M expansion of the
self-energies. Section VI is devoted to numerical analysis of
our results. Our final Sec. VII gives a preliminary discus-
sion of the problems arising when we try to describe open
strings ending on D-branes, and the possibility that the
superstring alleviates them, as indicated by the discretiza-
tion of the continuum self-energy expressions for the latter.

II. WORLDSHEET PROPAGATORS

We gather in this section the expressions for the propa-
gator on the closed, open, and Dirichlet worldsheets found
in Ref. [12] (see also Ref. [15]). In that reference, the
worldsheet propagator was represented as a spatial normal
mode expansion. But representations based on temporal
normal modes are also useful, so we include them in our
presentation.
Of central interest are the worldsheet correlators of the

coordinates on theM� N lattice corresponding to the free
closed or open string:

�ij;kl ¼ hxjixlki ¼
R
Dxxjix

l
ke

�SR
Dxe�S

; (11)

where the worldsheet action S is appropriate to the type of
string coordinates (closed, open, or Dirichlet) being
described. Because the expectations are taken with
Gaussian weight, the two-point correlator in a single
dimension captures all of the relevant information. A
straightforward evaluation is to use closure to write the
numerator as the product of three string propagators (see
Appendix D): one from time 0 to j, one from time j to l,
and the last from time l to þðN þ 1Þ. We choose Dirichlet
boundary conditions in time: x0i ¼ xNþ1

i ¼ 0. We can

resolve xji , x
l
k into spatial normal modes qjm, qln respec-

tively. Then, because each normal mode integral is inde-

pendent, hqjmqlni ¼ �mnhqjmqlmi, one ends up with a simple
two-variable Gaussian:Z

dqjmdqlmq
j
mqlm exp

�
� 1

2
½A1q

j2
m þ A2q

l2
mÞ þ 2Bqjmqlm�

�

¼ � B

A1A2 � B2
det�1=2

A1 B

B A2

 !
;

hqjmqlni ¼ � B

A1A2 � B2
�mn: (12)

Here A1, A2 and B are read off from the formulas of
Appendix D. We set the q’s at the initial and final times
to zero.
Then for nonzero modes they are

A1 ¼ T0 sinh�½coth j�þ coth ðl� jÞ��; (13)

A2 ¼ T0 sinh�½coth ðN þ 1� lÞ�þ coth ðl� jÞ��;
B ¼ �T0 sinh�

sinh ðl� jÞ� ;
(14)

A1A2 � B2 ¼ T2
0sinh

2�½1þ coth j� coth ðN þ 1� lÞ�þ ðcoth j�þ coth ðN þ 1� lÞ�Þ coth ðl� jÞ��

¼ T2
0sinh

2�

�
sinh ðN þ 1Þ�

sinh j� sinh ðN þ 1� lÞ� sinh ðl� jÞ�
�
;

�B

A1A2 � B2
¼ 1

T0 sinh�

sinh j� sinh ðN þ 1� lÞ�
sinh ðN þ 1Þ� ; (15)
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where � is �o
m or �c

m for the open or closed string, respec-
tively. For the zero modes,

A10 ¼ T0

l

jðl� jÞ ; A20 ¼ T0

ðNþ 1� jÞ
ðNþ 1� lÞðl� jÞ ;

B0 ¼� T0

l� j
;

�B0

A10A20 �B2
0

¼ jðNþ 1� lÞ
T0ðNþ 1Þ :

(16)

Then the worldsheet propagator for the open-string world-
sheet is given by

�o
ij;kl ¼

jðN þ 1� lÞ
ðN þ 1ÞM þ 2

M

XM�1

m¼1

1

sinh�o
m

� sinh j�o
m sinh ðN þ 1� lÞ�o

m

sinh ðN þ 1Þ�o
m

cos
mði� 1=2Þ�

M

� cos
mðk� 1=2Þ�

M
; l > j: (17)

We must keep in mind that this formula applies when l > j.
In the opposite case, we switch the roles of j and l. In this
formula we have chosen to expand in the normal modes of
the spatial coordinates i, k. But we could equally well have
chosen to expand in normal modes in the time coordinates
j, l. In that case, the propagator takes the form

�o
ij;kl ¼

2

N þ 1

XN
n¼1

1

sinh�o
n

� cosh ði� 1=2Þ�o
n cosh ðM� kþ 1=2Þ�o

n

sinhM�o
n

� sin
nj�

N þ 1
sin

nl�

N þ 1
; k > i: (18)

In this case, the formula applies when k > i. In the opposite
case, we switch the roles of k and i.

For string self-energy calculations, we want to take
N ! 1, but with j, l well away [OðNÞ] from 0, N þ 1.

So, to study this limit we put j ¼ ðN þ 1Þ=2þ ĵ,

l ¼ ðN þ 1Þ=2þ l̂, and take the limit with ĵ, l̂ fixed.
Then the two representations take qualitatively different
forms. In the first case, we find

�o
ij;kl �

N þ 1

4M
� jl� jj

2M
þ 1

M

XM�1

m¼1

e�jl�jj�o
m

sinh�o
m

� cos
mði� 1=2Þ�

M
cos

mðk� 1=2Þ�
M

; (19)

and we see the zero-mode divergence in the first term linear
in N. In the second case, the sum over n turns into an
integral and we find

�o
ij;kl¼

Z 1

0
dx

coshði�1=2Þ�oðxÞcoshðM�kþ1=2Þ�oðxÞ
sinh�oðxÞsinhM�oðxÞ

�cosxðl�jÞ�: (20)

In this case, the zero-mode divergence shows up as a
divergence in the integral at the lower limit. In obtaining
this formula, we used

sin
nj�

N þ 1
sin

nl�

N þ 1
¼ sin 2 n�

2
cos

nĵ�

N þ 1
cos

nl̂�

N þ 1

þ cos 2
n�

2
sin

nĵ�

N þ 1
sin

nl̂�

N þ 1
:

(21)

The first term contributes only for odd n, and the second
term only for even n. But in the limit N ! 1 where the
sum over n becomes an integral, the right side can be
replaced by

sin
nj�

N þ 1
sin

nl�

N þ 1
! 1

2
cos xĵ� cos xl̂�

þ 1

2
sin xĵ� sin xl̂�

¼ 1

2
cos xðl̂� ĵÞ�

¼ 1

2
cos xðl� jÞ�: (22)

If the open-string coordinate satisfies Dirichlet boundary
conditions, the analogs of Eqs. (17) and (18) are

�D
ij;kl ¼

2

M

XM�1

m¼1

1

sinh�o
m

sinh j�o
m sinh ðN þ 1� lÞ�o

m

sinh ðN þ 1Þ�o
m

� sin
mi�

M
sin

mk�

M
; l > j (23)

and

�D
ij;kl ¼

2

N þ 1

XN
n¼1

1

sinh�o
n

sinh i�o
n sinh ðM� kÞ�o

n

sinhM�o
n

� sin
nj�

N þ 1
sin

nl�

N þ 1
; k > i: (24)

Correspondingly, the analogs of the N ! 1 formulas
[Eqs. (19) and (20)] are

�D
ij;kl ¼

1

M

XM�1

m¼1

e�jl�jj�o
m

sinh�o
m

sin
mi�

M
sin

mk�

M
(25)

and

�D
ij;kl ¼

Z 1

0
dx

sinh i�oðxÞ sinh ðM� kÞ�oðxÞ
sinh�oðxÞ sinhM�oðxÞ cosxðl� jÞ�:

(26)

In this case, the lower end of the integral shows no diver-
gence, because zero modes are absent.
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For completeness, we also mention the two alternative
forms for the worldsheet propagator on the closed-string
worldsheet. Expansion in spatial normal modes
gives

�c
ij;kl ¼

jðN þ 1� lÞ
ðN þ 1ÞM þ 1

M

XM�1

m¼1

1

sinh�c
m

� sinh j�c
m sinh ðN þ 1� lÞ�c

m

sinh ðN þ 1Þ�c
m

exp
2mði� kÞi�

M
;

l > j; (27)

whereas the expansion in temporal normal modes gives

�c
ij;kl ¼

1

N þ 1

XN
n¼1

1

sinh�o
n

cosh ðM=2� ji� kjÞ�o
n

sinh ðM=2Þ�o
n

� sin
nj�

N þ 1
sin

nl�

N þ 1
: (28)

In the first formula we have used Roman i ¼ ffiffiffiffiffiffiffi�1
p

to
distinguish it from the index i. Then taking the N ! 1
limit as before leads to, respectively,

�c
ij;kl �

N þ 1

4M
� jl� jj

2M
þ 1

2M

XM�1

m¼1

e�jl�jj�c
m

sinh�c
m

� exp
2mði� kÞi�

M
; (29)

�c
ij;kl ¼

1

2

Z 1

0
dx

1

sinh�o
n

cosh ðM=2� ji� kjÞ�oðxÞ
sinh ðM=2Þ�oðxÞ

� cos xðl� jÞ�: (30)

III. OPEN-STRING TACHYON SELF-ENERGY

The one-loop self-energy of the ground string state (the
tachyon) can be extracted from the string field propagator
[Eq. (6)] by limiting the Ising spin configurations to those
of a single hole of lengthK (i.e.,K � 1missing contiguous
missing links) and evaluating theN ! 1 limit at fixed spin
configuration, with the missing links in the vicinity of time
N=2. Excited initial and final string states are suppressed
exponentially, so one is left with an amplitude proportional
to the ground string expectation of the interaction, i.e., the
tachyon self-energy times N. The proportionality constant
is removed by simply deleting the factor D0 from the
expression. The overall factor of N is removed by fixing
the initial time step of the hole at say,N=2, so the Ising spin
sum is just the sum over the number of missing links and
over the spatial location of the hole. For the closed string,
that second sum just provides a factor of M by spatial
translation invariance. But it is nontrivial for the open
string. After all these steps, we arrive at the formula

��P� ¼ g2
X1
K¼2

XM�1

M1¼1

det�12ðI þ VðM1; KÞ�Þe�24BðK�1Þ:

(31)

The formula for the closed-string tachyon self-energy
simplifies because the summand is then independent of
M1, so the M1 sum is trivial, leaving only the single sum
over K. If B is set equal to its free-string value, the sum
over K is badly divergent, because the two-string inter-
mediate states include tachyon contributions which are
lower in energy than the single-string tachyon. Thus, in
our studies we are forced to choose B large enough to
regularize this sum. If one could get the answer as an
explicit function of B, one could in principle try to con-
tinue back to the free-string value. But the perturbation
expansion really does not make sense unless the tachyon
instability is resolved. What one can do is study the sum
over Ising spins nonperturbatively, holding B sufficiently
large so that the sums over S are convergent, and then scan
the results as a function of B in search of a meaningful
(i.e., Lorentz-invariant) result.

A. Self-energy formulas on the continuous worldsheet

Before doing the worldsheet lattice analysis, we recall
the formal continuum expressions for the open-string
tachyon and gluon self-energy in cylinder coordinates,
following the notations of Ref. [7]:

�P�
Tach ¼

Co

2Pþ
Z 1

0

dq

q3
1Q

n
ð1�q2nÞ24

Z 2�

0
d�

1

4sin2ð�=2Þ

�Y1
n¼1

�ð1�q2nei�Þð1�q2ne�i�Þ
ð1�q2nÞ2

��2

¼ Co

2Pþ
Z 1

0

dq

q3

Z 2�

0
d�

�
1þ24q2

4sin2ð�=2Þ�2q2þOðq4Þ
�
;

(32)

�P�
Gluon ¼

Co

2Pþ
Z 1

0

dq

q3
1Q

n
ð1� q2nÞ24

Z 2�

0
d�

�
1

4sin 2ð�=2Þ

� X1
n¼1

2nq2n

1� q2n
cosn�

�

¼ Co

2Pþ
Z 1

0

dq

q3

Z 2�

0
d�

�
1þ 24q2

4sin 2ð�=2Þ
� 2q2 cos �þOðq4Þ

�
; (33)

where in each case we display the UV behavior q� 0 of
the integrand. The conformal mapping to the lightcone
diagram, found in Ref. [16], determines the relation of
q; � to the length T and height �1 of the slit. Interestingly,
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� is simply proportional to �1, � ¼ 2��1=P
þ exactly.

The relation of q to T is an implicit one involving
elliptic functions, which we give only in the UV limit
q� 0:

q ¼ �TT0

8Pþ sin��1=P
þ � 5þ cos 2��1=P

þ

3

�
�

�TT0

8Pþ sin��1=P
þ

�
3 þOðT5Þ (34)

! �K

8M sin�M1=M
� 5þ cos 2�M1=M

3

�
�

�K

8M sin�M1=M

�
3 þOðK5Þ; (35)

where the second line shows q in the discretized variables
of the lattice, T ¼ Ka, �1 ¼ M1T0a.

It is now easy to discretize the self-energy shift in the
UV regime using

Co

2Pþ
Z

d�
Z dq

q3

! Co

a�T0M
2

X
M1;K

ð1þOðK4ÞÞ 64M
2

K3
sin 2 �M1

M
: (36)

Then, for the gluon mass shift, we have

a�P�
Gluon !

16�Co

T0

X
M1;K

�
1

�2K3
þ 3

8KM2sin 2�M1=M

� 1

8KM2
cos

2�M1

M
þOðK4Þ

�
:

As discussed above, we deal with the severe IR divergen-
ces by suspending the K sum as we study the large-M
limit:

a�P�
Gluon;K

! 16�Co

T0

�
M� 1

�2K3
þ 1

4K

XðM�1Þ=2

M1¼1

�
3

M2sin 2�M1=M

� 1

M2
cos

2�M1

M

�
þOðK4Þ

�
: (37)

The first term is just the familiar bulk term, which we also
encountered for the closed string, and it can be absorbed
in the worldsheet cosmological constant. The first term
in square brackets formally can contribute a physically

significant 1=M term, but also an order-M0 term.2 This
can be seen as follows:

XðM�1Þ=2

M1¼1

1

M2sin 2�M1=M

¼ XðM�1Þ=2

M1¼1

�
1

M2sin 2�M1=M
� 1

�2M2
1

�
þ XðM�1Þ=2

M1¼1

1

�2M2
1

� 1

6
� X1

m1¼ðMþ1Þ=2

1

�2M2
1

þ 1

M

Z 1=2

0
dx

�
1

sin 2�x
� 1

�2x2

�

� 1

6
� 2

�2ðMþ 1Þ þ
2

�2M
� 1

6
þOðM�2Þ: (39)

In this case, the coefficient of the 1=M term is zero.
The contribution of the second term in square brackets
involves

XðM�1Þ=2

M1¼1

1

M2
cos

2�M1

M

� 1

M

Z 1=2

0
dx cos 2�xþOðM�2Þ ¼ OðM�2Þ: (40)

So, in fact, there is no 1=M contribution to the gluon
self-energy,

a�P�
Gluon;K ! 16�Co

T0

�
M� 1

�2K3
þ 1

8K
þOðM�2Þ

�
; (41)

consistent with zero mass shift for the gluon.
For the tachyon self-energy, the first term in square

brackets is the same as in the gluon self-energy and
so gives no contribution to a 1=M term. The second

2Contributions to this constant order-M0 term also come from
higher terms in the q expansion of the integrand. In general, one
encounters M1 sums of the form

XðM�1Þ=2

M1¼1

1

M2nsin 2n�M1=M
� 1

M2n�1

Z 1=2

0
dx

�
1

sin 2n�x
�Xn

k¼1

ck
x2k

�

þXn
k¼1

XðM�1Þ=2

M1¼1

ck

M2ðn�kÞM2k
1

�Xn
k¼1

ck	ð2kÞ
M2ðn�kÞ þOðM�2nþ1Þ

¼ 	ð2nÞ
�2n

þOðM�2Þ; n> 1; (38)

where the ck are chosen to make the integral over x finite.
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term in square brackets, however, when discretized
becomes

�Coa

Pþ
Z dq

q

Z
d�!� Co

MT0

X
K

XM�1

M1¼1

2�

MK
��2�Co

MT0

X
K

1

K
;

(42)

giving the expected logarithmically divergent tachyon
mass shift. As we shall see in the remainder of this
article, the analysis of the lattice worldsheet is in quali-
tative accord with these results.

B. Lattice self-energy, single missing link, K ¼ 2

In coordinate space, the matrix V for a single missing
link at time j and between spatial positions k and kþ 1 in
the open-string worldsheet is

Vml;m0l0 ¼ ��lj�l0jð�m;kþ1�m0;kþ1 þ �m;k�m0;k

� �m;kþ1�m0k � �m0;kþ1�mkÞ; (43)

exactly as in the closed-string worldsheet. Keeping the
propagator � in coordinate space, the necessary determi-
nant of the contributing 2� 2 matrix can be taken over
from the closed-string case:

det ðI þ V�Þ ¼ det
1þ�ðkþ1Þj;kj ��kj;kj �ðkþ1Þj;ðkþ1Þj � �kj;ðkþ1Þj
��ðkþ1Þj;kj þ�kj;kj 1� �ðkþ1Þj;ðkþ1Þj þ �kj;ðkþ1Þj

 !

¼ 1� �ðkþ1Þj;ðkþ1Þj þ �kj;ðkþ1Þj þ �ðkþ1Þj;kj � �kj;kj: (44)

We now substitute for � the representation of Eq. (20) for
the open-string worldsheet propagator, which for l ¼ j
reduces to

�o
ij;kj¼

Z 1

0
dx

coshði�1=2Þ�oðxÞcoshðM�kþ1=2Þ�oðxÞ
sinh�oðxÞsinhM�oðxÞ ;

k>i; (45)

and we remind the reader that for k < i we switch the roles
of i and k. It is helpful to rewrite the numerator in the
integrand as

cosh ði� 1=2Þ�o cosh ðM� kþ 1=2Þ�o

¼ 1

2
½cosh�oðMþ i� kÞ þ cosh�oðM� k� iþ 1Þ�;

(46)

¼ 1

2
½cosh�oMþcosh�oðM�2iþ1Þ�; k¼ i; (47)

¼1

2
½cosh�oðM�1Þþcosh�oðM�2iÞ�; k¼ iþ1:

(48)

Inserting these results into Eq. (44), and relabeling k ! M1

to more suitably describe the position of the missing link,
leads to

det ðI þ V�oÞ ¼
Z 1

0
dx

sinh�oðxÞðM�M1Þ sinh�oðxÞM1

sinh ð�oðxÞM=2Þ cosh ð�oðxÞM=2Þ
� tanh

�oðxÞ
2

: (49)

Now �oðxÞ ¼ 2sinh�1 sin ð�x=2Þ, and changing integra-
tion variables to � ¼ �o requires

d�

dx
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 2ð�=2Þp
cosh ð�=2Þ : (50)

Then we can write

DM1
� det ðI þ V�oÞ

¼ 1

�

Z �0

0
d�

sinh�ðM�M1Þ sinh�M1

sinh ð�M=2Þ cosh ð�M=2Þ
� sinh ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sinh 2ð�=2Þp ; (51)

where �0 ¼ 2sinh�11. It is the value of � where the argu-
ment of the square root in the denominator of the integrand
vanishes.
We are interested in the limit M ! 1 of the quantity

��P�
2 ¼ XM�1

M1¼1

D�ðD�2Þ
M1

! XM�1

M1¼1

D�12
M1

¼ 2
X

M1<M=2

D�12
M1

þ DM=2�M;even: (52)

We begin with a study of the large-M behavior of DM1

itself. The explicitM dependence of the integrand is buried
in the ratio of sinh and cosh factors, which for fixed � > 0
has the behavior

sinh�ðM�M1Þ sinh�M1

sinh ð�M=2Þ cosh ð�M=2Þ

�
� 1� e�2�M1 þOðe��MÞ for M1 	 M

2 ;

1� e�2�ðM�M1Þ þOðe��MÞ for M1 
 M
2 :

(53)

Here the exponential terms are included to accurately
account for the cases M1 ¼ Oð1Þ, M�M1 ¼ Oð1Þ.
These terms are as small as the neglected terms when M1

and M�M1 are of order M. Next we use DM�M1
¼ DM1

to write the sum over M1 in terms of a sum over
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M1 	 M=2. (IfM is odd, it is precisely twice the sum over
M1 <M=2.) Then we break up

sinh�ðM�M1Þ sinh�M1

sinh ð�M=2Þ cosh ð�M=2Þ
¼ 1� e�2�M1 þ

�
� 2e�M�sinh 2M1�

sinhM�

�
(54)

and evaluate the integral separately for the first two terms
and the term in square brackets:

1

�

Z �0

0
d�ð1�e�2�M1Þ sinhð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sinh2ð�=2Þp ¼ 1

2
� IM1

; (55)

IM1
¼ 1

�

Z �0

0
d�e�2�M1

sinh ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 2ð�=2Þp : (56)

We leave the integral defining IM1
unevaluated, but we will

need its explicit behavior at large M1, which can be
obtained by expanding the coefficient of e�2�M1 in a power
series:

IM1
¼ 1

�

Z 1

0
d�e�2�M1

�
�

2
þ�3

12
þ���

�
þOðe�2M1�0Þ

¼ 1

8�M1
2
þ 1

32�M1
4
þOðM1

�6ÞþOðe�2M1�0Þ: (57)

The exponentially small corrections to this asymptotic
expansion come from the extension of the upper limit
from �0 to 1 used to evaluate the power corrections.

Finally, we turn to the contribution of the terms enclosed
in square brackets to DM1

. By construction it is exponen-

tially small, as M ! 1 at fixed �. Thus, in a manner
similar to our asymptotic analysis of IM1

, we can find its

power-behaved large-M behavior by expanding its coeffi-
cient in a power series in � and extending the upper limit of
integration to1. The errors in these steps are exponentially
small:

1

�

Z �0

0
d�

��
sinh ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sinh 2ð�=2Þp
� 1

�

Z 1

0
d�

�
�

2M2
þ �3

12M4
þ � � �

��
� 2e��sinh 2ðx�Þ

sinh�

�
(58)

� f2ðxÞ
2�M2

þ f4ðxÞ
12�M4

þ � � � ; (59)

where x � M1=M. Putting everything together, we have

DM1
¼ 1

2
� IM1

þ f2ðxÞ
2�M2

þ f4ðxÞ
12�M4

þ � � � : (60)

We are interested in the large-M behavior of ��P� �
aMþ bþ c=Mþ � � � through order 1=M. The sum over
M1 ranges over M� 1 values and can thus add up to a
power of M to the explicit 1=M dependence of the

summand. Thus, it is sufficient to keep only up to order
1=M2 in the summand.
Inserting these results into Eq. (52) and expanding to the

desired order gives for M odd3

��P�
2 ¼ 2

XðM�1Þ=2

M1¼1

��
1

2
� IM1

��12

� 12f2ðM1=MÞ
M2

�
1

2
� IM1

��13
�
: (61)

Now, IM1
is only small at large M1, so it is not safe to

expand in powers of IM1
. However, we can write�

1

2
� IM1

��p ¼ 2p þ 2p½ð1� 2IM1
Þ�p � 1�; p¼ 12;13;

(62)

where the second term behaves as 1=M2
1 at large M1.

Because of that extra convergence, the sum over M1 does
not add a factor of M to the explicit 1=M dependence.
So, for the first term in square brackets, the first term is of
order M and the second of order 1:

2
XðM�1Þ=2

M1¼1

�
1

2
� IM1

��12

¼ ðM� 1Þ212 þ 213
X1

M1¼1

½ð1� 2IM1
Þ�12 � 1�

� 213
X1

M1¼ðMþ1Þ=2
½ð1� 2IM1

Þ�12 � 1� (63)

� 212
�
ðM� 1Þ þ 2

X1
M1¼1

½ð1� 2IM1
Þ�12 � 1� � 12

�M

�
:

(64)

Similarly, for the 1=M2 term in square brackets, the first
term contributes order 1=M, but the second term stays of
order 1=M2:

� 213
12

�M2

XðM�1Þ=2

M1¼1

f2ðM1=MÞð1� 2IM1
Þ�13

��213
12

�M

Z 1=2

0
dxf2ðxÞ: (65)

So, we evaluate

Z 1=2

0
dxf2ðxÞ ¼

Z 1

0
d��

Z 1=2

0
dx

�
� 2e��sinh 2ðx�Þ

sinh�

�

¼ �2

24
� 1

2
: (66)

3WhenM is even, the upper limit is ðM� 2Þ=2, and there is an
additional term for M1 ¼ M=2.
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So we finally arrive at the large-M behavior

��P�
2 � 212

�
M� 1þ 2

X1
M1¼1

½ð1� 2IM1
Þ�12 � 1� � �

M

�

þOðM�2Þ: (67)

Although for simplicity we assumed that M was odd, it is
not difficult to see that the same result holds for M even.

C. Single slit with K� 1 missing links

As we showed in Ref. [12], in the case of a single slit
with K � 1 missing links between spatial positions k and
kþ 1, the path integral [Eq. (6)] involves a determinant of
the form

det ðIþV�Þ ¼ det ðhlpÞ; l;p¼ 1;2; . . .K� 1; (68)

where

hlp ¼ �lpþ�ðkþ1Þl;kp��kl;kpþ�kl;ðkþ1Þp��ðkþ1Þl;ðkþ1Þp:

(69)

Focusing on the open string, we insert the two equivalent
representations in Eqs. (19) and (20) for the propagators,
and again switch to a more distinct notation for the slit
position k ! M1, obtaining, respectively,

hlp ¼ �lp � 2

M

XM�1

m¼1

sin m�
2M sin 2 m�M1

Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2 m�

2M

q
�
�
sin

m�

2M
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2 m�

2M

r ��2jl�pj
(70)

¼
Z �0

0
d�

sinh �
2 cos ½2ðl� pÞsin�1ðsinh �

2Þ�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 2 �

2

q
� sinh�ðM�M1Þ sinh�M1

sinh ð�M=2Þ cosh ð�M=2Þ : (71)

In what follows, we will use the integral form [Eq. (71)].
Clearly the only difference from Eq. (51) is the additional
cosine factor, which carries the dependence on jl� pj. The
small-� behavior of the first fraction in the integrand of
Eq. (71) is given by

sinh�
2 cos ½2ðl�pÞsin�1ðsinh�

2Þ�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh2 �

2

q ¼ �

2�
þ½1� 3ðl�pÞ2��3

12�

þOð�5Þ: (72)

Hence, we see that contributions to the asymptotic expan-
sion of hlp coming from theOð�Þ term will be the same for

one or many missing links.
Separating the second fraction in the integrand of

Eq. (71) according to Eq. (54), we similarly obtain

hlp ¼ ~clp þ 
lp ¼ ðclp � IlpÞ þ 
lp; (73)

where

clp ¼
Z �0

0
d�

sinh �
2 cos ½2ðl� pÞsin�1ðsinh �

2Þ�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 2 �

2

q
¼
Z 1

0
dx

sin �x
2 cos ½ðl� pÞ�x�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2 �x

2

q ; (74)

Ilp ¼
Z �0

0
d�

sinh �
2 cos ½2ðl� pÞsin�1ðsinh �

2Þ�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 2 �

2

q e�2M1�;

(75)


lp ¼
Z �0

0
d�

sinh �
2 cos ½2ðl� pÞsin�1ðsinh �

2Þ�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 2 �

2

q
� 2� e�2M1� � e2M1�

�1þ e2M�
: (76)

The first part of the matrix element [Eq. (74)] can be shown
to coincide with the M-independent part of hlp for the

closed string. The ~cij combination, for M1 	 ðM� 1Þ=2,
encodes the leading behavior of the integrand for M
large.
Expanding as in Eq. (72), we may formally take the Ilp

integral term by term, using

Z �0

0
�s�1e�2M1� ¼ 1

ð2M1Þs
Z 2M1�0

0
�s�1e�� ¼ �ðs;2M1�Þ;

(77)

where �ðs; xÞ is the lower incomplete gamma function,
which for a positive integer s is

�ðs; xÞ ¼ ðs� 1Þ!� ðs� 1Þ!e�x
Xs�1

k¼0

xk

k!
: (78)

This expression is particularly useful for extracting the
large-M1 behavior of the integral, since up to exponentially
suppressed terms we can write

Ilp ¼ 1

8�M2
1

þ 1� 3ðl� pÞ2
32�M4

1

þOðM�6
1 Þ þOðe�2M1�Þ:

(79)

In a similar fashion, we obtain a large-M expansion for the
third integral, with x ¼ M1=M arbitrary:


lp ¼ 1

2�M2
f2ðxÞ þ 1� 3ðl� pÞ2

12�M4
f4ðxÞ þOðM�6Þ

þOðe�2M�Þ; (80)
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where fiðxÞ are the same functions that appeared in the
single-link case.4 Keeping terms of OðM�2Þ for the matrix
elements will of course yield the determinant to the same
accuracy, and in particular

det ðhlpÞ ¼ det

�
~clp þ f2ðxÞ

2�M2
þOðM�4Þ

�

¼ det ð~clpÞ
�
1þ f2ðxÞ

2�M2

XK�1

l;p¼1

ð~c�1Þlp
�
þOðM�4Þ:

(81)

This will be sufficient for obtaining the tachyon self-energy
[Eq. (31)] for fixed K andM1 summed up to the physically
relevant OðM�1Þ term, as the latter sum can contribute an
extra factor of M at most.5

Finally, another procedure to evaluate the large-M
expansion of the sum in question is to add and subtract

the value of the summand for large M1, as we did for the
single missing link. In particular, the analogues of Eq. (75)
for the quantities appearing in Eq. (81) are

det ð~clpÞ ¼ det ðclpÞ
�
1� 1

8�M2
1

XK�1

l;p¼1

ðc�1Þlp
�
þOðM�4

1 Þ

þOðe�2M1�Þ; (82)

XK�1

l;p¼1

ð~c�1Þlp ¼ XK�1

l;p¼1

ðc�1Þlp
�
1þ 1

8�M2
1

XK�1

l;p¼1

ðc�1Þlp
�

þOðM�4
1 Þ þOðe�2M1�Þ: (83)

Thus, focusing onM odd, we can calculate the self-energy
of a tachyon due to a single slit of K � 1 time steps as
follows [in all steps we keep terms up to OðM�2Þ in the
summand or equivalently OðM�1Þ for the full sum]:

��P�
K ¼ XM�1

M1¼1

det ðhlpÞ�12 ¼ 2
XðM�1Þ=2

M1¼1

det ð~clp þ 
lpÞ�12

’ 2
XðM�1Þ=2

M1¼1

det ð~clpÞ�12

�
1þ f2ðxÞ

2�M2

XK�1

l;p¼1

ð~c�1Þlp
��12

’ 2
XðM�1Þ=2

M1¼1

�
det ðclpÞ�12 þ ðdet ð~clpÞ�12 � det ðclpÞ�12Þ � 12

f2ðxÞ
2�M2

det ð~clpÞ�12
XK�1

l;p¼1

ð~c�1Þlp
�

’ ðM� 1Þ det ðclpÞ�12 þ 2
X1

M1¼1

ðdet ð~clpÞ�12 � det ðclpÞ�12Þ � 2
X1

M1¼Mþ1
2

ðdet ð~clpÞ�12 � det ðclpÞ�12Þ

� 24
XðM�1Þ=2

M1¼1

f2ðxÞ
2�M2

det ð~clpÞ�12
XK�1

l;p¼1

ð~c�1Þlp

’ M det ðclpÞ�12 þ
�
2
X1

M1¼1

ðdet ð~clpÞ�12 � det ðclpÞ�12Þ � det ðclpÞ�12

�

� 24 det ðclpÞ�12
XK�1

l;p¼1

ðc�1Þlp
� X1
M1¼Mþ1

2

1

8�M2
1

þ XðM�1Þ=2

M1¼1

f2ðxÞ
2�M2

�
:

For clarity, we mention that in the last step we dropped the term containing the difference between det ð~clpÞ�12
Pð~c�1Þlp

and its asymptotic value in M1, as it will only contribute at order OðM�2Þ in the final answer. Employing the asymptotics

X1
M1¼Mþ1

2

1

8�M2
1

¼ 1

4�M
þOðM�2Þ; XðM�1Þ=2

M1¼1

f2ðxÞ
2�M2

¼ � 1

4M�
þ �

48M
þOðM�3Þ; (84)

we finally obtain

4Neglecting exponentially suppressed factors, it is not difficult to calculate these functions explicitly. For example, f2ðxÞ ¼
�2

12M2 þ 1
4M2x2

� �2 csc ½�x�2
4M2 .

5This can be seen, for example, with the help of the Euler-Maclaurin formula.
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��P�
K ¼M det ðclpÞ�12 þ

�
2
X1

M1¼1

ðdet ð~clpÞ�12

� det ðclpÞ�12Þ � det ðclpÞ�12

�

� �

2M
det ðclpÞ�12

XK�1

l;p¼1

ðc�1Þlp þOðM�2Þ: (85)

Comparing with the respective summand for the closed
string, see Eqs. (38) and (59) in Ref. [12], we note that the
leading term in the two expressions is the same, and the
OðM�1Þ is four times larger in the closed string. The same
proportionality holds between the tachyon masses of the
free closed and open strings.

IV. OPEN-STRING GLUON SELF-ENERGY

To extract energy shifts for excited states, we examine
the propagator on a lattice worldsheet with some pattern of
missing links described by V:

�V ¼ ð��1 þ VÞ�1 ¼ �ðI þ V�Þ�1

¼ ���ðI þ V�Þ�1V� � �� �V�: (86)

Inserting the normal mode expansion [Eq. (19)] for � in
the rightmost side of this equation, we can write �V :

�V
ij;kl ¼

X
m;m0

ej�
o
m�l�o

m0
~�V
mm0

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�o

m sinh�o
m0

p cos
mði� 1=2Þ�

M

� cos
m0ðk� 1=2Þ�

M
; (87)

~�V
mm0 ¼ �mm0 �

~Vmm0

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�o

m sinh�o
m0

p ; (88)

~Vmm0 ¼ X
pq;rs

V pq;rse
�q�o

mþs�o

m0 cos
mðp� 1=2Þ�

M

� cos
m0ðr� 1=2Þ�

M
: (89)

Then the contribution of this diagram to the one-loop gluon
self-energy is

� ~�V
11det

�12ðI þ V�Þ; (90)

where V corresponds to the missing link patterns of a
single hole in the worldsheet.

A. Single missing link, K¼ 2

Working in the 2� 2 subspace selected by V for a single
missing link between positions k, kþ 1 at time j, we have,
setting A ¼ �ðkþ1Þj;kj � �kj;kj and A0 ¼ �ðkþ1Þj;kj �
�ðkþ1Þj;ðkþ1Þj,

V ¼ �1 1

1 �1

 !
; I þ V� ¼ 1þ A �A

�A0 1þ A0

 !
;

V ¼ ðI þ V�Þ�1V

¼ 1

1þ Aþ A0
1þ A0 A

A0 1þ A

 ! �1 1

1 �1

 !

¼ V

1þ Aþ A0 ¼ Vdet�1ð1þ V�Þ: (91)

Then

~Vmm0 ¼
�
cos

mðk�1=2Þ�
M

cos
m0ðkþ1=2Þ�

M

þcos
mðkþ1=2Þ�

M
cos

m0ðk�1=2Þ�
M

�cos
mðk�1=2Þ�

M
cos

m0ðk�1=2Þ�
M

�cos
mðkþ1=2Þ�

M
cos

m0ðkþ1=2Þ�
M

�
e�jð�o

m��o

m0 Þ

detð1þV�Þ

¼�4sin
m�

2M
sin

m0�
2M

sin
mk�

M
sin

m0k�
M

e�jð�o
m��o

m0 Þ

detð1þV�Þ;
(92)

~�V
mm0 ¼�mm0 þ4

sinm�
2M sinm0�

2M sinmk�
M sinm0k�

M

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�o

m sinh�
o
m0

p e�jð�o
m��o

m0 Þ

detð1þV�Þ :

(93)

Then the contribution to the self-energy of the excited
string state a�mj0i from this diagram (setting m0 ¼ m) is

��P�
2 ðmÞ ¼ XM�1

k¼1

�
1þ 4

sin 2ðm�
2MÞsin 2ðmk�

M Þ
M sinh�o

m

1

det ð1þ V�Þ
�

� det�12ð1þ V�Þ (94)

� XM�1

k¼1

�
1þm�

M2

sin2ðmk�
M Þ

detð1þV�ÞþOðM�4Þ
�
det�12ð1þV�Þ

�212
�
M�1þ2

X1
k¼1

½ð1�2IkÞ�12�1�þðm�1Þ�
M

�

þOðM�2Þ: (95)

It is, of course, significant that the coefficient of 1=M
vanishes for m ¼ 1, reflecting the fact that perturbative
corrections to the gluon mass should be 0.

B. Single slit with K� 1 missing links

As we have shown in Ref. [12], and can directly verify
from the definition

V � ðI þ V�Þ�1V ) ðI þ V�ÞV ¼ V; (96)

the elements of V are given by
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V kl;ks ¼ V ðkþ1Þl;ðkþ1Þs ¼ �V ðkþ1Þl;ks
¼ �V kl;ðkþ1Þs ¼ �h�1

ls ; (97)

where k denotes the spatial position of the slit, and the
matrix h is defined in Eqs. (70) and (71). In what follows,
we will again redefine k ! M1 so as to label the slit
position in a more distinctive manner. In this notation,
and with the help of Eq. (97), the Fourier transform
of V with the open-string wave functions [Eq. (89)]
becomes

~Vmm0 ¼ �4 sin
m�

2M
sin

m0�
2M

sin
mM1�

M

� sin
m0M1�

M

XK�1

q;s¼1

e�s�o
mþq�o

m0h�1
qs : (98)

Then the analogue of Eq. (95) for many missing links
will be

��P�
K ðmÞ ¼ XM�1

M1¼1

~�V
mmdet

�12ðI þ V�Þ

¼ XM�1

M1¼1

�
1�

~Vmm

M sinh�o
m

�
det�12ðhlpÞ

� XM�1

M1¼1

�
1þm�

M2
sin 2ðm�M1=MÞX

q;s

eðq�sÞ�o
mh�1

qs

þOðM�4Þ
�
det�12ðhlpÞ: (99)

The additional contribution for the gluon as compared to
the tachyon comes from the second term in the parenthesis
in Eq. (99). We are interested in the asymptotic expansion
of the latter equation only up to OðM�1Þ, and hence we
only need the leading term of the additional contribution.
As we discussed in the case of the tachyon, this may be
obtained by replacing all quantities in the sum in M1 with
their asymptotic form for large M1, which for the case at
hand implies

�X
q;s

eðs�qÞ�o
mh�1

qs

�
det�12ðhlpÞ !

�X
q;s

c�1
qs

�
det�12ðclpÞ:

(100)

Then, the sum in M1 can be done exactly in terms of
geometric series, and together with the contribution which
is identical to the tachyon self-energy [Eq. (85)], we obtain
the final formula:

��P�
K ðmÞ ¼ M det ðclpÞ�12 þ

�
2
X1

M1¼1

ðdet ð~clpÞ�12

� det ðclpÞ�12Þ � det ðclpÞ�12

�

þ ðm� 1Þ �

2M
det ðclpÞ�12

XK�1

l;p¼1

ðc�1Þlp

þOðM�2Þ: (101)

V. DEPENDENCE OF STRING SELF-ENERGY
ON SLIT SIZE

A. Leading term in the M expansion via
Fisher-Hartwig formula

We would like to know the dependence of the coeffi-
cients of Eq. (101) on the slit size K � 1, forM � K � 1.
At first this seems quite challenging, as the dependence on
n ¼ K � 1 enters primarily via the size of the det ðclpÞ
determinant.
Fortunately, this can be achieved by exploiting the fact

that the latter is the determinant of a Toeplitz matrix,
meaning that clp ¼ cðl� pÞ, or in other words, that all

elements in a left-to-right descending diagonal are the
same. In this case, there exists a formula for the asymptotic
behavior of the determinant due to Fisher and Hartwig
[14]; see also Ref. [17] for a more recent treatment. We
will rely on the notations of the latter paper, and in par-
ticular we will rewrite the matrix elements as Fourier
transforms of the same function fðzÞ,

clp ¼
Z 1

0
dx

sin ð�x=2Þcos ½ðl�pÞ�x�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2ð�x=2Þp

¼ 1

2�

Z 2�

0
d�fðei�Þe�iðl�pÞ�; l;p¼ 1; . . . ;n; (102)

where

fðei�Þ ¼ sin ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2ð�=2Þp (103)

or equivalently, for z ¼ ei�,

fðzÞ ¼ jz� 1j
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz� 1Þð1=z� 1Þ=4p : (104)

This implies that fðzÞ is a special case of the function
considered in Ref. [17], with the following values for the
parameters according to their conventions:

z0 ¼ 1; �0 ¼ 1

2
;

�0 ¼ 0; Vðei�Þ ¼ � log

0
@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2 �

2

s 1
A: (105)
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Consequently, the asymptotic behavior of the
n-dimensional determinant will be given by

det ðclpÞ ¼ n
1
4 exp

�
nV0 þ

X1
k¼1

kVkV�k � 1

2

X1
k¼1

Vk

� 1

2

X�1

k¼�1
Vk

�
Gð32Þ2
Gð2Þ ð1þOðn�1ÞÞ; (106)

where GðxÞ is the Barnes G function and Vk are the Fourier
modes of Vðei�Þ,

Vk¼ 1

2�

Z 2�

0
d�Vðei�Þe�ik�; VðzÞ¼ X1

k¼�1
Vkz

k: (107)

Our function Vðei�Þ is simple enough that V�k ¼ Vk, and
in particular we can calculate them exactly,

V0 ¼� log ð1þ ffiffiffi
2

p Þ; Vk ¼ 1

2k
ð1� ffiffiffi

2
p Þ2k; (108)

from which we can in turn obtain

X1
k¼1

kVkV�k ¼ � 1

4
log ½4ð�4þ 3

ffiffiffi
2

p Þ�;

X1
k¼1

Vk ¼
X1
k¼1

V�k ¼ � 1

2
log ½2ð ffiffiffi

2
p � 1Þ�:

(109)

Substituting back into Eq. (106), we obtain the final
formula

det ðclpÞ ¼ n
1
4 exp

�
� log ð1þ ffiffiffi

2
p Þn� 1

8
log2

�

�Gð32Þ2
Gð2Þ ð1þOðn�1ÞÞ

’ exp ð0:25logn� 0:881nþ 0:0472Þð1þOðn�1ÞÞ
’ 1:048n

1
4 exp ð�0:881nÞð1þOðn�1ÞÞ: (110)

As a consistency check, we can compare the asymptotic
formula above with fits for the value of the determinant
over a range of different n. For this purpose, it becomes
more efficient to fit the logarithm of the determinant, and
we choose the range n 2 ½100; 200� in steps on 1. We find
that

log det ðclpÞ ’ 0:2499 log n� 0:88137nþ 0:0472þ 0:17

n
;

(111)

where the errors in the coefficients are at the order of the
last digit, and we also included a term log ð1þ c=nÞ ’ c=n
to account for the subleading asymptotic term in Eq. (110).
Evidently, the coefficients of the fit are in excellent
agreement with the Fisher-Hartwig formula.

In order to obtain the dependence of the leading term in
the M expansion of the tachyon and gluon self-energy
summand6 on the duration of the self-interaction
n ¼ K � 1, we simply have to raise Eq. (110) to the
(�12) power. In this manner, we obtain a power depen-
dence of n�3, which is a rigorous confirmation of the rough
estimate we had obtained in Ref. [11].

B. OðM�1Þ term
In order to find the dependence on slit size for the

OðM�1Þ term in Eq. (101), we will have to additionally
analyze

P
c�1
lp . To this end, we will be using asymptotic

expansions for the inverses of Toeplitz matrices in the same
category with clp, which have relatively recently appeared

in the literature [18,19].
In more detail, these papers focus on Toeplitz matrices

of the form in Eq. (102), where

fðzÞ ¼ jz� 1j2�f1ðzÞ; (112)

so that our matrix of interest, clp, is a special case with

� ¼ 1=2 and

f1ðzÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz� 1Þð1=z� 1Þ=4p : (113)

In order to stay as close as possible to the notations of
Refs. [18,19], let us call the dimensionality of the matrix
n � N þ 1. Then, for 0< x< 1, 0< y< 1, x � y, the
asymptotic forms of the inverse matrix element will be

c�1
½Nx�þ1;1 ¼

1

g1ð1Þ
ffiffiffiffiffiffiffiffi
�N

p
ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
ffiffiffi
x

p þoðN�1=2Þ; f1 ¼ g1 �g1;

(114)

c�1
½Nx�þ1;½Nx�þ1 ¼

1

f1ð1Þ� logN þ oðlogNÞ; (115)

c�1
½Nx�þ1;½Ny�þ1 ¼

1

f1ð1Þ�G1
2
ðx; yÞ þ oð1Þ; (116)

where [a] denotes the integer part of a,

G1
2
ðx; yÞ ¼ ffiffiffi

x
p ffiffiffi

y
p Z 1

max ðx;yÞ
dt

t
ffiffiffiffiffiffiffiffiffiffiffi
t� x

p ffiffiffiffiffiffiffiffiffiffiffi
t� y

p

¼ 2arctanh

ffiffiffi
y

pffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

p
ffiffiffi
x

p ; (117)

and the last equality in the above equation holds if x > y;
otherwise, we simply exchange x $ y.
According to the Euler-Maclaurin formula, the leading

contribution to the sum over the ½Nx� or ½Ny� indices in
each of the formulas above will be N times the integral

6In fact, this term is universal for all states of the open and
closed string.
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over x or y. This implies contributions of OðN1=2Þ,
OðN logNÞ, and OðN2Þ to the sum over all indices from
Eqs. (114)–(116), respectively. So up to leading order, we
may write

XNþ1

l;p¼1

ðc�1Þlp ’ XNþ1

l�p¼1

ðc�1Þlp ¼ 2
XNþ1

l>p¼1

ðc�1Þlp

’ 2N2

f1ð1Þ�
Z 1

0
dx

Z x

0
dyG1

2
ðx; yÞ

’ 4N2

�

Z 1

0
dx

�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp

arcsin
ffiffiffi
y

p

þ 2ðy� xÞarctanh
ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

p ffiffiffi
y

pffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
�
x

y¼0

’ 8N2

�

Z 1

0
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p
arcsin

ffiffiffi
x

p
; (118)

and given that the x integral above yields�2=32, we finally
obtain, after we restore n ¼ N þ 1,

Xn
l;p¼1

ðc�1Þlp ’ �

4
n2 ’ 0:78539816n2: (119)

Another way to arrive at this result is to notice that only the
value of f1ðzÞ at z ¼ 1 matters for the leading term in the
expansions of Eqs. (114)–(116). In order to extract the term
in question, we can thus examine the determinant where we
have replaced f1ðzÞ with its constant value f1ð1Þ, namely

dlp ¼ 1

2�

Z 2�

0
d� sin

�

2
e�iðl�pÞ� ¼ 2

�

1

1� 4ðl� pÞ2 :

(120)

Evidently, the virtue of this replacement is that it allows us
to compute the integral explicitly. Then, by analytically
inverting the matrix and summing its elements for
n 2 ½1; 10�, we experimentally find that the sum of all
elements of the inverse matrix is given by the following
simple formula:

Xn
l;p¼1

ðd�1Þlp ¼ �

4
nðnþ 1Þ: (121)

As a final test of our result in Eq. (119), we may compare it
to fits of the quantity for varying n. In particular, we choose
n 2 ½100; 200� in steps of 5, and determine the coefficients
of a polynomial fit of degree 2, as potentially existing
logarithms at orders lower thanOðn2Þ can be well approxi-
mated by constants within this range. The results are
depicted in Fig. 2 and leave no doubt that the leading
dependence of the sum of all elements of matrix c�1 on
its size is given by Eq. (119).

VI. NUMERICAL ANALYSIS

In this section, we numerically evaluate the tachyon and
gluon self-energy �P�

K due to an interaction lasting K � 1
time steps, investigate its behavior for different values ofM
and K, and obtain fits that we compare to the analytic
asymptotic formulas [Eqs. (85) and (101)]. We are inter-
ested in the ultravioletM � K behavior of the self-energy,
so we choose K 2 ½2; 30� andM 2 ½495; 1995� in steps of
10. We perform the evaluation using the sum expression for
the matrix elements of the determinant [Eq. (70)], as it
turns out to be numerically more stable than the integral
expression [Eq. (71)].
Starting with the tachyon, we observe that, for the first

few values of fixed K, the leading behavior of �P�
K is

indeed linear in M within the range we have chosen, and
performing fits of the form �P�

K ¼ P
ciM

i with three free
parameters c�1, c0, we find excellent agreement with the
values predicted by Eq. (85). The results of the fits and the
comparison with the asymptotic prediction are depicted in
Table I; see also Fig. 3(a).
As it is evident in Fig. 3(b), however, starting at K ¼ 12

and higher, ��P�
K becomes convex, and subleading terms

in the M expansion begin to dominate over the linearly
increasing term in the lower end of our range. In particular,
this behavior at lower M cannot be due to the OðM�1Þ
term, which could only cause a deviation below the straight
line because of its negative sign. Therefore, it must come
from higher terms in the expansion, and experimentation
with different fitting functions suggests that it is in fact due
to the OðM�4Þ term.
This can be seen in more detail in Fig. 4, where we

compare �P�
K against a fit with a constant and an OðM�4Þ

term for K ¼ 14, 30, finding very good agreement. The fit
suggests that its two parameters always have comparable
sizes and grow very fast withK. We already know from the

100 120 140 160 180 200

10 000

15 000

20 000

25 000

30 000

n

c l
p1

Fit: 0.785398118 n2 1.11074 n 0.193

Fitted Curve

Numerical data

FIG. 2 (color online). Polynomial fit of degree 2 for the
quantity

P
n
l;pðc�1Þlp, appearing in the OðM�1Þ term in the

asymptotic expansion for one-loop tachyon self-energy [Eq.
(85)]. The coefficient of the leading Oðn2Þ term agrees excel-
lently with the analytically derived value �=4.
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analysis of Sec. V that the OðMÞ and OðM�1Þ coefficients
also have comparable sizes (due to the same exponential
factor), and to give a measure of comparison, they range
between orders 1056 and 1058 for K ¼ 14, and between
orders 10128 and 10131 for K ¼ 30. This in turn implies
that for the range of M we are examining, already at K ¼
14 the OðM�4Þ is 1 order of magnitude larger than the
OðMÞ term, and their ratio grows to 24 orders of magnitude
for K ¼ 30.

Given that the OðM�1Þ term is a few orders of magni-
tude smaller than the OðMÞ term, the considerations of the
previous paragraph justify why we do not need to include
them in order to obtain good fits for the �P�

K depicted in

Fig. 4. More importantly, they imply that as K increases, it
becomes very challenging to extract the OðM�1Þ depen-
dence by purely numerical analysis. Taking the first
difference in M does not improve the resolution substan-
tially, as it removes the large Oð1Þ, but not the OðM�4Þ

TABLE I. Tachyon self-energy for an interaction lasting K � 1 time steps, K ¼ 2; . . . ; 5. Coefficients of asymptotic expansion in M
up to OðM�1Þ, as obtained by numerically evaluating and fitting the quantity in question for M 2 ½1005; 1995� in steps of 10, and
compared to formula [Eq. (85)].

K ��P�
Tachyon Fit ��P�

Tachyon Asymptotic Formula

2 4096Mþ 19804� 12867:90=M 4096Mþ 19803� 12867:96=M
3 4:2569937517� 107Mþ 1:48720� 109 � 3:68032� 108=M 4:2569937516� 107Mþ 1:48717� 109 � 3:68037� 108=M
4 6:602641227� 1011Mþ 1:63308� 1014 � 1:09497� 1013=M 6:602641228� 1011Mþ 1:63307� 1014 � 1:09501� 1013=M
5 1:2725545528� 1016Mþ 2:743318� 1019 � 3:4330� 1017=M 1:2725545522� 1016Mþ 2:743315� 1019 � 3:4332� 1017=M
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FIG. 3 (color online). Plots of tachyon self-energy for an interaction lasting K � 1 time steps, for K ¼ 5 in (a) and K ¼ 12 in (b).
Whereas for (a) theOðMÞ term dominates and the data, fit, and asymptotic formula up toOðM�1Þ are indistinguishable, the same does
not hold for the lower end of M values in (b).
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FIG. 4 (color online). Plots of tachyon self-energy for an interaction lasting K � 1 time steps, for K ¼ 14 in (a) and K ¼ 30 in (b).
We have shifted the vertical axis by a constant so as to depict the much smaller variation of �P�

K more clearly. The fits suggest that it is
the OðM�4Þ term which is responsible for the deviation from the OðMÞ behavior.
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term. Hence, the only remaining possibilities are to either
choose a range of much higher values of M so that the two
sets of terms become comparable in size, or drastically
increase the precision of the numerics, so as to be able
to resolve their difference in size. However, since
the two sets of terms have different exponential behaviors
in K, employing any of the two aforementioned options
is also expected to increase computation time
exponentially.

In more detail, we can verify that the Oð1Þ term has
an exponential behavior in K of roughly e13K by plotting
the logarithm of its fitted value against K 2 ½2; 30�; see
Fig. 5. As we discuss in the Introduction, the exponential
increase in K of the Oð1Þ and OðM�4Þ terms is due to
the tachyonic divergence, which appears when one of
the two intermediate strings becomes very short; namely,
it is a boundary effect. On the contrary, in the regime
1 � K � M we are examining, the tachyonic
divergence does not affect the OðMÞ and OðM�1Þ terms,
whose exponential dependence e12�0K ’ e10:6K is
precisely canceled by the tree-level boundary
counterterm.

Moving on to a numerical evaluation of the gluon self-
energy, we shall aim to compare our fits with the corre-
sponding asymptotic formula, Eq. (101) with m ¼ 1. In
particular, we will investigate whether our numerical
analysis agrees with the OðM�1Þ term vanishing, and for
that reason it will be more advantageous to examine the
quantity

�P�
K;gluon ��P�

K;tachyon

¼�4sin 2 �

2M

XM�1

M1¼1

sin 2�M1

M

XK�1

q;s¼1

eðq�sÞ�o
1h�1

qs ; (122)

which has the large OðMÞ and Oð1Þ dependence removed,
thereby providing more accurate fits. As for the tachyon,
we choose K 2 ½2; 30� and M 2 ½495; 1995�, and for the
first few values of K, the fits we obtain are depicted in
Table II; see also Fig. 6(a).
For small K, the numerics suggest that the OðM�1Þ

term is identical here and for the tachyon, implying it
should be zero for the gluon. Furthermore, the numerics
suggest that the subleading term in the asymptotic expan-
sion of (122) is OðM�3Þ. Similarly to the tachyon case,
however, as K increases, the OðM�4Þ term dominates the
expansion to an extent that does not allow the extraction
of the OðM�1Þ dependence by numerical means [see
Fig. 6(b)]. Finally, the OðM�4Þ term in Eq. (122) appears
to be different from the corresponding term for the
tachyon alone, in particular about an order of magnitude
larger.

VII. OPEN STRINGS ENDING ON D-BRANES

So far, we have assumed that all open-string trans-
verse coordinates obey Neumann conditions. But it is
also interesting to impose Dirichlet conditions on a
subset of the coordinates [20], denoted by yð�; �Þ to
distinguish them from the coordinates x, which continue
to satisfy Neumann boundary conditions.7 If x has p� 1
components, one says that there is a Dp-brane at the
location specified by the (fixed) value of y at the end of
each open string. Here we restrict attention to a single
Dp-brane location at y ¼ 0. In the continuum, the
expressions for the one-loop self-energy of an open
string with 25� p Dirichlet coordinates differs from
the expressions in Eqs. (32) and (33) simply by an

insertion of the factors ð� 2�= ln qÞð25�pÞ=2 in the inte-
grands. While these factors marginally soften the lead-
ing UV divergence from the integration range near
q� 0, they do so in a way that introduces a logarithmic

0 5 10 15 20 25
0

100

200

300

K 1

lo
g

b

FIG. 5 (color online). Logarithm of the constant term b in the
asymptotic expansion in M for the tachyon �P�

K as a function of
the interaction time K � 1. The leading behavior is clearly
linear, from which we can infer that b / e13K .

TABLE II. Fit of the difference of tachyon and gluon
self-energy for an interaction lasting K � 1 time steps (error
estimates at the order of the last digit). Comparing with the last
row of Table I, we see that the OðM�1Þ terms are identical,
thereby supporting that the corresponding term is zero for
�P�

K;gluon.

K �P�
K;gluon � �P�

K;tachyon Fit

2 �12868:96=M� 2:0� 105=M3

3 �3:68037� 108=M� 1:7� 1010=M3

4 �1:09501� 1013=M� 1:1� 1015=M3

5 �3:4332� 1017=M� 7� 1019=M3

7We do not consider here the mixed case of Neumann
and Dirichlet conditions on opposite ends of an open
string.
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branch point at q ¼ 0.8 After discretization, the presence
of these factors leads to an expected leading large-M
behavior

�P�
K � �M

K3ðln ðM=KÞÞð25�pÞ=2 ; (123)

which can no longer be canceled by the bulk worldsheet
cosmological constant. In particular, the leading singu-
larity must be accepted as a real divergence, at least in
the perturbative loop expansion of bosonic string
theory.9 The worldsheet lattice provides a physical cut-
off, but there is no consistent way to define a finite
continuum limit in perturbation theory.

A. D-branes and the GT lattice

We turn to a detailed analysis of the self-energy on the
GT lattice which will confirm these expectations. The
Dirichlet worldsheet propagator on the free-string world-
sheet takes either of the forms of Eqs. (23) or (24). The
main new feature of these formulas is the absence of zero

modes in the open-string spectrum because the Dirichlet
conditions break translation invariance. Of course, on the
lattice loop corrections will involve a different choice for
the matrix V describing the breaking and joining of strings,
which we shall denote as ~V for clarity. A broken Dirichlet
string coordinate y involves the replacement [24]

ðyjkþ1�yjkÞ2þðyjk�yjk�1Þ2 !ðyjkþ1Þ2þðyjk�1Þ2þ2�ðyjkÞ2;
(124)

where the parameter � gives us some flexibility in specify-
ing the Dirichlet condition on the lattice. The matrix ~V that
describes this replacement is then

~Vml;m0l0 ¼ �lj�l0jð�m;kþ1�m0;k þ �m;k�m0;kþ1 þ �m;k�1�m0;k

þ �m;k�m0;k�1 þ 2ð�� 1Þ�m;k�m0;kÞ: (125)

In contrast to a broken Neumann coordinate, which in-
volves two lattice sites, the broken Dirichlet coordinate
involves three lattice sites: k� 1, k, and kþ 1. In matrix
form, it is

~V ¼
0 1 0

1 2ð�� 1Þ 1

0 1 0

0
BB@

1
CCA: (126)

Writing the corresponding 3� 3 block of the propagator as

� ¼
e a f

a c b

f b d

0
BB@

1
CCA; (127)

we find after a simple calculation

det ð1þ ~V�Þ ¼ ð1þ aþ bÞ2 � cðeþ dþ 2f� 2ð�� 1ÞÞ:
(128)

The matrix elements are related to the worldsheet
propagator as follows:
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3.68050 108

3.68052 108
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FIG. 6 (color online). Plots of the self-energy difference between the gluon and the tachyon for K ¼ 3 in (a) and K ¼ 14 in (b). We
have rescaled the self-energy by M so as to have only one independent variable. As with the tachyon, subleading terms in the M
expansion become dominant with increasing K.

8In the open-string nonplanar one-loop diagram, which con-
tains singularities in the pomeron-channel invariant t due to
closed-string states, this branch point in q causes the ‘‘unitarity
violating’’ branch point (instead of a pole) in t that led Lovelace
to anticipate the need for the critical dimension D ¼ 26 [21].
Here we see that in addition to D ¼ 26, we also need Neumann
boundary conditions on all string coordinates to cancel the cut.
As clarified in Ref. [22], the branch point is not really ‘‘unitarity
violating,’’ but rather simply a reflection of a continuous closed-
string mass spectrum, or the holographic emergence of extra
dimensions for the propagation of closed strings. In any case, the
branch point in t also spells difficulty for the Goddard-Neveu-
Scherk analytic continuation method [13] of regulating these
divergences.

9Supersymmetry can potentially mitigate these difficulties
through cancellation of the divergences due to tachyonic
closed-string states. In such models, the UV divergence due to
the dilaton is rendered finite provided that more than two
coordinates are Dirichlet:

R
dqq�1ð� lnqÞ�3=2 is convergent at

q� 0 [23].
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a¼ �kj;ðk�1Þj ¼ �ðk�1Þj;kj; b¼�kj;ðkþ1Þj ¼�ðkþ1Þj;kj;

(129)

c ¼ �kj;kj; d ¼ �ðkþ1Þj;ðkþ1Þj; e ¼ �ðk�1Þj;ðk�1Þj;

(130)

f ¼ �ðkþ1Þj;ðk�1Þj ¼ �ðk�1Þj;ðkþ1Þj: (131)

We will now proceed to evaluate the contribution of
Dirichlet coordinates to the one-loop self-energy calcula-
tion with K ¼ 2. As we did in the previous sections, we
will again relabel k ! M1 to better convey that it is refer-
ring to the position of the slit. We start by using the
representation in Eq. (26) for the Dirichlet worldsheet
propagator in order to obtain

c ¼
Z 1

0
dx

sinhM1� sinh ðM�M1Þ�
sinhM� sinh�

; (132)

a ¼
Z 1

0
dx

sinh ðM1 � 1Þ� sinh ðM�M1Þ�
sinhM� sinh�

¼
Z 1

0
dx

sinhM1� sinh ðM�M1Þ�
sinhM�

coth�

�
Z 1

0
dx

coshM1� sinh ðM�M1Þ�
sinhM�

; (133)

b ¼
Z 1

0
dx

sinhM1� sinh ðM�M1Þ�
sinhM�

coth�

�
Z 1

0
dx

sinhM1� cosh ðM�M1Þ�
sinhM�

; (134)

1þaþb¼ 2
Z 1

0
dx

sinhM1� sinh ðM�M1Þ�
sinhM�

coth�

¼ 2
Z 1

0
dx

sinhM1� sinh ðM�M1Þ�
sinhM�

�
�

1

sinh�
þ tanh

�

2

�

¼ 2cþ 2
Z 1

0
dx

sinhM1� sinh ðM�M1Þ�
sinhM�

tanh
�

2
;

(135)

dþeþ2f¼ 4
Z 1

0
dx

sinhM1�sinh ðM�M1Þ�
sinhM�

�
�

1

sinh�
þ sinh�

�
�2

Z 1

0
dxcosh�

¼ 4cþ4
Z 1

0
dx

sinhM1�sinh ðM�M1Þ�
sinhM�

sinh�

�2
Z 1

0
dxcosh�: (136)

Inserting these into the formula for the determinant leads to

det ðIþ ~V�Þ

¼ c
Z 1

0
dx

�
4sinh 2ð�=2Þ � 8

sinhM1� sinh ðM�M1Þ�
sinhM�

�
�
sinh 3ð�=2Þ
cosh ð�=2Þ

�
þ 2�

�

þ 4

�Z 1

0
dx

sinhM1� sinh ðM�M1Þ�
sinhM�

tanh
�

2

�
2
:

(137)

We will require the large-M limit of this determinant. We
notice that the quantity squared in the last term is just the
determinant we encountered for Neumann coordinates
[Eq. (51)],

2
Z 1

0
dx

sinhM1� sinh ðM�M1Þ�
sinhM�

tanh
�

2

¼ DM1
¼ 1

2
� IM1

þ f2ðxÞ
2�M2

þ f4ðxÞ
12�M4

þ � � � ; (138)

where we recall Eq. (60) and our definition x ¼ M1=M.
We also have some new integrals to analyze:

Z 1

0
dxsinh 2 �

2
¼ 1

�

Z �0

0
d�

cosh ð�=2Þsinh 2ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 2ð�=2Þp ¼ 1

2
;

(139)

and for M1 	 M=2 we use

sinhM1� sinh ðM�M1Þ�
sinhM�

¼ 1

2
ð1� e�2M1�Þ � e�M�sinh 2M1�

sinhM�
; M1 	 M

2

(140)

to decompose the second integral into two terms:

Z 1

0
dx

1

2
ð1� e�2M1�Þ sinh

3ð�=2Þ
cosh ð�=2Þ

¼ 1

2�

Z �0

0
d�ð1� e�2M1�Þ sinh 3ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sinh 2ð�=2Þp
¼ 1

2�
� JM1

; (141)

JM1
¼ 1

2�

Z �0

0
d�e�2M1�

sinh 3ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 2ð�=2Þp ; (142)

Z 1

0
dx

�e�M�sinh 2M1�

sinhM�

sinh 3ð�=2Þ
cosh ð�=2Þ

¼ 1

�

Z �0

0
d�

�e�M�sinh 2M1�

sinhM�

sinh 3ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 2ð�=2Þp

¼ h4ðxÞ
M4

þOðM�6; e�M�0Þ; (143)
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h4ðxÞ ¼ � 1

8�

Z 1

0
�3d�

e��sinh 2x�

sinh�
: (144)

In contrast to the above integrals, which are finite as
M ! 1, the integral defining c increases logarithmically
with M. This feature is a direct consequence of Dirichlet
boundary conditions. Remembering that the determinant
enters the self-energy with a negative power, this means
that Dirichlet conditions soften the leading UV divergence
by powers of ðlnMÞ�1. To investigate this phenomenon we
look at

c ¼
Z �0

0
d�

coth ð�=2Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 2ð�=2Þp sinhM1� sinh ðM�M1Þ�

sinhM�

� GM1
þ ĉ; (145)

GM1
¼ 1

2�

Z �0

0
d�

ð1� e�2M1�Þ coth ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 2ð�=2Þp ; (146)

ĉ¼ 1

�

Z �0

0
d�

coth ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 2ð�=2Þp �

e�M�sinh 2M1�

sinhM�

�
: (147)

The large-M behavior of ĉ can be obtained by expanding

coth ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 2ð�=2Þp ¼ 2

�
þ 5�

12
þOð�3Þ: (148)

Then, term by term we can extend the upper limit to 1,
with errors smaller than order e�M�0 to get an asymptotic
expansion

ĉ ¼ g0ðxÞ þ g2ðxÞ
M2

þOðM�4; e�M�0Þ; (149)

g0ðxÞ ¼ 2

�

Z 1

0

d�

�

�
e��sinh 2ðx�Þ

sinh�

�
;

g2ðxÞ ¼ 5

12�

Z 1

0
�d�

�
e��sinh 2ðx�Þ

sinh�

�
:

(150)

In this expansion, the coefficients depend on the ratio
x ¼ M1=M, which is smaller than 1=2: if this ratio is of order
1=M, all of the terms are down by a further factor of 1=M2.

Next we study the difference GM1
¼ c� ĉ, which

depends only on M1. Since M1 has to be summed over
the range 0<M1 <M=2, we will need the large-M1

behavior of this term, which we will find behaves like
lnM1:

GM1
¼ 1

2�

Z �0

0
d�

ð1� e�2M1�Þ coth ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 2ð�=2Þp

¼ 1

2�

Z �0

0
d�ð1� e�2M1�Þ

2
4 coth ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sinh 2ð�=2Þp � 2

�

3
5

þ 1

�

Z �0

0
d�

1� e�2M1�

�
: (151)

The quantity in square brackets has good small-� depen-
dence, so the terms in the first integral can be evaluated
separately:

1

2�

Z �0

0
d�

"
coth ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sinh 2ð�=2Þp � 2

�

#

¼ 1

�
ln

2

�0

þ �0ð1Þ
2�

� �0ð1=2Þ
2�

ffiffiffiffi
�

p ; (152)

1

2�

Z �0

0
d�e�2M1�

"
coth ð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sinh 2ð�=2Þp � 2

�

#

� 5

24�ð2M1Þ2
þOðM1

�4; e�2M1�0Þ: (153)

Finally, the large-M1 behavior of the last integral

1

�

Z �0

0
d�

1� e�2M1�

�

¼ � 1

�

Z �0

0
d�ð2M1e

�2M1�Þ ln �

�0

¼ � 1

�

Z 1

0
d�e�� ln

�

2M1�0

þOðe�2M1�0Þ

¼ 1

�
ln ð2M1�0Þ � �0ð1Þ

�
þOðe�2M1�0Þ: (154)

All together, then, we have for the large-M1 behavior of
c� ĉ

GM1
¼ 1

�
ln ð4M1Þ � �0ð1Þ þ �0ð1=2Þ= ffiffiffiffi

�
p

2�
� 5

96�M1
2

þOðM1
�4; e�2M1�0Þ

¼ 1

�
ln ð4M1Þ � c ð1Þ þ c ð1=2Þ

2�
� 5

96�M1
2

þOðM1
�4; e�2M1�0Þ; (155)

where c ðzÞ � �0ðzÞ=�ðzÞ is the digamma function.
Finally, we quote the determinant for K ¼ 2 due to a

Dirichlet coordinate, keeping terms up to order M�2:

det ðIþ ~V�Þ ¼
�
GM1

þ g0ðxÞ þ g2ðxÞ
M2

�

�
�
2ð�þ 1Þ � 4

�
þ 8JM1

�
þ
�
1

2
� IM1

�
2

þ ð1� 2IM1
Þf2ðxÞ

2�M2
þOðM�4Þ: (156)

Then the self-energy shift of the tachyon in the presence of
a Dp-brane is given by

�P�
K ¼ 2g2

XðM�1Þ=2

M1¼1

det�ðp�1Þ=2ðIþ V�Þ

� det�ð25�pÞ=2ðI þ ~V�Þe�24BðK�1Þ: (157)

GEORGIOS PAPATHANASIOU AND CHARLES B. THORN PHYSICAL REVIEW D 88, 026014 (2013)

026014-20



The leading behavior for large M occurs from the region 1 � M1 ¼ OðMÞ. For K ¼ 2 this gives

�P�
K¼2 � 2g2

XðM�1Þ=2

M1�1

2ðp�1Þ=2
�
2ð�þ 1Þ � 4=�Þ

�
lnM1

��ð25�pÞ=2
e�24B

� g22p�13 M

ðlnMÞð25�pÞ=2

�
�2

ð�þ 1Þ�� 2

�ð25�pÞ=2
e�24B: (158)

Subleading divergences of the forms M=ðlnMÞnþð25�pÞ=2
and 1=ðlnMÞnþð25�pÞ=2 will also appear. In fact, each power
ofM can be expected to be multiplied by a power series in
ðlnMÞ�1. We leave the interpretation of these nonanalytic
divergences to future work.

B. Discretization of the continuum expressions for the
self-energy of the superstring

Although we do not yet have a completely satisfactory
GT lattice for the superstring, we can get a glimpse of
the benefits of supersymmetry by simply discretizing the
known continuum formulas for the gluon self-energy
diagrams for the superstring with supersymmetry broken
by compactification of an extra dimension.10 The
critical dimension is D ¼ 10, so there will be eight
transverse coordinates x, P and eight worldsheet
fermions denoted � in the Ramond (R) sector and H
in the Neveu-Schwarz (NS) sector. We shall need the
correlators

hPP i ¼ 1

4sin 2ð�=2Þ �
X1
n¼1

2nq2n

1� q2n
cos n� (159)

¼ 1

4sin 2ð�=2Þ � 2q2 cos �þOðq4Þ; (160)

hHHiþ ¼ 1

2 sin ð�=2Þ � 2
X1

r¼1=2

q2r

1þ q2r
sin r� (161)

¼ 1

2 sin ð�=2Þ � 2q

�
1� qþ 4q2cos 2

�

2

�
sin

�

2
þOðq4Þ;

(162)

hHHi� ¼ 1

2 tan ð�=2Þ � 2
X1
n¼1

q2n

1þ q2n
sin n� (163)

¼ 1

2 tan ð�=2Þ � 2q2 sin �þOðq4Þ; (164)

h��i ¼ 1

2 sin ð�=2Þ þ 2
X1

r¼1=2

q2r

1� q2r
sin r� (165)

¼ 1

2 sin ð�=2Þ þ 2q

�
1þ qþ 4q2cos 2

�

2

�
sin

�

2
þOðq4Þ;

(166)

where we use the notation and conventions of Ref. [7].
We have expressed the correlators in terms of the moduli
q, � of the cylinder. To break supersymmetry, we com-
pactify one of the transverse target space dimensions,
imposing periodic boundary conditions on bosonic states
and antiperiodic conditions on fermionic states. In the
expressions of the one-loop self-energies, this simply
means an insertion of the factor

X1
m¼�1

qm
2R2T0=4�

2
; bosonic loop;

X1
m¼�1

ð�Þmqm2R2T0=4�
2
; fermionic loop:

(167)

Both these factors approach unity in the decompactifica-
tion limit R ! 1. The absence of tachyonic divergences
in the loop integrals requires R2T0 
 4�2. When the
gluon polarization is in the direction of a compactified
coordinate, the hPP i correlator quoted above acquires
an extra term:

hPP i ¼ �
�
m2R2T0

4�2

	
þ 1

4sin 2ð�=2Þ �
X1
n¼1

2nq2n

1� q2n
cosn�;

(168)

where

hfðmÞi �
P

m fðmÞqm2R2T0=4�
2P

m qm
2R2T0=4�

2 ; bosonic loop; (169)

hfðmÞi �
P

mð�ÞmfðmÞqm2R2T0=4�
2P

mð�Þmqm2R2T0=4�
2 ; fermionic loop:

(170)
10With unbroken supersymmetry, the diagram is identically
zero.
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By taking the R ! 0 limit, we get the extra term in this
correlator when gluon polarizations are transverse to a
D-brane: it is just 1=ð2 ln qÞ. It is noteworthy that the
extra term from either compactification or the presence
of D-branes is negative. Since generally Cs < 0,11 this
term therefore contributes positively to the self-energy.
Thus, while the mass shift of the gluon (polarizations in
uncompactified directions) is zero, the mass-squared shift
of the massless scalar (polarization in compactified
directions) is positive.

The self-energy of the gluon state is given as a sum of
three terms:

�P� ¼ Cs

2Pþ ð�þ þ �� þ �FÞ; (171)

�þ¼1

2

Z 1

0

dq

q2

Z 2�

0
d�

X1
m¼�1

qm
2R2T0=4�

2

Q
rð1þq2rÞ8Q
nð1�q2nÞ8 hPP i;

(172)

�� ¼ �8
Z 1

0

dq

q2

Z 2�

0
d�

X1
m¼�1

qm
2R2T0=4�

2

�
Q

nð1þ q2nÞ8Q
nð1� q2nÞ8 qhPP i; (173)

�F ¼ � 1

2

Z 1

0

dq

q2

Z 2�

0
d�

X1
m¼�1

ð�Þmqm2R2T0=4�
2

�
Q

rð1� q2rÞ8Q
nð1� q2nÞ8 hPP i: (174)

Terms involving the fermionic correlators hHHi2� and
h��i2 do not contribute to the on-shell two-gluon function
because they are multiplied by kinematic factors like ki �
kj
k � 
l or ki � 
jkk � 
l. But for the two-point function,

k2 ¼ �k1, k2i ¼ 0, and ki � 
i ¼ 0, so all these factors
vanish. The combination �þ þ �� projects out the odd
G-parity states of the NS sector circulating the loop, while
�F represents the R-sector states circulating the loop.
Because of Jacobi’s abstruse identity,

Y
r

ð1þ q2rÞ8 �Y
r

ð1� q2rÞ8 � 16q
Y
n

ð1þ q2nÞ8 ¼ 0:

(175)

We have, for gluon polarization in uncompactified
directions, the simplification

�P� ¼ Cs

2Pþ
Z 1

0

dq

q2

Z 2�

0
d�

X
m¼odd

qm
2R2T0=4�

2

�
Q

rð1� q2rÞ8Q
nð1� q2nÞ8 hPP i (176)

¼ Cs

2Pþ
Z dq

q

Z 2�

0
d�

X
m¼odd

qm
2R2T0=4�

2

�
�
1� 8qþ 36q2

4qsin 2ð�=2Þ � 2qþ 4qsin 2 �

2
þOðq2Þ

�
; (177)

where in the second line we have explicitly displayed the
first few terms in the q expansion. It is worth emphasizing
that the right side vanishes in the decompactification limit
R ! 1, which restores supersymmetry. Also notice that,
although the q integral is convergent at the lower end q� 0
when R2T0 > 4�2, the � integral is still divergent at its end
points. It is this divergence that discretization will show
can be absorbed in the constant boundary counterterm B.
Incidentally, for gluon polarization in the compactified

direction, the open-string state corresponds to a massless
scalar particle which gains a mass by virtue of the extra
term shown in Eq. (168):

�M2
Scalar ¼ 2Pþ�P�

¼ �CsR
2T0

2�

Z 1

0

dq

q2

Q
rð1� q2rÞ8Q
nð1� q2nÞ8

� X
m¼odd

m2qm
2R2T0=4�

2
; (178)

which is positive since Cs < 0. The integral on the right is
convergent at q� 0 provided R2T0 > 4�2, and becomes
arbitrarily large as R2T0 ! 4�2. The convergence of the
integral at q� 1 becomes transparent after the change of

variables by the Jacobi imaginary transformation q ¼
e2�

2= lnw, which maps q ¼ 1 to w ¼ 0.
Now let us discretize the gluon self-energy [Eq. (176)] in

the variables of the lightcone lattice and examine how the
continuum limit is regained. Recalling Eqs. (34)–(36), we
have

�P� ! 64Cs

a�T0

X
K

2þOðK4Þ
K3

XðM�1Þ=2

M1¼1

X1
k¼�1

q1þð2k�1Þ2R2T0=4�
2

�
�
1� 8qþ 36q2þ 4q2sin4�M1

M

� 2q2sin 2�M1

M
þOðq3Þ

�
; (179)

where, to avoid ungainly expressions, we have deferred
replacing q with its discretized version given by Eq. (35).

11From the lightcone viewpoint, the self-energy shift is a result
from second-order perturbation theory which is necessarily
negative by unitarity. Since the divergence in the integral has a
positive coefficient, this implies that Cs must be negative. The
negative divergent contribution to the shift is, of course, canceled
against the boundary cosmological constant counterterm B.
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Instead, we work out the large-M limit of the contribution
of each power of q in what follows.

As we did in Sec. III A, we next study the large-M limit
of the terms at fixedK. The summand involves terms of the
form qpsin 2nð�M1=MÞ, with p 
 1þ R2T0=ð4�2Þ 
 2
and n ¼ 0, 1, 2. For simplicity of discussion, let us choose
R2T0 ¼ 4�2, so the lowest power is q2, and begin by
examining the large-M limit of

XðM�1Þ=2

M1¼1

q2 �
�
1þ �2K2

48M2

� XðM�1Þ=2

M1¼1

�
�K

8M sin�M1=M

�
2

� 4
XðM�1Þ=2

M1¼1

�
�K

8M sin�M1=M

�
4

¼
�
1þ �2K2

48M2

��
�2K2

384
þOðM�2Þ

�

� 4	ð4ÞK
4

84
þOðM�2Þ

¼ 	ð2ÞK2

64
� 	ð4ÞK4

1024
þOðM�2Þ; (180)

where the last two lines follow from the argument in foot-
note 2. A similar analysis applies to the higher powers of q
as well. As this q2 example shows, the presence of addi-
tional factors of sin ð�M1=MÞ has the effect of suppressing
the contribution by additional powers of M�1. This means
that in collecting the contributions to the constant bound-
ary counterterm, one only needs to keep the first three
terms in the square brackets:

XðM�1Þ=2

M1¼1

q3 � XðM�1Þ=2

M1¼1

�
�K

8M sin�M1=M

�
3

� �3K3

83M2

Z 1=2

0
dx

�
1

sin 3�x
� 1

�3x3
� 1

2�x

�

þ K3

83
XðM�1Þ=2

M1¼1

1

M3
1

þ �2K3

83M2

XðM�1Þ=2

M1¼1

1

2M1

¼ 	ð3ÞK3

83
þOðM�2 lnMÞ; (181)

XðM�1Þ=2

M1¼1

q4� XðM�1Þ=2

M1¼1

�
�K

8Msin�M1=M

�
4¼	ð4ÞK4

84
þOðM�2Þ:

(182)

Thus, the total contribution from these terms to the
divergence is

�P�
div ¼

Cs

a�T0

X
K

1

K
½2	ð2Þ � 2	ð3ÞKþ 	ð4ÞK2 þOðK4Þ�:

(183)

C. D-branes and the superstring

We now return to the effect of imposing Dirichlet con-
ditions on some of the coordinates. As before, the self-

energy integrands now acquire extra factors ð� lnqÞ�ð9�pÞ,
which become

�
� ln

�K

8M sin�M1=M
þ 6� 2sin 2�M1=M

3

�
�K

8M sin�M1=M

�
2 þOðK4Þ

��ð9�pÞ
: (184)

After expanding in powers of K, we see that in general we will encounter, in addition to more terms in higher powers of K,
a series of terms with more negative powers of lnK of the form

�
� ln

�K

8M sin�M1=M

��ð9�pþnÞ
: (185)

These extra factors modify the extraction of the divergent parts of the discretized self-energy expressions. It will suffice to
illustrate this with the lowest contributing power of K:

XðM�1Þ=2

M1¼1

q2ð� ln qÞ�n ! XðM�1Þ=2

M1¼1

�
�K

8M sin�M1=M

�
2
�
� ln

�K

8M sin�M1=M

��n

� �2K2

64M

Z 1=2

0
dx

�
1

sin 2�x

�
� ln

�K

8M sin�x

��n � 1

�2x2

�
� ln

K

8Mx

��n
�
þ X1

M1¼1

K2

64M2
1

�
� ln

K

8M1

��n

� X1
M1¼ðMþ1Þ=2

K2

64M2
1

�
� ln

K

8M1

��n

¼ X1
M1¼1

K2

64M2
1

�
� ln

K

8M1

��n þOðM�1ðlnMÞ�n�1Þ: (186)
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So we see that the presence of D-branes for the superstring
does not spoil the ability to absorb divergences in the
boundary counterterm. Also notice that the negative
powers of lnM suppress the M�1 correction term which,
if nonzero, would signal a nonzero shift to the gluon mass.
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APPENDIX A: CLOSED STRINGS IN THE
PRESENCE OF D-BRANES

In this appendix, we will briefly examine how the
scattering of a closed-string tachyon off a D-brane can

be described within the worldsheet-based approach, and

compare with the string field theory analysis of the
same process, which was carried out in Sec. 3 of

Ref. [11].
To this end, we will first have to generalize the

introductory remarks of Sec. VII, and derive a determi-
nant formula for the path integral where instead of one

site obeying Dirichlet boundary conditions, we now have

K � 1 consecutive sites in the temporal direction, and in

the same spatial position k. This requires taking the
direct product of the matrix in Eq. (126) with a diagonal

matrix with entries 1 for the sites in question, and 0

otherwise. Then det ðI þ ~V�Þ may be written in the
block form

det ðI þ ~V�Þ ¼















Iþ��10 �00 �01

��1;�1 þ 2ð�� 1Þ��10 þ��11 I þ��10 þ 2ð�� 1Þ�00 þ�01 ��11 þ 2ð�� 1Þ�01 þ�11

��10 �00 I þ�01














;
where each of the blocks corresponds again to spatial positions k� 1, k, and kþ 1, and �lm is the (K � 1)-dimensional
matrix with elements �iðkþlÞ;jðkþmÞ, namely with only the temporal indices i, j varying. By elementary row and column
operations, we can reduce the size of the matrix and bring it to the form

det ðI þ ~V�Þ ¼








 I þ��10 þ�01 �2ð�� 1ÞI þ��1;�1 þ�11 þ 2��11

�00 I þ��10 þ�01










¼








 I þ��10 � 2�00 þ�01 �2ð�þ 1ÞI þ��1;�1 � 4��10 þ 2��11 þ 4�00 � 4�01 þ�11

�00 Iþ��10 � 2�00 þ�01









: (A1)

The latter equation may be used for the study of the open-
or closed-string case, by substituting the corresponding
expression for the propagator. In what follows, we will
focus on the closed string, where the propagator is a
function of jl�mj alone, and more concretely is given
by Eq. (29). Clearly, the zero-mode piece of the propagator
will dominate as N ! 1, and following the same logic as
in the string field theory approach [11], the quantity of
interest will be precisely the coefficient of the zero mode in
det ðI þ ~V�Þ,

MK ¼ lim
N!1

4M det ðI þ ~V�Þ
N þ 1

: (A2)

The expression of the second line of Eq. (A1) is advanta-
geous for obtaining MK, as the OðNÞ term is contained
only in the lower left block. In fact, since this term will be
the same for all elements in the block, we can perform
further row and column operations in order to remove it
from all but one element. This implies thatMK will simply
equal the minor of the latter element, or in other words it
will be given by a determinant of dimension 2ðK � 1Þ � 1.

For specific K, here it is also possible to obtain an
asymptotic expansion in M for MK with the help of the
Euler-Maclaurin formula. For example, setting � ¼ 1 for
simplicity, we find

M2 ¼ 4

�
1� 1

�

�
þ �3

15

1

M4
þOðM�6Þ ’ 2:727þ 2:067

M4
;

(A3)

M3 ¼ ð5�� 8Þð3�2 þ 16Þ
2�3

þ
5�
2 � 4

M2
þOðM�4Þ

’ 5:669þ 3:854

M2
; (A4)

M4 ¼ � 32ð1024� 296�� 75�2 þ 12�3Þ
9�4

� 16ð2048� 720�� 129�2 þ 36�3Þ
27�2M2

þOðM�4Þ

’ 10:003þ 22:270

M2
: (A5)

It is worth noting that, particularly for K ¼ 2, the coeffi-
cient of the OðM�2Þ term is zero. We may compare the
results of our current approach to D-branes with the string-
field-theory-based approach of Ref. [11] by noting that the
quantity we defined in equation Eq. (87) of the latter paper
equals, in our current notations,

rK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Kþ1 1� 
2K

1� 
2

det ðhlpÞ
MK

s
; (A6)
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where 
 ¼ 1þ �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2þ �Þp

and det ðhlpÞ is given by

Eq. (33) of Ref. [12]. Indeed, we have verified that the two
approaches yield the same values for rK for a wide range of
M and K, and that the fits we obtained in Ref. [11] for
fixed K and varying M � K are in good agreement with
the asymptotic expressions we can now obtain analytically.
As an illustration, with the current methods, we find
for � ¼ 1

r2 ¼
ffiffiffiffi
�

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�� 1Þp �

1þ �

6M2

�
þOðM�4Þ

’ 0:856429þ 0:448425

M2
þOðM�4Þ; (A7)

which compares very well with the fit on the left-hand side
of Fig. 14 in the latter reference.

APPENDIX B: OPEN-STRING SELF-ENERGY:
STRING FIELD VIEWPOINT

In this appendix, we give the alternative expression for
the self-energy as a concatenation of open-string propa-
gators, along the lines of Ref. [11]. For the open-string
self-energy, depicted in Fig. 1, we have a total of N þ
K � 1 missing links, N for the open-string ends and K �
1 for the extra two ends of the two intermediate strings.
Let the external string have M sites and the two inter-
mediate strings have M1, M2 ¼ M�M1 sites, respec-

tively. At each time j, there will be M coordinates xji ,
i ¼ 1; . . . ;M. If at time j there are two open strings, we

shall identify xji , i ¼ 1; . . . ;M1, with the first and xji , i ¼
M1 þ 1; . . . ;M with the second. The summand of the
self-energy diagram will then depend on M1, J, K,
so we write

hNþ1;fxfgj0;fxigiopenM1;K;J
¼
Z
dxKi dx

L
i hL;fxfgj0;fxLgiopenM hK;fxL<gj0;fxK<giopenM1

hK;fxL>gj0;fxK>giopenM2
hJ;fxKgj0;fxigiopenM

�e
�T0½ðxLM1þ1�xLM1

Þ2þðxKM1þ1�xKM1
Þ2�=4

¼Dopen
M ðJÞDopen

M1
ðKÞDopen

M2
ðKÞDopen

M ðLÞ
Z
dxKi dx

L
i e

iWþðNþK�1ÞB0�T0½ðxLM1þ1
�xLM1

Þ2þðxK
M1þ1

�xKM1
Þ2�=4

;

(B1)
where we have introduced the notation x< for xi, i ¼ 1; . . . ;M1 and x> for xi, i ¼ M1 þ 1; . . . ;M.

We will again want to change integration variables to normal modes of either the single external string or the two
intermediate strings as follows:

xi ¼ 1ffiffiffiffiffi
M

p q0 þ
ffiffiffiffiffi
2

M

s XM�1

m¼1

qm cos
m�

M

�
i� 1

2

�
(B2)

¼
8><
>:

1ffiffiffiffiffi
M1

p qð1Þ0 þ
ffiffiffiffiffi
2
M1

q PM1�1
m¼1 qð1Þm cos m�

M1

�
i� 1

2

�
i ¼ 1; . . . ;M1;

1ffiffiffiffiffi
M2

p qð2Þ0 þ
ffiffiffiffiffi
2
M2

q PM2�1
m¼1 qð2Þm cos m�

M2

�
i�M1 � 1

2

�
i ¼ M1 þ 1; . . . ;M:

(B3)

The missing link terms in the exponent involve

xM1þ1 � xM1
¼ �2

ffiffiffiffiffi
2

M

s XM�1

m¼1

qm sin
mM1�

M
sin

m�

2M
; (B4)

ðxM1þ1 � xM1
Þ2 ¼ 8

M

XM�1

m0;m00¼1

qm0qm00 sin
m0M1�

M
sin

m00M1�

M

� sin
m0�
2M

sin
m00�
2M

: (B5)

It is straightforward to relate qð1Þm , qð2Þm to qm:

qð1Þ0 ¼
ffiffiffiffiffiffiffi
M1

M

s
q0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2

MM1

s XM�1

m0¼1

qm0Uð1Þ
m00;

qð1Þm ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
MM1

p XM�1

m0¼1

qm0Uð1Þ
m0m;

(B6)

qð2Þ0 ¼
ffiffiffiffiffiffiffi
M2

M

s
q0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2

MM2

s XM�1

m0¼1

qm0Uð2Þ
m00;

qð2Þm ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
MM2

p XM�1

m0¼1

qm0Uð2Þ
m0m;

(B7)

and we note the identity qð1Þ0

ffiffiffiffiffiffiffi
M1

p þ qð2Þ0

ffiffiffiffiffiffiffi
M2

p ¼ q0
ffiffiffiffiffi
M

p
, as

expected from the fact that q0=
ffiffiffiffiffi
M

p
is the center of mo-

mentum of the open string. The matrices Uð1Þ, Uð2Þ are
listed in Appendix E.

1. Correction to the open-string
ground energy

For the ground state it suffices to set xi ¼
xf ¼ 0, so that the expression for iW simplifies
somewhat:
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iW ! �T0

2

�ðqL0 Þ2
L

þ ðqK0 Þ2
J

þ XM�1

m¼1

sinh�o
mððqLmÞ2 cothL�o

m þ ðqKmÞ2 coth J�o
mÞ þ ðqL;10 � qK;1

0 Þ2
K

þ XM1�1

m¼1

sinh�o;1
m

�
½ðqL;1m Þ2 þ ðqK;1

m Þ2� cothK�o;1
m � 2

qK;1
m qL;1m

sinhK�o;1
m

�
þ ðqL;20 � qK;2

0 Þ2
K

þ XM2�1

m¼1

sinh�o;2
m

�
½ðqL;2m Þ2 þ ðqK;2

m Þ2� cothK�o;2
m � 2

qK;2
m qL;2m

sinhK�o;2
m

��
; (B8)

where �o;1
m , �o;2

m are obtained from �o
m through the substi-

tutions M ! M1, M2, respectively.

Finally, we eliminate qð1;2Þm in favor of qm. Because

Uð2Þ
m00 ¼ �Uð1Þ

m00, we find that the zero modes combine

nicely:

ðqL;10 � qK;1
0 Þ2 þ ðqL;20 � qK;20 Þ2

¼ ðqK0 � qL0 Þ2 þ
2

M1M2

XM�1

m0;m00¼1

ðqKm0 � qLm0 Þ

� ðqKm00 � qLm00 ÞUð1Þ
m00U

ð1Þ
m000: (B9)

From this we see that the zero modes enter the exponent in
the combination

iW0 ¼ �T0

2

�ðqL0 Þ2
L

þ ðqK0 Þ2
J

þ ðqK0 � qL0 Þ2
K

�
: (B10)

So, integrating them out simply implements closure on the
zero modes:

Z
dqK0 dq

L
0 e

iW0 ¼ 2�

T0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JKL

J þ K þ L

s
¼ 2�

T0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
JKL

N þ 1

s
:

(B11)

The contribution of the nonzero modes to the exponent can
be expressed using the following matrix definitions:

Að1Þ
m0m00 � 4

MM1

XM1�1

m¼1

Uð1Þ
m0mU

ð1Þ
m00m sinh�o;1

m cothK�o;1
m ; (B12)

Bð1Þ
m0m00 � � 4

MM1

XM1�1

m¼1

Uð1Þ
m0mU

ð1Þ
m00m

sinh�o;1
m

sinhK�o;1
m

; (B13)

Að2Þ
m0m00 � 4

MM2

XM2�1

m¼1

Uð2Þ
m0mU

ð2Þ
m00m sinh�

o;2
m cothK�o;2

m ; (B14)

Bð2Þ
m0m00 � � 4

MM2

XM2�1

m¼1

Uð2Þ
m0mU

ð2Þ
m00m

sinh�o;2
m

sinhK�o;2
m

: (B15)

Taking the limit L, J ! 1, we define the nonzero-mode
contribution to iW plus the missing link terms as

iW 0 ¼ �T0

2

�XM�1

m¼1

sinh�o
mððqLmÞ2 þ ðqKmÞ2Þ þ 2

KM1M2

XM�1

m0;m00¼1

ðqKm0 � qLm0 ÞðqKm00 � qLm00 ÞUð1Þ
m00U

ð1Þ
m000

þ XM�1

m0;m00¼1

ðqKm0qKm00 þ qLm0qLm00 ÞðAð1Þ þ Að2ÞÞm0m00 þ 2
XM�1

m0;m00¼1

qKm0qLm00 ðBð1Þ þ Bð2ÞÞm0m00

þ 4

M

XM�1

m0;m00¼1

ðqKm0qKm00 þ qLm0qLm00 Þ sinm
0M1�

M
sin

m00M1�

M
sin

m0�
2M

sin
m00�
2M

�
(B16)

� �T0

2

� XM�1

m0;m00¼1

ðqKm0qKm00 þ qLm0qLm00 ÞAm0m00 þ 2qKm0qLm00Bm0m00

�
; (B17)

where we have defined

Am0m00 � �m0m00 sinh�o
m0 þ ðAð1Þ þ Að2ÞÞm0m00

þ 2

KM1M2

Uð1Þ
m00U

ð1Þ
m000 þ

4

M
sin

m0M1�

M

� sin
m00M1�

M
sin

m0�
2M

sin
m00�
2M

; (B18)

Bm0m00 � ðBð1Þ þ Bð2ÞÞm0m00 � 2

KM1M2

Uð1Þ
m00U

ð1Þ
m000: (B19)

The Gaussian integral in the two-open-string function then
becomes

Z
dxKi dx

L
i e

iW 0 !
�
2�

T0

�
M

ffiffiffiffiffiffiffiffiffiffiffiffi
JKL

Nþ1

s
det�1=2

A B

B A

 !
; (B20)
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and the prefactors in the expression for the two-open-string function become in the limit J, L ! 1

Dopen
M ðJÞDopen

M1
ðKÞDopen

M2
ðKÞDopen

M ðLÞ ! e�ðJþLÞP
m
�o
m=2

K
ffiffiffiffiffiffi
JL

p
�
T0

2�

�
3M=2 YM�1

m¼1

½2 sinh�o
m�

� YM1�1

m¼1

�
sinhK�o;1

m

sinh�o;1
m

��1=2 YM2�1

m¼1

�
sinhK�o;2

m

sinh�o;2
m

��1=2
: (B21)

Combining these results, dividing byDopenðN þ 1ÞeNB0 , and summing overM1, K leads to our expression for the ground-
state energy shift:

�a�P�¼ X1
K¼1

XM�1

M1¼1

2
4eKPm

�o
m=2þðK�1ÞB0ffiffiffiffi
K

p YM�1

m¼1

½2sinh�o
m�1=2

3
5D�2� YM1�1

m¼1

�
sinhK�o;1

m

sinh�o;1
m

� YM2�1

m¼1

�
sinhK�o;2

m

sinh�o;2
m

�
det

A B

B A

 !��ðD�2Þ=2
:

(B22)

Doing the three products
Q

M�1
m¼1 ½2 sinh�o

m� explicitly yields

�a�P� ¼ X1
K¼1

XM�1

M1¼1

2
4eKPm

�o
m=2þðK�1ÞB0ffiffiffiffi
K

p
3
5D�2 YM�1

m¼1

½2 sinh�o
m�D�2

�
M

M1M2

sinh 2sinh�11 sinh 2Msinh�11

sinh 2M1sinh
�11 sinh 2M2sinh

�11

��ðD�2Þ=4

�
� YM1�1

m¼1

½2 sinhK�o;1
m � YM2�1

m¼1

½2 sinhK�o;2
m � det A B

B A

 !��ðD�2Þ=2
: (B23)

2. Correction to the open-string gluon energy

Examination of the open-string propagator shows that the gluon state, the lightest spin-1 state with energy �o
1 above the

ground state, contributes via the first-order term in the expansion of

exp

�
T0

qo1;f � qo1;f� sinh�o
1

sinh ðN þ 1Þ�o
1

�
� 1þ T0q

o
1;f � qo1;i2 sinh�o

1e
�ðNþ1Þ�o

1 : (B24)

So to extract the one-loop correction, we isolate this term from the two external line propagators in the expression for the
one-loop correction to the two-point function. It is then safe to take the J, L ! 1 limit of what multiplies these factors.
Then, in parallel with our extraction of the correction to the graviton self-energy, we find

�a�P�
gluon�kl ¼ 2T0 sinh�

o
1

X1
K¼1

XM�1

M1¼1

eK�o
1 hqok1;Lqol1;Ki

2
4eKPm

�o
m=2þðK�1ÞB0ffiffiffiffi
K

p YM�1

m¼1

½2 sinh�o
m�1=2

3
5D�2� YM1�1

m¼1

�
sinhK�o;1

m

sinh�o;1
m

��1=2

� YM2�1

m¼1

�
sinhK�o;2

m

sinh�o;2
m

��1=2
det�1=2

A B

B A

 !�
D�2

; (B25)

where the correlator is given by

hqokL;1qolK;1i ¼
R
dqoL;mdq

o
K;mq

ok
L;1q

ol
K;1e

iW 0R
dqoL;mdq

o
K;me

iW 0 : (B26)

Again, with the notation

A B

B A

 !�1

¼ A0 B0

B0 A0

 !
; (B27)

it follows that
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hqokL;1qolK;1i ¼ �kl

B0
11

T0

: (B28)

APPENDIX C: NORMAL MODES

A string with Pþ ¼ MaT0 is described at a fixed time byM coordinates xi or yi, i ¼ 1; . . .M. In this article, we require
several normal mode decompositions depending on the boundary conditions.
Neumann Open String:

xi ¼ 1ffiffiffiffiffi
M

p q0 þ
ffiffiffiffiffi
2

M

s XM�1

m¼1

qom cos
m�ði� 1=2Þ

M
; (C1)

q0 ¼
ffiffiffiffiffi
1

M

s XM
i¼1

xi; qom ¼
ffiffiffiffiffi
2

M

s X
i

xi cos
m�ði� 1=2Þ

M
: (C2)

Closed String (Neumann):

M odd:

xi ¼ 1ffiffiffiffiffi
M

p q0 þ
ffiffiffiffiffi
2

M

s XðM�1Þ=2

m¼1

�
qcm cos

2m�ði� 1=2Þ
M

þ qsm sin
2m�ði� 1=2Þ

M

�
: (C3)

M even:

xi ¼ 1ffiffiffiffiffi
M

p ðq0 þ qsM=2ð�ÞiÞ þ
ffiffiffiffiffi
2

M

s XM=2�1

m¼1

�
qcm cos

2m�ði� 1=2Þ
M

þ qsm sin
2m�ði� 1=2Þ

M

�
; (C4)

qcm ¼
ffiffiffiffiffi
2

M

s X
i

xi cos
2m�ði� 1=2Þ

M
; qsm ¼

ffiffiffiffiffi
2

M

s X
i

xi sin
2m�ði� 1=2Þ

M
; (C5)

qsM=2 ¼
ffiffiffiffiffi
1

M

s XM
i¼1

ð�Þixi; for M even; q0 ¼
ffiffiffiffiffi
1

M

s XM
i¼1

xi: (C6)

Dirichlet Open String:

yk ¼
ffiffiffiffiffi
2

M

s XM�1

m¼1

qDm sin
m�k

M
for k ¼ 1; . . . ;M� 1; yM ¼ qDM; (C7)

qDm ¼
ffiffiffiffiffi
2

M

s XM�1

k¼1

yk sin
m�k

M
; 0<m<M; qDM ¼ yM: (C8)

Closed String (Dirichlet):

M odd:

yi ¼ 1ffiffiffiffiffi
M

p q0 þ
ffiffiffiffiffi
2

M

s XðM�1Þ=2

m¼1

�
qcm cos

2m�i

M
þ qsm sin

2m�i

M

�
: (C9)
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M even:

yi ¼ 1ffiffiffiffiffi
M

p ðq0 þ qcM=2ð�ÞiÞ þ
ffiffiffiffiffi
2

M

s XM=2�1

m¼1

�
qcm cos

2m�i

M
þ qsm sin

2m�i

M

�
; (C10)

qcm ¼
ffiffiffiffiffi
2

M

s X
i

yi cos
2m�i

M
; qsm ¼

ffiffiffiffiffi
2

M

s X
i

yi sin
2m�i

M
; (C11)

q0 ¼
ffiffiffiffiffi
1

M

s XM
i¼1

yi; qcM=2 ¼
ffiffiffiffiffi
1

M

s XM
i¼1

ð�Þiyi; ðfor M evenÞ: (C12)

APPENDIX D: PROPAGATORS

1. Neumann open-string propagator

hN þ 1; xfj0; xiiopen ¼ DopenðN þ 1ÞeiWopen ; (D1)

where

DopenðN þ 1Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
�
T0

2�

�
M=2 YM�1

m¼1

�
sinh ðN þ 1Þ�o

m

sinh�o
m

��1=2
; (D2)

iWopen ¼ �T0

2

�ðq0;f � q0;iÞ2
N þ 1

þ XM�1

m¼1

sinh�o
m

�
ðq2m;i þ q2m;fÞ coth ðN þ 1Þ�o

m � 2
qm;iqm;f

sinh ðN þ 1Þ�o
m

��
; (D3)

�o
0 ¼ 0; �o

m ¼ 2sinh�1 sin
m�

2M
; m ¼ 1; . . . ;M� 1; (D4)

Where the qm’s are the normal mode coordinates for the x’s. The right side is the result of doing the integrations over all the
xji with i ¼ 1; . . . ;M and j ¼ 1; . . .N. The propagator spansN þ 1 time steps, and this result corresponds to assigning half
the potential energy T0

P
M�1
i¼1 ðxjiþ1 � xji Þ2=2 to time j ¼ 0 and half to j ¼ N þ 1.

2. Dirichlet open-string propagator

The Dirichlet open-string propagator over a time of K ¼ N þ 1 steps is evaluated to be

hqf; N þ 1jqi; 0iD ¼ DDðN þ 1ÞeiWD
; (D5)

where

DDðN þ 1Þ ¼
�
T0

2�

�
M=2 YM

m¼1

�
sinh ðN þ 1Þ�D

m

sinh�D
m

��1=2
; (D6)

iWD ¼ �T0

2

XM
m¼1

�
ðqf2Dm þ qi2DmÞ sinh�D

m cothK�D
m � 2qfDmq

i
Dm

sinh�D
m

sinhK�D
m

�
; (D7)

�D
m ¼ �o

m; m ¼ 1; . . . ;M� 1; �D
M ¼ 2sinh�1

ffiffiffiffi
�

2

r
: (D8)

We recall that the above expressions give the result of integrating over all the variables yji for j ¼ 1; . . . ; N, with half the
potential energy assigned to j ¼ 0, N þ 1, which is consistent with the closure requirement.

OPEN STRING SELF-ENERGY ON THE LIGHTCONE . . . PHYSICAL REVIEW D 88, 026014 (2013)

026014-29



APPENDIX E: OVERLAP FORMULAS

Open-2 Open, Neumann:

qð1Þ0 ¼
ffiffiffiffiffiffiffi
M1

M

s
q0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2

MM1

s XM�1

m0¼1

qm0Uð1Þ
m00; qð1Þm ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi

MM1

p XM�1

m0¼1

qm0Uð1Þ
m0m; (E1)

qð2Þ0 ¼
ffiffiffiffiffiffiffi
M2

M

s
q0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2

MM2

s XM�1

m0¼1

qm0Uð2Þ
m00; qð2Þm ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi

MM2

p XM�1

m0¼1

qm0Uð2Þ
m0m; (E2)

Uð1Þ
m0m ¼ XM1

i¼1

cos
m0�
M

�
i� 1

2

�
cos

m�

M1

�
i� 1

2

�
¼ ð�Þm

2

sin ðm0�M1=MÞ sin ðm0�=2MÞ cos ðm�=2M1Þ
sin 2ðm0�=2MÞ � sin 2ðm�=2M1Þ

; (E3)

Uð2Þ
m0m ¼ XM

i¼1þM1

cos
m0�
M

�
i� 1

2

�
cos

m�

M2

�
i�M1 � 1

2

�
¼ � 1

2

sin ðm0�M1=MÞ sin ðm0�=2MÞ cos ðm�=2M2Þ
sin 2ðm0�=2MÞ � sin 2ðm�=2M2Þ

; (E4)

and we note the identity qð1Þ0

ffiffiffiffiffiffiffi
M1

p þ qð2Þ0

ffiffiffiffiffiffiffi
M2

p ¼ q0
ffiffiffiffiffi
M

p
, as expected from the fact that q0=

ffiffiffiffiffi
M

p
is the center of momentum

of the open string.

We can also express the q’s in terms of the qð1Þ, qð2Þ’s:

q0 ¼ qð1Þ0

ffiffiffiffiffiffiffi
M1

M

s
þ qð2Þ0

ffiffiffiffiffiffiffi
M2

M

s
; (E5)

qm0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

MM1

s �
qð1Þ0 Uð1Þ

m00 þ
ffiffiffi
2

p XM1�1

m¼1

qð1Þm Uð1Þ
m0m

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2

MM2

s �
qð2Þ0 Uð2Þ

m00 þ
ffiffiffi
2

p XM2�1

m¼1

qð2Þm Uð2Þ
m0m

�
: (E6)

Open-2 Open, Dirichlet:

qð1ÞDM1
¼

ffiffiffiffiffi
2

M

s XM�1

m0¼1

qDm0 sin
m0�M1

M
; qð1ÞDm ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi

MM1

p XM�1

m0¼1

qDm0UDð1Þ
m0m ; (E7)

qð2ÞDM2
¼ yM ¼ qDM; qð2ÞDm ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi

MM2

p XM�1

m0¼1

qDm0UDð2Þ
m0m ; (E8)

UDð1Þ
m0m ¼ XM1�1

k¼1

sin
m0�k
M

sin
m�k

M1

¼ ð�Þm
4

sin ðm�=M1Þ sin ðm0�M1=MÞ
sin 2ðm0�=2MÞ � sin 2ðm�=2M1Þ

;

UDð2Þ
m0m ¼ XM�1

k¼1þM1

sin
m0�k
M

sin
m�ðk�M1Þ

M1

¼ ð�Þm0

4

sin ðm�=ðM�M1ÞÞ sin ðm0�ðM�M1Þ=MÞ
sin 2ðm0�=2MÞ � sin 2ðm�=2ðM�M1ÞÞ

:

(E9)

3 Zero-momentum Tachyon Vertex:

V3 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPþ

1 P
þ
2 P

þ
3 j

q 







P
þ
1

Pþ
3









ðPþ2
1

þPþ2
2

þPþ
1
Pþ
2
Þ=Pþ

2
Pþ
3









P
þ
2

Pþ
3









ðPþ2
1

þPþ2
2

þPþ
1
Pþ
2
Þ=Pþ

1
Pþ
3
; (E10)

Pþ
3 ¼ �Pþ

1 � Pþ
2 : (E11)
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