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With use of a 6-form field strength of ten-dimensional type IIA supergravity over AdS4 � CP3, when

S7=Zk is considered as a S1 Hopf fibration on CP3, we earn a fully localized solution in the bulk of

Euclideanized AdS4. Indeed, this object appears in the external space because of wrapping a D4(M5)-

brane over some parts of the respective internal spaces. Interestingly, this supersymmetry breaking

SUð4Þ �Uð1Þ-singlet mode exists in already known spectra when one uses the 8c gravitino representation

of SOð8Þ. To adjust the boundary theory, we should swap the original 8s and 8c representations for

supercharges and fermions in the Aharony-Bergman-Jafferis-Maldacena model. The procedure could later

be interpreted as adding an anti-D4(M5)-brane to the prime N ¼ 6 membrane theory, resulting in a

N ¼ 0 antimembrane theory while other symmetries are preserved. Then, according to the well-known

state-operator correspondence rules, we find a proper dual operator with the conformal dimension of

�þ ¼ 3 that matches to the bulk massless pseudoscalar state. After that, by making use of some fitting

Ansätze for the used matter fields, we arrive at an exact boundary solution and comment on the other

related issues as well.

DOI: 10.1103/PhysRevD.88.026013 PACS numbers: 11.25.Tq, 11.15.�q, 04.65.+e

I. INTRODUCTION

Instantons and solitons, as well-known nonperturbative
effects, play many important roles in mathematics and
physics especially. In the last few decades, their patterns
in the gauge/string dualities have become even more im-
portant by the advent of AdS/CFT correspondence [1]. The
instantons have been widely studied for the famous duality
of ten-dimensional (10d from now on) type IIB string
theory over AdS5 � S5 versus four-dimensional N ¼ 4
SUðNÞ Yang-Mills theory in [2–4] firstly. Then, in mid
2008 and after releasing the best sample so far of
AdS4=CFT3 duality by Aharony, Bergman, Jafferis, and
Maldacena (ABJM from now on) [5], the instanton studies,
next to many other efforts to discover various aspects of the
model, got started first in [6]. Afterwards, through a few
studies [7–9], we also found some new instanton solutions
in the model.

Our first solution [7], which was in 11d supergravity,
reduced the field equations over the skew-whiffed AdS4 �
S7 background to a conformally coupled scalar equation in
the bulk of AdS4. By detecting the exact solutions to the
equation, we analyzed their behaviors near the boundary
according to the well-known AdS/CFT correspondence
rules [10]. Later, to find the dual boundary operator, we
exchanged the representations 8s and 8c of the membranes’
boundary theory. The resulting theory was then for anti-
membranes. After that, by deforming the boundary theory
by the founded operators, we arrived at some exact classi-
cal solutions in a sound correspondence with the bulk
solutions.

The second solution [8] was in 10d type IIA supergravity
over the geometric background of AdS4 � CP3. There, the
localized solution in the bulk was a monopole instanton. In
fact, we had a massless Uð1Þ gauge field in the bulk of
Euclideanized AdS4 (EAdS4) space whose excitation
induced a magnetic field on the boundary. By turning on
a boundary scalar field next to the Uð1Þ �Uð1Þ part of the
full gauge group of UðNÞ �UðNÞ and making use of
symmetries, we found the dual boundary operator and
saw how the solutions of both sides matched clearly. This
Uð1Þ instanton was also studied in [9] using a similar way
except for an uplift of the exact bulk solution to the
respective 11d supergravity.
In this paper, we continue the former lines of studies to

find the instantons as the solutions with finite actions to the
Euclidean equations of motion. It is remarkable that the
new solution is more proper to be known as an equivalent
for the famous D-instanton solution of AdS5=CFT4 duality
studied in [3,4].
We propose here an Ansatz for the 5-form (6-form)

field of the type IIA (M) supergravity version of ABJM
while the main background geometry and fields are left
unchanged. By doing so, we get a localized solution in
the bulk of EAdS4. The origin of the object in the bulk
is likely from winding the added D4/M5-branes around
some parts of the internal CP3 or S7=Zk of the complete
10d or 11d geometries. The Ansätze and solutions inter-
estingly preserve the original symmetries but break all
supersymmetries. It is indeed a pseudoscalar and a sin-
glet of the isometry group of SUð4Þ �Uð1Þ arisen from
taking the prime S7 as a Uð1Þ Hopf fibration on CP3.
The basic motivation for the mode to be a pseudoscalar
is its coming from the form fields with the internal space
ingredients.*m.naghdi@mail.ilam.ac.ir
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On the other hand, we see that in type IIA/M supergrav-
ity spectra of the involved Hopf fibration and Lens spaces
(i.e.,AdS4 � S7,AdS4 � S7=Zk, andAdS4 � CP3), as first
traced in [11,12], there is a singlet uncharged pseudoscalar
in the bulk that matches to a marginal operator in a 3d
N ¼ 0 boundary CFT with the global symmetry of
SUð4ÞR �Uð1Þb. The last Uð1Þ � SOð2Þ becomes the
baryonic symmetry in ABJM while the R-symmetry
SUð4Þ � SOð6Þ of the boundary field theory is the isometry
group of CP3.

Now, an important point is that the aforesaid pseudosca-
lar, which sits in the representation 10 of SUð4Þ �Uð1Þ,
exists just when the gravitinos (supersymmetry charges)
are in the representations 8c or 8v of the original SOð8Þ
while the gravitinos are originally in 8s of ABJM. So, in a
similar line with [7], to adjust the bulk and boundary
solutions, we should swap the representations c and s in
ABJM. The resultant theory is then for antimembranes, and
one may conclude that the branes, which we are wrapping
over the internal spaces, are indeed anti-D/M-branes as we
confirm more.

Next, to find a plain counterpart boundary solution, we
first note that we have a massless pseudoscalar in the bulk
and so, the dual boundary operator must have the confor-
mal dimension of �� ¼ 3, 0. The upper branch mode,
which corresponds to the normalized bulk mode, is suit-
able. That is because the non-normalizable solutions are
indeed not replying to the bulk fluctuations, but they
present some external sources which couple to the super-
gravity or string theory. Second, we note that the various
terms in the SUð4ÞR �Uð1Þb-invariant Lagrangian of
ABJM [5,13,14] have the right dimension of 3. Third, it
is proven that the deformations with the marginal boundary
operators are often not deformations of the boundary
theory, but there are often new states in the same theory
[15]. Fourth, we may also look at the boundary operators
for such bulk modes as proposed, for example, in [16–18].

All these facts suggest the operator with which we
should deform the boundary theory. So, we handle an
operator which has a similar structure as the Fermi’s terms
of the ABJM SUð4ÞR �Uð1Þb-invariant Lagrangian.
Another alternative operator, that one may use to adjust
the bulk/boundary solutions, is the gauge parts of the
mentioned Lagrangian similar to the process applied to
find Yang-Mills instantons in N ¼ 4 SUðNÞ field
theory—we should of course note that there are more
subtleties with the Chern-Simons theories, especially the
types of deformations that one may employ. Afterwards, to
match the bulk and boundary solutions, according to the
gravity/gauge duality rules [10], we just turn on one scalar
and one fermion alongside a Uð1Þ part of the full quiver
gauge group of the model.

The organization of this paper is as follows. In Sec. II,
we give a brief necessary review for the field theory and
gravity side of the ABJM model. For the gravity side, we

start from 11d supergravity and concisely arrive at 10d type
IIA supergravity of the model. For the field theory side, we
present the standard Lagrangian of the model alongside the
needed symbols. In Sec. III, we discuss the gravity side
Ansätze, satisfy equations of motion, and inspect solutions,
along with their associated interpretations and discussions.
The spectra of the involved supergravities and how to
arrive at our desired representation are also addressed.
There, based on the founded solutions, we also evaluate
the action and the added brane’s charges, and briefly dis-
cuss the uplifting of the Ansatz and solution to 11d super-
gravity. Section IV is allocated to study and to find the dual
field theory solutions and counterparts. There, we review
the bulk-boundary correspondence rules for the case, set up
the dual boundary operator, and present a clear solution,
besides matching the bulk and boundary facts with a
confirmation that the way is right. Section V includes
summary, comments on supersymmetry and stability, and
some other related issues and works to be addressed in
future studies.

II. A BRIEF OF THE GRAVITY/GAUGE
OF THE ABJM MODEL

The ABJM model [5] is so far the best known version of
AdS4=CFT3 correspondence. It states that on the near
horizon limit of a stack ofN coincident M2-branes probing
a singularity in C4=Zk orbifold (which is indeed the IR
limit), exists a three-dimensional UðNÞk �UðNÞ�k Chern-
Simons-matter theory at the level of ðk;�kÞ coupled to the
matter fields in the bifundamental representation of the
gauge group. The model has an N ¼ 6 supersymmetry
for generic k that enhances to N ¼ 8 nonperturbatively
when the Chern levels are k ¼ 1, 2. For the last values of k,
the model describes M2-branes in flat space and R8=Z2,
respectively. The model is conjectured to have a dual
gravitational description that is M theory over AdS4 �
S7=Zk and, under some conditions, type IIA string theory
over AdS4 � CP3 as we describe more below.

A. The gravity side of the model

To arrive at the near horizon limit of the model, one can
start from the AdS4 � S7 solution of 11d supergravity with
�Nð¼ kNÞ units of the 4-form flux as follows:

ds2ABJMðMÞ ¼
R2

4
ds2AdS4 þ R2ds2

S7
; (2.1)

Gð0Þ
4 � �NEAdS4 ; (2.2)

where R, �N, and EAdS4 are the curvature radius of 11d

target-space, the initial number of flux quanta, and unit
volume-form of AdS4, respectively. The AdS4 metric in
Poincaré upper-half plane coordinates, which we use here,
with the Euclidean signature, reads
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ds2EAdS4 ¼
L2

u2
ðdu2 þ dxidxiÞ; i ¼ 1; 2; 3; (2.3)

with a note that 2L ¼ R ¼ R7 ¼ 2RAdS.
One can always parametrize the transverse space to M2-

branes through four complex coordinates XI (I ¼ 1, 2, 3, 4)
which are the needed coordinates (scalars) to embed the
round seven-sphere S7 as

P
4
I¼1 jXIj2 ¼ 1. Now, by consid-

ering S7 as an S1 fibration on CP3, one can write

ds2
S7

¼ ds2
CP3 þ ðd �’þ!Þ2; (2.4)

where! is a topologically nontrivial 1-form (that is dual to
the Reeb killing vector of @ �’) on CP3, �’ is the Uð1Þ fiber
coordinate with a period of 2�, and the unit-radius metric
of CP3 with six specific real coordinates reads

ds2
CP3 ¼ d�2 þ cos 2�sin 2�

�
dc þ 1

2
cos�1d’1

þ 1

2
cos �2d’2

�
2 þ 1

4
cos 2�ðd�21 þ sin 2�1d’

2
1Þ

þ 1

4
sin 2�ðd�22 þ sin 2�2d’

2
2Þ; (2.5)

and

! ¼ 1

2
ððcos 2�� sin 2�Þdc þ cos 2� cos �1d’1

þ sin 2� cos�2d’2Þ; (2.6)

where 0 � � � �=2; 0 � �s; ’s; �’; c � 2�; 0 � �s �
�; s ¼ 1; 2.

Here, the Zk quotient (orbifold) of C4 acts on the four

complex coordinates as XI ! ei2�=kXI. Then, in order to
have N units of the 4-form flux on the quotient space,

one should take �N ¼ kN and �’ ¼ ’=k and so, the new
metric reads

ds2ABJMðIIAÞ ¼ ~R2ðds2AdS4 þ 4ds2
CP3Þ;

~R2 ¼ R3

4k
¼ �

ffiffiffiffiffiffi
2�

p
;

(2.7)

in which � � N=k is the ’t Hooft effective coupling con-
stant of the boundary theory. In the interesting limit of

large N and for � � N1=5, the field theory is dual to
M-theory over AdS4 � S7=Zk together with N units of

Gð0Þ
7 flux on S7=Zk. When k grows (the limit of k ! 1

nearly), the M-theory circle shrinks and a better description

for the dual field theory, in the limit of N1=5 � k � N, is
type IIA string theory overAdS4 � CP3 withN units of the

6-form Fð0Þ
6 flux on CP3 and k units of the 2-form Fð0Þ

2 flux

on CP1 	 CP3. The form fields and dilation in type IIA
theory are

e2� ¼ R3

k3
; H3 ¼ dB2 ¼ 0;

Fð0Þ
2 ¼ dAð0Þ

1 ¼ kJ; Fð0Þ
4 ¼ dAð0Þ

3 ¼ 3

8
R3E4;

(2.8)

where E4 is the AdS4 unit volume-form and Jð¼ d!Þ is the
Kähler form on CP3.

B. The field theory side of the model

The three-dimensional N ¼ 6 Chern-Simon-matter
theory of ABJM is composed of the UðNÞ �UðNÞ gauge
fields at the level of k and �k coupled to (anti)bifunda-
mental matter fields. The theory can be constructed from
theories withN ¼ 2 andN ¼ 3 supersymmetries, where
two latter cases exist for any gauge group and charge
content [5]. The SUð4ÞR �Uð1Þb-invariant action of
ABJM is always written as [13,14]

SABJM ¼
Z

d3x

�
k

2�
"���tr

�
A�A�A� þ 2i

3
A�@�A�

� Â�Â�Â� � 2i

3
Â�@�Â�

�
� trðD�Y

y
AD

�YAÞ

� trðc Ayi	�D�c AÞ � Vbos � Vferm

�
; (2.9)

where the first pair of parentheses is for the Chern-Simons
term while the second and third pairs are the kinetic terms
for the bosons and fermions, respectively. The Bose scalar
potential and Bose-Fermi interaction terms read

Vbos ¼ � 4�2

3k2
trðYAYy

AY
BYy

BY
CYy

C þ Yy
AY

AYy
BY

BYy
CY

C

þ 4YAYy
BY

CYy
AY

BYy
C � 6YAYy

BY
BYy

AY
CYy

CÞ;
(2.10)

Vferm ¼ � 2�i

k
trðYy

AY
Ac Byc B � YAYy

Ac Bc
By

þ 2YAYy
Bc Ac

By � 2Yy
AY

Bc Ayc B

þ "ABCDYy
Ac BY

y
Cc D � "ABCDY

Ac ByYCc DyÞ;
(2.11)

respectively. Here, A�, Â� stand for UðNÞ �UðNÞ gauge
fields. The matter fields, YA and c A with (A ¼ 1; . . . ; 4),
are four complex scalars and four three-dimensional spinor
fields that each transforms in the bifundamental represen-
tation of the quiver gauge group as (N, �N). Besides the
gauge symmetry, there is SUð4ÞR �Uð1Þb R-symmetry
under which the scalars YA transform as 41 and the fermi-
ons c A transform as �4�1. Meanwhile, the gauge covariant
derivatives for the matter fields � (YA or c A) and the field
strength of F�� read

D�� ¼ @��þ iA��� i�Â�;

F�� ¼ @�A� � @�A� þ i½A�; A�
;
(2.12)
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respectively. The traces are taken on the gauge group
N � N matrices, meanwhile keeping the gauge-invariant
quantities and setting the normalization of UðNÞ as
trðtatbÞ ¼ 1

2

ab. The conventions for metric, Clifford’s

algebra, and real gamma matrices in the original
Minkowski signature read

��� ¼ diagð�1; 1; 1Þ; f	�; 	�g ¼ �2���;

	� ¼ ði�2; �1; �3Þ; "012 ¼ 1;
(2.13)

where �1;2;3 are the usual Pauli matrices. We will see a

small change of the relations in going to the Euclidean
signature. Anyhow, various aspects of the Lagrangian
and involved symmetries such as N ¼ 1, 2 superfield
formalism of the theory are studied in [14,19], among
many others.

III. NEW INSTANTON SOLUTION
IN THE BULK OF ADS4

A. The Ansatz in ten dimensions and preliminaries

We start with an Ansatz for a 6-form field strength of
type IIA supergravity, by making use of an established
form in the ABJM model, as

A5 ¼ ðf! ^ J2Þ ) F6 ¼ df ^! ^ J2 þ fJ3;

F4 ¼ �10F6 ¼ �4df ^ �6ð! ^ J2Þ þ kfð�41 ^ �6J3Þ;
(3.1)

where f is a scalar function covering the whole AdS4
space, �10 � � from now on, and we note that all coeffi-
cients are still included in the Hodge star.

Now, by noting that the background geometry and fields
in the model are kept unchanged, it is not difficult to check
that all needed relations satisfy, interestingly. Clearly, the
10d type IIA supergravity action in string frame is given by

SIIA ¼ 1

22

Z
d10x

ffiffiffi
g

p
e�2�Rþ 1

22

Z �
e�2�

�
4d� ^ �d�

� 1

2
H3 ^ �H3

�
� 1

2
F2 ^ �F2 � 1

2
~F4 ^ � ~F4

� 1

2
B2 ^ F4 ^ F4

�
; (3.2)

where H3 ¼ dB2, F2 ¼ dA1, F4 ¼ dA3, ~F4 ¼ dA3 �
A1 ^H3, and the Hodge-star operation is taken with
respect to the full 10d metric. By taking H3 ¼ 0, the
same as ABJM, the relations to satisfy are

dFp ¼ 0; d � Fp ¼ 0; (3.3)

d �H3 ¼ g2s

�
�F2 ^ � ~F4 þ 1

2
~F4 ^ ~F4

�
¼ 0; (3.4)

where p ¼ 2, 4 and, in the last relation, use is made of the
fact that the dilaton is constant with e2� ¼ g2s for ABJM.

The arguments to satisfy the dilaton and metric equa-
tions are similar to those in our previous study [8]. In fact,
the dilaton equation is satisfied automatically while the rhs
of the Einstein equations, on which the energy-momentum
tensors are, remains to be satisfied. We, of course, may use
the same reasonable tricks in [8] to dissolve the problem.
According to that, because the coefficient in front of the
related energy-momentum tensors of the Einstein equa-
tions is e2� ¼ R3=k3, the added effect is negligible for
the k large enough to be the legality limit of the type IIA
version of the ABJM model. Nevertheless, since the
asymptotic symmetries of both sides of the duality remain
unchanged, one may argue that the backreaction, if any, is
tiny for our probe approximation especially. On the other
hand, as long as we are interested in the behavior of the
solutions near the boundary and correlation functions for
dual operators, the backreactions on the background ge-
ometry can be ignored [20,21].

B. Discussions on solutions and spectra

One may proceed through the supersymmetry transfor-
mations for gravitinos in 10d or 11d to obtain the solutions
and the number of preserved supersymmetries. However,
here we go through satisfying the equations of motion
directly. The Ansatz of (3.1) satisfies d � F4 ¼ 0 trivially
while to satisfy dF4 ¼ 0, the nontrivial conditions read

dð�4dfÞ ¼ 0; d �6 ð! ^ J2Þ ¼ 0: (3.5)

By making use of (2.5) and (2.6), one can affirm that the
second expression is satisfied, fortunately, whereas the first
one, which is indeed the Laplace equation for EAdS4,
becomes

1ffiffiffi
g

p @ ��ð ffiffiffi
g

p
g �� ��@ ��fÞ ¼

�
@i@

i þ u2
@

@u

1

u2
@

@u

�
fðu; ~uÞ

� L4fðu; ~uÞ ¼ 0; (3.6)

where ��; ��; . . . stand for four AdS4 coordinates, and we
define ~u ¼ ~r ¼ ðx1; x2; x3Þ. A familiar solution to this
equation is

fðu; ~u; 0; ~u0Þ ¼ c1 þ c2u
3

½u2 þ ð ~u� ~u0Þ2
3
; (3.7)

where c1; c2; . . . are some constant coefficients related
to the brane-instanton charges that we settle later. The
solution is well known, as it is also the Green function
for a massless scalar propagating the instanton’s location at
ð0; ~u0Þ and another point at ðu; ~uÞ. That is called the bulk to
the bulk propagator and for the case that the source
(instanton) is on the boundary of AdS4, it is the boundary
to the bulk propagator. Actually, the solution is singular at
u ¼ 0 and corresponds to a small instanton on the
boundary.
On the other hand, the field equation of (3.6) is

for a massless scalar in AdS4 and so, the conformal
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dimensions of the dual boundary operators, according to

�� ¼ þ�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4ðmLÞ2p

=2 forAdSdþ1, must be�� ¼
3, 0. Meanwhile, for the supergravity multiplets of the
lowest mass, only the upper branch �þ, which is the
normalizable mode, is suitable. It is also notable that in
the limit of approaching the boundary (u ! 0), the propa-

gator of (3.7) reduces to a delta function of 
ð3Þð ~u� ~u0Þ.
This singular point is the instanton position. In type IIB
theory, the instanton was indeed a D(-1)-brane [3,4,22,23].
What is that here? As we could see from the Ansatz
structure (3.1), it may actually be interpreted as a kind of
object coming from the Kaluza-Klein reduction of 11d or
10d supergravity on the related spaces in ABJM with the
supplemented fields. In fact, it seems that, due to
the wrapping of the world volume of the added
Euclideanized electric D4-brane on the CP2 � S1 part of
the perfect internal space of CP3, some fluctuations appear
in the stature of the scalar of f in the external space of
EAdS4.

A remarkable point toward the solution of (3.7) is that it
is a pointlike or a fully localized object in the 4d external
space of EAdS4. A counterpart to this in type IIB theory
over AdS5 � S5 is discussed in [22,23] while the solution
in [4] is localized in the whole 10d space. Therefore, the
solution here smears on some parts of CP3 or S7=Zk likely
to match the solutions on the boundary field theory.
Whether the current solution can uplift to the 10d or 11d
parent theories is related to the fact that the truncation is
consistent or not.1 We comment more on this point in the
last section.

Another possible solution for the Laplace equation of
(3.6) holds by separating the scalar function in its external
variables as fðu; ~uÞ ¼ fðuÞfð ~uÞ. Then, in general, the u
part solution is a simple ‘‘exponential’’ function while the
~u part solution is a ‘‘distribution equation’’ in three dimen-
sions. In the simplest case and after integrating out the
three bulk coordinates of ~u, which are indeed the D2(M2)-
branes’ world-volume directions, the smeared solution
versus the localized solution reads fðuÞ ¼ c3 þ c4u

3. In
the latter case, the instanton is localized just in the u
direction and not in all Euclidean AdS4 space.

An interesting point to say is that the operator L4 in (3.6)

is invariant under the conformal transformation of x �� $
x ��

u2þr2
and so, the resultant solution goes to the last one and

the order is reversed. This transformation maps a point at
infinity to a point at the origin and exchanges the boundary
conditions. However, the obstacle is that although the
metric of (2.1) or (2.7) is also conformal invariant, the
new form field of F6, from which the solution (3.7) arises,

is not conformal invariant. So, more interesting discussions
on the map are abandoned automatically.
Now, the question may be whether or not such a bulk

excitation exists in the known spectra of the 11d and 10d
supergravities over the involved spaces of AdS4 � S7=Zk

and AdS4 � CP3. The answer is fortunately yes. Even so,
we should first note that the object comes from a brane
fully wrapping on the internal spaces (or a form field in
terms of the known 1-form ! on the internal manifold)
and so, it must be a pseudoscalar. Interestingly, there are
pseudoscalar fluctuations in the gauged supergravities over
such spaces [11]. In fact, we note that there are three
representations 8s, 8c, 8v of the isometry group SOð8Þ
of S7 for gravitinos. After the Hopf-fiber reduction, only
the Uð1Þ-neutral states remain in the spectrum. Moreover,
we know that in the ABJM Lagrangian (2.9), the super-
symmetry charges (gravitinos), fermions, and scalars
decompose under the isometry group SUð4Þ �Uð1Þ of
CP3 � S1 as

8s ¼ 12 � 1�2 � 60; 8c ¼ �4�1 � 41;

8v ¼ 41 � �4�1; (3.8)

respectively. This decomposition is indeed for the s grav-
itino, for which the scalars and pseudoscalars are in 35v;c,
while the gauge bosons are in 28 for all cases.
The 35 scalars and 35 pseudoscalars, as well as gauge

fields, from 11d gauged supergravity, decompose also as

35v;c ¼ 102 � 10�2 � 150;

35s ¼ 10 � �14 � 1�4 � �62 � 6�2 � 200;

28 ¼ 10 � �62 � 6�2 � 150;

(3.9)

respectively. For the c gravitino, the only remaining scalars
(pseudoscalars), in the massless spectrum of type IIA
supergravity over AdS4 � CP3, sit in 150 (10); and for
the v gravitino, the only remaining scalars (pseudoscalars)
sit in 10 (150). Dual boundary theory is then a 3d N ¼ 0
CFT theory with the global symmetry of SUð4Þ �Uð1Þ
and two marginal operators in 10 and 150. For the s
gravitino, only massless scalars (pseudoscalars) sit in 150
and dual boundary theory is a 3dN ¼ 6 CFT theory with
the global symmetry of SUð4Þ �Uð1Þ and two marginal
operators just in 150.
On the other hand, we note that the Ansatz in (2.9) is

invariant (indeed singlet) under the full SUð4Þ �Uð1Þ
symmetry. It is because ! and therefore J are invariant
under SUð4Þ and neutral with respect to Uð1Þ. By knowing
that we have a pseudoscalar (0�) in the bulk, which exists
in a skew-whiffed representation [11] (or ‘‘right represen-
tation’’ in the language of [24]), fascinatingly, we are led to
the statement that we are indeed winding (anti)branes
around the internal spaces with right directions. When
addressing the boundary side and state-operator correspon-
dence, as well as in the last section, we return to the subject
concisely.

1A Kaluza-Klein truncation is consistent if only a finite set of
the fields is maintained with a condition that the low-
dimensional fields do not disturb the upper-dimensional ones
or source them. Then, every solution to the low-dimensional
theory is valid in the full upper-dimensional one.
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C. Charges and actions

Now, we try to evaluate the added (anti)brane charges.
The electric charge of the included D4-brane based on the
solution of (3.7) with c1 ¼ 0, through the standard formula

QD4
e ¼ 1ffiffiffi

2
p

2

Z
�F6; (3.10)

becomes

QD4
e ¼ c5

k

R3

1

�3
; (3.11)

where 2 ¼ 1
2 ð2�Þ7, � > 0 is a regulator small parameter

[21],2 and we have used the metric of (2.7) and the follow-
ing identities:

E 6 ¼ 1

8:3!
J3; �J3 ¼ k

128R3
E4; �E4 ¼ R3

3k
J3:

(3.12)

One could also note that, to adjust to our symbol for Fð0Þ
2 in

(2.8), we have taken the mentioned unit-volume element E6

for CP3; therefore, we must in addition take
R
CP1 J ¼ 2�

for convenience.
One can similarly calculate the Euclideanized

(anti-)D4-brane magnetic charge, which is indeed the elec-
tric charge of its dual (anti-)D2-brane. Now an interesting
point about the charge in (3.11) is that, according to (2.7), it

is proportional to�1=
ffiffiffiffi
�

p
. So, in the type IIA validity limit

�  1 of ABJM, it is almost negligible. This stresses our
thought about ignoring the backreaction because of the
added brane on the background.

Similar to the charges, we can estimate the corrections to
the action because of the added fields. The relevant part
of the main action of (3.2) is now the fifth term. By
inserting the Ansatz of (3.1), based on the solution of
(3.7) with c1 ¼ 0 into the action, we have

SD4
modi ¼ � 1

256ð2�Þ4
k3

R3

Z
AdS4

f2dVolðAdS4Þ � 1

2ð2�Þ7

�
Z
AdS4

ðdf ^ �4dfÞ
Z
CP3

ð! ^ J2Þ ^ �6ð! ^ J2Þ;
(3.13)

where dVolðAdS4Þ ¼ E4. The singular points of the inte-
grals are at u ¼ 0 and so according to the regularization
discussions [20,21], we may again keep just the finite part
of the action. That is

SD4
modif ¼ c6

k

R3

1

�6
; (3.14)

on the boundary at u ¼ �. We see again that the correction
is a small amount.

D. On the Ansatz uplift to 11 dimensions

The gravitational field spectra, which are chiral primar-
ies on the ABJM background, are actually the projections
of the primary spectra over AdS4 � S7 into Zk-invariant
states [5]. Positively, the orbifold of Zk preserves the
SUð4Þ �Uð1Þ symmetry of the full SOð8Þ isometry sym-
metry of S7, as the various decompositions under SOð8Þ !
SUð4Þ �Uð1Þ are given in (3.8). For k � 3, two single
supercharges in 8s of the original theory are projected out
and the remaining symmetry is just N ¼ 6. For k ¼ 1, 2,
the supersymmetry enhances to N ¼ 8 because of the
‘‘monopole operators’’ nonperturbatively.
In the lens-space of S7=Zk and for k � 3, the pattern is

almost identical with that of CP3. Indeed, for the skew-
whiffed cases (the gravitinos in 8v;c), the boundary theory

is a 3d SUð4Þ �Uð1Þ N ¼ 0 CFT theory with two mar-
ginal operators for the massless scalars (pseudoscalars) in
10, 150. For the gravitino of 8s, there is a 3d SUð4Þ �Uð1Þ
N ¼ 6 SCFT theory with two marginal operators for the
massless scalars (pseudoscalars) in 150 [11,25]. Therefore,
because our Ansatz obviously breaks supersymmetry and
that, at least for k ¼ 1, the skew-whiffed solution with S7 is
supersymmetric, we infer that the Ansatz may not be
applicable to the case. For k ¼ 2, as well, there is the
maximal supersymmetry of N ¼ 8 in the bulk for all
gravitinos. Thus, it also excludes because our solution
makes differences between 8v;c and 8s and breaks all

supersymmetries.
Anyway, the main question here is the uplifting of the

10-dimensional Ansatz of (3.1) to an 11-dimensional
Ansatz. The best consistent Ansatz may be

F7 ¼ df ^ d’ ^! ^ J2 � fd’ ^ J3: (3.15)

Inserting the Ansatz into the 11-dimensional form-field
identity and equation,

dF4 ¼ 0; d �11 F4 þ 1

2
F4 ^ F4 ¼ 0; (3.16)

we see that the equation is satisfied trivially while the
identity is satisfied with the same Laplace equation of
(3.6) and also if

d �7 ðd’ ^! ^ J2Þ ¼ 0; (3.17)

which is not satisfied of course. Nevertheless, it does not
appear to cause any serious problem because the original
7-form, which couples to the electric M5-branes, is satis-
fied and now its magnetic dual may be a partial solution
and not a complete solution. Again, the Ansatz and solution
are SUð4Þ �Uð1Þ- invariant and so, along with other dis-
cussions in the subsection, one may follow the lines in the
type IIA case.
By the way, we should remind the reader again that, for

k ¼ 1, 2, we do not have the founded mode in the known
11d supergravity over AdS4 � S7=Zk. On the field theory
side, the associated chiral operators are SOð8ÞR-invariant,

2It should be mentioned that just when x �� ¼ � � 0, we have a
definite charge.
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while the gravity solution here is SOð6ÞR-invariant. So,
these two special cases are not mainly included in our
discussions.

It is also notable that one could place e7
S1=Zk

¼ 1
k ðd’þ

k!Þ instead of d’ into the Ansatz of (3.15). Now, the
added M5-brane probably wraps around S6=Zk � CP2 �
S1 � S1.

IV. DUAL BOUNDARY SOLUTIONS AND
CORRESPONDENCE

A. Matching bulk to boundary

Here, we explore a dual description for the bulk pseu-
doscalar mode based on the AdS/CFT correspondence
prescriptions [10,26]. Following the discussions on the
spectrum, we first note that the Ansatz of (3.1) is a singlet
of SUð4Þ �Uð1Þ. That is because J and therefore ! and
e7
S1=Zk

� e7 are SUð4Þ-invariant, and J and e7 do not carry

any Uð1Þ charge. So, the dual boundary operator must be a
singlet of SUð4ÞR �Uð1Þb; see also [7]. The next question
is which dual boundary operator is associated with the
bulk state. First, we note that turning on the normalizable
mode is always considered as a different state in the same
theory and not necessarily as a deformation of the original
theory [15]. This fact, next to some operators dual to
such bulk states proposed for instance in [16,17], makes
our task easier.

On the other hand, for a scalar field in the Euclidean
AdS4 and Poincaré upper half-plane coordinates, the
asymptotic behavior of the solution near the boundary at
u ¼ 0 is

fðu; ~uÞ � u���ð ~uÞ þ u�þ�ð ~uÞ; (4.1)

where�� ¼ 0, 3 are for the solution of (3.6). � and� have
a holographic interpretation as ‘‘source’’ (the boundary
value of the bulk field) and ‘‘one-point function’’ for the
operator with the conformal dimension of �þ, respec-
tively, and conversely for the �� operator. Such a scalar
can be quantized by either Dirichlet boundary condition

� ¼ 0 (which can be used for any m2) or Neumann
boundary condition 
� ¼ 0 (which can be used when
the scalar masses are in the range of �9=4<m2L2 <
�5=4). In the ‘‘usual’’ CFT [26], the �, as source, couples
to an operator with �þ (the normalizable mode).

Now, for the normalizable mode (�þ ¼ 3) of the mass-
less pseudoscalar, with the solution of (3.7) at hand, we can
write

�ð ~uÞ ¼ f0ð ~uÞ; �ð ~uÞ ¼ c

j ~u� ~u0j6
� c

r6
; (4.2)

where c2 ¼ c, and we note that the first term in (4.1)
dominates as u ! 0. Then, with the localized source of
f0ð ~u0Þ ¼ 
3ð ~u� ~u0Þ, we have

�ð ~uÞ ¼ 1

3
hO3ð ~uÞi� ¼ �
W½�



�
¼ 
Son-shell


�ð ~uÞ ; (4.3)

where O3 stands for the boundary operator of �þ ¼ 3, W
is the field theory ‘‘generating functional’’ and Son-shell is
the bulk ‘‘on-shell’’ action. This means that, with the
pseudoscalar bulk mode turned on, one should correct the
boundary action as S ! SþW [27] with

W ¼ � 1

3

Z
d3 ~u�ð ~uÞO3ð ~uÞ; (4.4)

and we should also note that here � ¼ c1, which we
set to 1.

B. The boundary solution

According to the arguments already mentioned for the
dual boundary operator O3 and that it may have the same
structure as the ABJM Lagrangian’s terms, as well as the
proposed operators in [16–18], we employ the following
operator:

O 3 ¼ trðYy
AY

Ac Byc BÞ; (4.5)

where the matter fields transform in the same representa-
tion of the SUð4ÞR �Uð1Þb-invariant Lagrangian of (2.9),
i.e., the scalars YA as 41 and the fermions c A as �4�1.
Then, since we have a Uð1Þ-neutral SUð4Þ-singlet pseu-

doscalar mode in the bulk, the issue is whether this O3

operator is also singlet. Indeed, if we take the matter fields
in the original representations, there is a singlet in �4 � 4 �
�4 � 4. However, we already argued that the nonsupersym-
metric bulk mode agrees to the swapping of the represen-
tations s and c of the original ones (3.8) in ABJM. So, the
fermions can now sit in 8s while the supersymmetry
charges sit in 8c. Let us take the singlet spinor field in 8s ¼
1 � 1 � 6 as one of the c B’s, say, c 4 � c , while YA’s are
in the original representation of 41. With these representa-
tions, one can simply arrive at a SUð4Þ �Uð1Þ-singlet
from 1 � 1 � �4 � 4.
Now, by looking at the field equations of the action of

(2.9), for simplicity and to obtain a right solution, we turn
on just one scalar, say, Y4 � Y. Next, we use the following
Ansätze:

c a
â ¼


a
â

N
c ; Y ¼ hðrÞIN�N; (4.6)

where hðrÞ is a scalar function on the boundary, IN�N is the
unitary matrix, and the settings for the spinor field are
the same as those we already used in [7]. So, with the
last Ansätze and settings for the matter fields, the potentials
of Vbos and Vferm vanish. After that, the field equations, for
the so-called deformed action, read

DkD
kY þ 1

3
trð �c c ÞY ¼ 0; (4.7)
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i	kDkc þ 1

3
trðYyYÞc ¼ 0; (4.8)

ik

4�
"kijFij � i½YðDkYyÞ � ðDkYÞYy
 þ �c	kc ¼ 0;

ik

4�
"kijF̂ij � i½ðDkYyÞY � YyðDkYÞ
 þ �c	kc ¼ 0;

(4.9)

where the i factor appears in front of the Chern-Simons
term because of being in the Euclidean space. Next, by
taking Yy ¼ Y, the second and third terms in both equa-
tions of (4.9) are suppressed.

On the other hand, we should note that the setting of
(4.6) is equivalent to considering just the Uð1Þ �Uð1Þ part
of the complete gauge group. Meanwhile, we note that the
fundamental matter fields of the ABJM are neutral with

respect to the diagonalUð1Þ, which couples to Aþ
i of A�

i �
ðAi � ÂiÞ, whereas the orthogonal combination A�

i acts as
the baryonic symmetry. Then, from (4.9), we can write

ik

4�
"kijFþ

ij ¼ �2 �c	kc ; F�
ij ¼ 0; (4.10)

and, in addition, to adjust to the bulk, we set A�
i ¼ 0.

Thereupon, one can simply see that the conditions to
satisfy (4.7) and (4.8) together are

@k@
khðrÞ ¼ 0; i	k@kc ¼ 0: (4.11)

Now, for the scalar and fermion, we use the solution and
the Ansatz recently applied in [7,8], respectively. These are

h ¼ c7 þ c8
r
; c ¼ ðc9 þ iðx� x0Þk	kÞ

ðc29 þ ð ~u� ~u0Þ2Þ�
�; (4.12)

where � is an arbitrary constant spinor. By putting the c
Ansatz into the relevant equation of (4.11), one can fix its
form directly:

c ¼
ffiffiffiffi
N

p
2

i

ffiffiffi
4

5

3=2

s
ðx� x0Þk	k

ððx� x0Þkðx� x0ÞkÞ3=2
1

0

 !
; (4.13)

with a note that cy9 ¼ 1
2 iðx� x0Þk	k and that, with the

Euclidean signature, we have used 	k ¼ ð�2; �1; �3Þ
from (2.13).

Therefore, by using the field equations, the remaining,
and of course finite, part of the action and its value read

Smodi¼�
Z
R3
d3rð@ihÞð@ihÞ; Sinstmodi¼�4�c8; (4.14)

where to evaluate the value of the action, we have con-
tinued in a similar fashion to [2,8]. In fact, we have used
the clear solution of (4.12) with c7 ¼ 1 and have noted that
the contribution from r ¼ 0 vanishes.

Meanwhile, one can use the solution (4.13) with (4.10) to
check that the net magnetic charge of the solution is zero,
namely,

Bk ¼ 4�i

3k
�c	kc ;

� ¼
I
s

~B:d~s ¼ 4�g ¼
I
s
Fþ ¼

I
s
"kijFþ

ij dsk ¼ 0;

(4.15)

where g and � show the net magnetic charge and flux,

respectively; ~B stands for the magnetic field and s is a
round sphere at infinity. This result certifies the Uð1Þ
invariance of the boundary solution to be identified with
the bulk solution.
Aa a substantial way to verify the dual solutions, we may

write the correlation functions of the involved operator in
the instanton background. Particularly, the leading contri-
bution for the vacuum expectation value of the operator
O3, in the background, reads

trðYyY �c c Þ ¼
ffiffiffi
4

p

5
ffiffiffi
5

p c28
ðð ~u� ~u0Þ2Þ3

: (4.16)

This is proportional with �ð ~uÞ which we gained by analyz-
ing the bulk solution of (3.7) near the boundary. One can
also relate the constant coefficients with respect to (4.3).
Altogether, we can assert that the boundary and bulk
calculations are consistent as expected, while we comment
on the other necessary analysis to be done in the next
section.

V. SUMMARYAND FURTHER COMMENTS

In this study, we have found a new instanton solution in
the ABJM model as the best sample of AdS4=CFT3 corre-
spondence. We employed an Ansatz for the 6-form field
strength of ten-dimensional type IIA supergravity while
the original background was kept unchanged. After satis-
fying the field equations and identities, by ignoring a most
likely small backreaction on the geometry, we arrived in a
fully localized solution in the bulk of Euclidean AdS4.
Since the solution appeared because of a D4/M5-brane
wrapping around just the associated internal spaces, it
was identified with a pseudoscalar. The mode is already
known in the spectra of 10d supergravity on CP3 and 11d
supergravity on S7=Zk when the latter is considered as a
Uð1Þ Hopf fibration on the former. It is also notable that for
k ¼ 1, 2, the original M2-branes probe the flat space of R8

and R8=Z2, respectively. For the latter two cases, the
situation became somewhat obscure in that at least there
was not such a bulk mode in the known spectra of 11d
supergravity over AdS4 � S7=Zk.
On the other hand, the bulk mode existed when the

supercharges were in 8c, in contrast to the ABJM super-
charges which were in 8s. So, to connect the bulk to the
boundary, we must switch the representations s and c of
ABJM, as the resultant theory was then for antimembranes.
Next, based on the state-operator correspondence, we
found a proper boundary operator of the conformal
dimension of �þ ¼ 3 that responded to the bulk massless
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pseudoscalar state. The boundary operator was a SUð4ÞR �
Uð1Þb singlet as the bulk Ansatz was so. Afterwards, we
observed that to match with the bulk solution, we should
just keep a scalar and a fermion next to the Uð1Þ �Uð1Þ
part of the full gauge group. Then, by deforming the action
with the proposed operator and solving the resultant
boundary equations, while only the mentioned fields
were included, we reached a finite action Euclidean solu-
tion and saw how the bulk and boundary solutions were
mutually compatible.

In summary, we can say that we have indeed added a
probe anti-D4(M5)-brane to the 3d N ¼ 6 SUð4Þ �Uð1Þ
D2(M2)-brane theory of ABJM that results in a 3dN ¼ 0
SUð4Þ �Uð1Þ anti-D2(M2)-brane theory, interestingly.
The remaining concise discussions are for some other
possibly intersecting related points and issues to be care-
fully addressed later.

The first hint is about supersymmetry. In general, the
skew-whiffing procedure breaks all supersymmetries ex-
cept when the internal space is S7 [11]. However, the rigid
way to check the Ansätze’s supersymmetry is by using the
supersymmetry transformations of the gravitinos. By the
way, the Ansatz of (3.1), and also (3.15), obviously breaks
all supersymmetries. That is because the branes, to which
these fields couple, cover the internal spaces in all general-
ity. In other words, the added branes do not have the right
‘‘relative transverse directions’’ with the branes in the near
horizon limit of ABJM to be known as a supersymmetric
combination of the branes, according to the well-known
brane intersection rules [28]. It is also notable that the
magnetic dual of the included D4(M5)-brane is a D2
(M2)-brane, some of whose world volume directions are
in AdS4. Looking into their behaviors and other related
issues may be worthwhile as well. Nevertheless, one may
consider some special arrangements of the associated in-
ternal spaces on which the branes wind. In other words, one
may parametrize, for example, one CP1 with �1, ’1 and
another CP1 with �2, ’2 besides fixing another coordinate,
say, �, to a constant value. Then, the remaining one, c in
(2.5), may be considered as the coordinate of S1. When the
five-dimensional world volume of the added anti-D4-brane
wraps around CP2 � S1, its effect appears as a point in the
lower four-dimensional theory. Its 11d counterpart, accord-
ing to (3.15), is an anti-M5-brane now wrapping around
CP2 � S1 � S1, where the sixth coordinate is the Uð1Þ
fiber coordinate of ’. For a related typical study, look,
for instance, at [29].

The second hint is about stability. In general, supersym-
metry ensures stability. Nevertheless, a nonsupersymmet-
ric solution may be stable in some special cases. In fact, it
is justified that all skew-whiffed solutions are stable at least
perturbatively [30], and for S7=Zk, the stability is guaran-
teed for k � 2. Even so, exactly fixing whether the present
solution is stable or not needs a direct study, given that
the replying instanton actually mediates the converting

procedure from the original D2/M2-branes to the skew-
whiffed (orientation-reversed) anti-D2/M2-branes.
In other words, we should remember that, in ABJM, k

D0-branes annihilate into N D4-branes, wrapped around
CP2 	 CP3, mediated by a NS5-brane instanton. That is,
in turn, because of a sort of Higgs mechanism according to
which only aUð1Þb is visible in the bulk description [5,17].
Now, a similar question is what mediates the converting
procedure from the original ABJM D2-branes to the
skew-whiffed anti-D2-branes? The existing D-instanton
is indeed the main reason for doing so. The instanton is
practically coming from an anti-D4-brane wrapping
around some parts of the internal space of CP3. The
resultant effect is breaking all supersymmetries during
the process while the conformal transformation is pre-
served, as one can also see from the Ansatz structure in
(3.1). Meanwhile, it is proper here to remember the role of
‘‘instantons’’ as the tunneling agents among various vacua.
These vacua are owned by D2-branes and anti-D2-branes
for the present case. Still, it is interesting to look at whether
one can find other probable ‘‘soliton’’ solutions to accom-
plish the job of the instanton in breaking all supersymme-
tries while preserving other symmetries.
From another perspective, we note that a kind of

instability may occur because of the probable formation
of the brane-antibrane pairs. These pairs, in type II
theories, are in general unstable due to the ‘‘tachyon’’
modes on the branes’ world volumes [31]. As a result,
the systems may decay through a process called
‘‘tachyon condensation’’ that is a strong source of insta-
bility. Now, the nonsupersymmetric instanton solution
here, where an anti-D4-brane is inserted into the back-
ground of many D2-branes in the probe approximation,
appears to be similar to such a tachyon mode. It is
notable that the systems including tachyons generally
show the ‘‘flip transitions’’ (from D2-branes to anti-D2-
branes here) and that, in C4=Zk, the flips arise because of
the blowups and the blowdowns of the cycles (including
the weighted CP1 and CP2) with different dimensions
[32]. Therefore, in general, an analysis of the quantum
corrections generated by instantons is required to deter-
mine whether the squared masses of the fields go up
(leading to stable solutions) or go down (leading to
unstable solutions) so that some kinds of condensation,
which destabilize the vacuum, may occur for the latter.
On the other hand, it is shown in [33] that a kind of

instability occurs when there are marginal operators in
nonsupersymmetric theories. These operators can destabi-
lize the nonsupersymmetric vacua as soon as 1=N correc-
tions could be taken into account. It is further explored in
[34] that the ‘‘global singlet marginal operators,’’ which
appear in the skew-whiffed (orientation-reversed) nonsu-
persymmetric theories, can disturb the conformal fixed
points and may cause instability. Now, for the similar
situation with a global singlet marginal operator here, an
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instability is probable, although a clear and case-by-case
analysis is still necessary.

The third hint is about uplifting the gravity solution to
the 10- or 11-dimensional parent theories and the issue of
backreaction. It is known that the Kaluza-Klein truncations
on the fiber and lens spaces, like those in ABJM, are
consistent [35]. But, for the special fields included, it is a
particular study. Handling this issue and uplifting the so-
lution to the higher-dimensional theories as well as trying
to estimate the small backreaction will probably be
interesting.

We discuss here a little more on the backreaction in-
duced by including the new Euclidean anti-D4/M5-branes
on the original ABJM background. As we already men-
tioned, the energy-momentum tensors for both external and
internal spaces have nonzero contributions with respect to
the Ansatz of (3.1) and the solution of (3.7). But, that is a
small amount as one can see from the estimated charge of
the included branes and from the correction to the main
action. Meanwhile, since we are intersected in the behavior
of solutions near the boundary and correlation functions for
dual operators, we may neglect backreactions. In other
words, because, as argued in [20,21], the Einstein and
scalar equations decouple next to the boundary, we can
study the scalar f equation in a fixed gravitational back-
ground that is Euclidean AdS4 here.

Nevertheless, it is still important that the instanton so-
lution and its supersymmetric partner are used as sources
for the boundary excitations and correct the higher deriva-
tive terms in the effective actions. The corresponding
studies for AdS5 D-instanton were originally done in
[3,4]. Equivalently, for the early founded nonperturbative
effect in the M2-brane theory, namely, the monopole in-
stanton in [6], some instanton corrections were also ad-
dressed in [36]. Similar calculations would be interesting
and in order for the present D/M-instanton too.

The fourth hint is about various probably important and
deep studies of the instanton effects on both sides of the
duality. Indeed, we should note that the basic estimate of
(4.16) is the first simple consistency check of the bulk
and boundary solutions. Calculations for multipoint
and higher-order correlation functions, as well as the
D-instanton corrections to the scattering amplitudes of
the involved string theories, may be interesting. Next,
one can compare the results with the contributions to
the Green functions of the composite operators on the
field theory side, similar to the AdS5=CFT4 case. One can
so survey the instanton solutions carefully and can see
how the calculations agree on both sides of the duality.
In general, various technical aspects of the studies of

the D-brane and world-sheet instantons (for instance, those
in [37,38]) may be applicable to the current case. For
example, due to the presence of instantons, there are
fermionic and bosonic zero modes that appear in the
phase integral measure. The instanton corrections to the
effective actions and zero modes are studied for the case
of a monopole instanton in [6,36] and for a ‘‘string in-
stanton’’ in [39]. There are also various nonperturbative
corrections because of the world-sheet and membrane in-
stantons discussed especially in [40] and references
therein. It would be interesting to look for similar correc-
tions, do parallel evaluations, and explore the typical rela-
tions between the string instanton in [39] and the existing
D-instanton.
The last issue is about another way to match the bulk

instanton to the boundary. Actually, in ten-dimensional
type IIB supergravity over AdS5 � S5 versus four-
dimensional N ¼ 4 SUðNÞ Yang-Mills field theory, a
similar bulk solution was adjusted with the SUð2Þ gauge
fields on the boundary. We address this issue for the current
background in a forthcoming study with respect to some
subtle points and differences.
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