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We use the holographic hardwall model to calculate the masses of light glueball states with odd spin

and P ¼ C ¼ �1 associated with odderons. Considering Dirichlet and Neumann boundary conditions we

obtain expressions for the odderon Regge trajectories consistent with those calculated using other

approaches.
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I. INTRODUCTION

For mesons and baryons, there is an approximate
relation between the total angular momenta (J) and the
square of the masses (m). This relation, known as Regge
trajectories, has the form

Jðm2Þ ’ �0 þ �0m2; (1)

where �0 and �0 are constants. Analogously one can find
Regge trajectories for odd spin glueballs with P¼C¼�1,
which are related to the odderon.

The Regge trajectories for the odderon were obtained
by Llanes-Estrada et al. [1] using two different methods.
The first one is based on a relativistic many-body (RMB)
formulation that gives

JRMBðm2Þ ¼ �0:88þ 0:23m2; (2)

where the masses are expressed in giga-electronvolts
(GeV) throughout this article. The second method is based
on a nonrelativistic constituent model (NRCM) resulting in

JNRCMðm2Þ ¼ 0:25þ 0:18m2: (3)

Interesting studies of the odderon in gauge/string dualities
were presented in Refs. [2,3].

In this work we obtain the masses of odd spin glueballs
from the holographic hardwall model and derive the corre-
spondingRegge trajectories for the odderon.Wefind results
compatible with those above, given by Eqs. (2) and (3).

Since its conception, quantum chromodynamics (QCD)
has been used as the standard theory to explain the phe-
nomenology of strong interactions. As a consequence of
asymptotic freedom, the coupling of strong interactions
decreases when the energy of the process increases. This
result is obtained using perturbation theory and is valid
only for small couplings (g < 1). Extrapolating this result
to low energies, one obtains strong coupling (g > 1)
outside the perturbative regime. Regge trajectories are an

example of nonpertubative behavior of strong interactions
difficult to model using QCD.
The anti–de Sitter/conformal field theory (AdS/CFT)

correspondence [4–9] brought new perspectives for string
and quantum field theories since it relates SUðNÞ super-
symmetric and conformal Yang-Mills field theory for
N ! 1, in flat Minkowski spacetime with 3þ 1 dimen-
sions, with a string theory in a curved 10-dimensional
spacetime, the AdS5 � S5 space. In the supergravity ap-
proximation of string theory in this space one can relate
both theories through [5,6]

ZCFT½’o� ¼
�
exp

�Z
@�

d4xO’o

��

¼
Z
’o

D’ exp ð�Isð’ÞÞ; (4)

where ’ is a non-normalizable supergravity field, Isð’Þ is
the corresponding on shell supergravity action, ’o is the
value of ’ at the boundary @�, and O is the associated
operator of the conformal field theory (CFT). From this
equation, one can obtain four-dimensional correlation
functions, for instance,

hOðxÞOðyÞi ¼ �2ZCFT½’o�
�’oðxÞ�’oðyÞ

��������’o¼0
: (5)

In particular, the scalar glueball 0þþ is represented by
the operator O4 ¼ F2 associated with a dilaton in the
AdS5 � S5 space.

II. ODD SPIN GLUEBALL MASSES IN
THE HARDWALL MODEL

Glueballs are characterized by JPC, where J represents
the total angular momentum, P defines how a state behaves
under spatial inversion (P-parity), and C shows the behav-
ior of a state under charge conjugation (C-parity).
In this paper we are interested in glueballs in the

P ¼ �1 and C ¼ �1 sector with odd spins J � 1, which
are associated with a particle called the odderon. The
concept of the odderon emerged in the 1970s [10] within
the context of asymptotic theorems, reappearing later in
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perturbative QCD [11,12]. The odderon has also been
linked, for instance, to the color glass condensate [13].
Although the odderon has not been detected so far, it is
regarded as a crucial test of QCD [14,15]. The odderon is a
bound state of three gluons, without color, which repre-
sents a singularity in the complex plane J, close to 1, in the
odd-under-crossing amplitude F�ðs; tÞ [14].

The best experimental evidence for the odderon
occurred in 1985 at ISR CERN. A difference between
differential cross sections for pp and p �p in the dip-
shoulder region 1:1< jtj< 1:5 GeV2 at

ffiffiffi
s

p ¼ 52:8 GeV
was measured, but these results were not confirmed [14].
There are two more evidences related to the nonperturba-
tive odderon, that is, the change of shape in the polarization
in ��p ! �0n from pL ¼ 5 GeV=c [16,17] to pL ¼
40 GeV=c [18] and a strange structure seen in the
UA4=2 dN=dt data for pp scattering at

ffiffiffi
s

p ¼ 541 GeV,
namely a bump centered at jtj ¼ 2� 10�3 GeV2 [19].
Some other experiments to detect the odderon were
proposed for the HERA [20] and recently for the LHC
CERN through the study of coherent hadron-hadron
interactions [21]. In this article, we are dealing with the
nonperturbative odderon that is related with glueball states
via its Regge trajectory, although the Regge trajectory of
the odderon is not yet well understood. For reviews see, for
instance, [22,23].

The AdS/CFT correspondence cannot be used directly
as a tool for the study of hadrons because the dual theory is
a supersymmetric conformal theory that is very different
from QCD. However, it was noticed that the energy E of a
process in the 4d theory is related to the radial coordinate z
in AdS space as

E / 1

z
: (6)

This motivated the holographic hardwall model pro-
posed by Polchinski and Strassler [24,25] to calculate the
scattering of glueballs in four dimensions using a dilaton
field in AdS5 � S5 space. The works [26,27] introduced a
cutoff at a certain value zmax of the z coordinate and
considered an AdS slice in the region 0 � z � zmax . An
immediate consequence of introducing a cutoff is the
breaking of conformal invariance, so that particles on the
four-dimensional boundary acquire mass. Furthermore,
one can associate the size of the AdS slice with the energy
scale of QCD,

zmax ¼ 1

�QCD

: (7)

Hadron masses can be determined using the hardwall
model with a given mass scale (infrared cutoff). This can
be used to build up Regge trajectories for the hadrons, as it
was done in Refs. [28–30]. One can note that the asymp-
totic behavior of these Regge trajectories is not linear.
Despite this problem one can find approximate linear
Regge trajectories for the first few light states of each

hadronic branch. It should be noticed that there is another
holographic model that presents exact linear Regge trajec-
tories: the softwall model [31]. The analysis presented in
[31] for vector mesons can be extended to glueballs as was
done in [32]. However, despite the fact that the Regge
trajectories are linear in this case, the glueball masses are
too low compared with lattice data. So, in the following,
we are going to use the hardwall model to study the odd
spin glueball masses and to obtain the odderon Regge
trajectories.
The hardwall model assumes an approximate duality

between a string theory in an AdS5 � S5 space with metric
defined by

ds2 ¼ R2

z2
ð�dt2 þ d~x2 þ dz2Þ þ R2d�2

5; (8)

where R is the AdS radius, and a pure Yang-Mills theory in
four dimensions with symmetry group SUðNÞ is in the large
N limit. In this model it is assumed that the AdS/CFT
dictionary between supergravity fields in AdS5 � S5 space
and operators on the 4d boundary, as given by Eqs. (4) and
(5), still holds after breaking the conformal invariance. This
implies that the conformal dimension � of an operator O
related to a p-formAdS5 field with massm5 is given by [33]
(here and in the following we are disregarding excitations
on the S5 subspace)

m2
5R

2 ¼ ð�� pÞð�þ p� 4Þ: (9)

In particular, the operator that describes the glueball
1�� is

SymTrð ~F��F
2Þ (10)

with conformal dimension � ¼ 6. This operator is associ-
ated with the Ramond-Ramond tensor C2;�� described in a

single D3-brane, by the action [2,34]

I ¼
Z

d4x det ½G�� þ exp��
2 ðB�� þ F��Þ�

þ
Z

d4xðC0F ^ Fþ C2 ^ Fþ C4Þ: (11)

From this action one can obtain the equations of motion
for the Ramond-Ramond field. With a suitable polarization
choice C2;��ðx; zÞ ¼ c���ðx; zÞ where c�� is a constant

polarization tensor and �ðx; zÞ is a scalar field, it can be
shown that these equations can be reduced to [35]

�
z3@z

1

z3
@z þ 	�
@�@
 �m2

5R
2

z2

�
�ðx; zÞ ¼ 0; (12)

where 	�
 is the four-dimensional Minkowski metric.
We use a plane wave ansatz in the four-dimensional

space for the 0-form field �

�ðx; zÞ ¼ A�;kexp
�ip:xz2J�ðu�;kzÞ; (13)

where A�;k is a normalization constant, J�ðyÞ is the Bessel
function of order � with � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

5R
2

q
, and the discrete
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modes u�;k corresponding to the glueball masses will be

calculated by imposing appropriate boundary conditions.
Note that k ¼ 1; 2; 3; . . . , represent radial excitations of
glueballs, but we will only consider in this paper the case
k ¼ 1.

It has been proposed in the literature [29] that the
glueball operator with spin ‘ could be obtained by
the insertion of symmetrized covariant derivatives in the
operator O4 ¼ F2, such that O4þ‘ ¼ FDf�1���D�‘gF with

conformal dimension � ¼ 4þ ‘. This approach was used
in Ref. [28] to calculate the masses of glueball states 0þþ,
2þþ, 4þþ, 6þþ, etc., and to obtain the corresponding
Pomeron Regge trajectory.

Here we are going to follow a similar approach for the
glueball states 1��; 3��; 5��; 7��; . . . . The state 1�� is
described by the operator O6 ¼ SymTrð ~F��F

2Þ. Inserting
covariant derivatives as described above, one obtains
O6þ‘ ¼ SymTrð ~F��FDf�1���D�‘gFÞ with � ¼ 6þ ‘

satisfying equations similar to (12) and (13) with a shift
in the index of the Bessel function � ! � ¼ 4þ ‘, where
‘ ¼ J � 1 is the spin of each state 1��, 3��, 5��, etc.

Following the approach of Ref. [28], we impose
Dirichlet and Neumann boundary conditions to calculate
glueball masses within the hardwall model. For the
Dirichlet boundary condition

�ðz ¼ zmax Þ ¼ 0; (14)

one obtains from (13), the following masses:

uD‘;k¼
�4þ‘;k

zmax

¼�4þ‘;k�QCD; J4þ‘ð�4þ‘;kÞ¼0: (15)

On the other hand, for the Neumann boundary condition

@z�jðz¼zmax Þ ¼ 0; (16)

one gets

ð‘� 2ÞJ4þ‘ð�4þ‘;kÞ þ �4þ‘;kJ3þ‘ð�4þ‘;kÞ ¼ 0; (17)

and the masses are now

uN‘;k ¼
�4þ‘;k

zmax

¼ �4þ‘;k�QCD: (18)

Using these boundary conditions we obtain glueball
masses in the sector P ¼ C ¼ �1. We take the mass u1;1
of the state 1�� from the isotropic lattice (3.24 GeV) found
in Refs. [36,37] to fix zmax (and �QCD), and then calculate

the other odd spin glueball masses u‘;1 for the states

3��; 5��; . . . , using Eqs. (15) and (18), respectively, for
the Dirichlet and Neumann boundary conditions. For
instance, for the state ‘�� with the Dirichlet boundary
condition we have

uD‘;1 ¼
�4þ‘;1

�5;1

uD1;1; (19)

so we get 4.09 GeV for the mass uD3;1 of the 3
�� state, etc.

A similar calculation is done for the Neumann boundary
condition. Our results are shown in Table I. We also show
for comparison the values for these masses found in the
literature [1,36–41] using other methods. Then from our
results we obtain different Regge trajectories for the odd-
eron as discussed in the next section.

III. ODDERON REGGE TRAJECTORIES IN
THE HARDWALL MODEL

Taking the data for odd spin glueball masses obtained in
the previous section, we are going to build up the Regge
trajectories for the odderon, using linear regression.
For the Dirichlet boundary condition and the set of

states, 1��, 3��, 5��, 7��, 9��, 11��, we find the
following Regge trajectory:

Jf1�11g
Dir ðm2Þ ¼ �ð0:83� 0:40Þ þ ð0:22� 0:01Þm2: (20)

The errors for the slope and linear coefficient come from
the linear fit. The plot relative to this trajectory can be seen

TABLE I. Glueball masses for states JPC expressed in GeV, with odd J estimated using the
hardwall model with Dirichlet and Neumann boundary conditions. The mass of 1�� is used as
an input from the isotropic lattice [36,37]. We also show other results from the literature for
comparison.

Glueball states JPC

Models used 1�� 3�� 5�� 7�� 9�� 11��

Hardwall with Dirichlet b.c. 3.24 4.09 4.93 5.75 6.57 7.38

Hardwall with Neumann b.c. 3.24 4.21 5.17 6.13 7.09 8.04

Relativistic many body [1] 3.95 4.15 5.05 5.90

Nonrelativistic constituent [1] 3.49 3.92 5.15 6.14

Wilson loop [38] 3.49 4.03

Vacuum correlator [39] 3.02 3.49 4.18 4.96

Vacuum correlator [39] 3.32 3.83 4.59 5.25

Semirelativistic potential [40] 3.99 4.16 5.26

Anisotropic lattice [41] 3.83 4.20

Isotropic lattice [36,37] 3.24 4.33
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in Fig. 1. This result is in agreement with that found in [1],
with the relativistic many-body Hamiltonian formulation,
described by Eq. (2).

It has been argued in Ref. [1] that the state 1�� might
not be part of the spectrum of the odderon. To test this
possibility we also consider another set of states, 3��,
5��, 7��, 9��, for which we obtain the following
Regge trajectory:

Jf3�9g
Dir ðm2Þ ¼ �ð0:63� 0:31Þ þ ð0:23� 0:01Þm2: (21)

This result is also consistent with the Regge trajectory for
odderon, Eq. (2).
Now using the Neumann boundary condition and the set

of states, 1��, 3��, 5��, 7��, 9��, 11��, we find the
following Regge trajectory:

Jf1�11g
Neu ðm2Þ ¼ �ð0:29� 0:42Þ þ ð0:18� 0:01Þm2: (22)

The plot relative to this trajectory can be seen in Fig. 2.
We also consider here the possibility of excluding the

state 1�� from the spectrum of the odderon. For the set of
states 3��, 5��, 7��, 9��, 11��, we find the following
Regge trajectory:

Jf3�11g
Neu ðm2Þ ¼ ð0:34� 0:37Þ þ ð0:17� 0:01Þm2: (23)

This result is in agreement with that found in [1], with the
nonrelativistic constituent model, Eq. (3).

IV. CONCLUSIONS

In this work we obtained odd spin glueball masses in the
sector P ¼ C ¼ �1 using the holographic hardwall model
with Dirichlet and Neumann boundary conditions. These
glueball masses lie in approximate linear Regge trajecto-
ries compatible with results for the odderon, both in the
relativistic many-body as well in the nonrelativistic con-
stituent models presented in Ref. [1]. The present analysis
gives support to the conclusion of Ref. [1] about the
general properties of the odderon Regge trajectories, i.e.,
a low intercept and a slope similar to that of the Pomeron.
Some aspects of the holographic approach for the odd-

eron Regge trajectories remain open. In our approach, we
used Dirichlet and Neumann boundary conditions in the
hardwall model, obtaining results compatible with those of
Ref. [1]. The hardwall model was used before to obtain the
Regge trajectory for the Pomeron in Ref. [28]. In that work
it was possible to conclude that the Neumann boundary
condition is more appropriate than the Dirichlet boundary
condition by comparison with experimental data. Here in
this work, it is not possible to reach a similar conclusion
about boundary conditions because there is no clear
experimental data for the odderon Regge trajectories.
Another open question in the odderon Regge trajectories

regards the state 1��. It was argued in Ref. [1] that the
glueball state 1�� does not belong to the odderon Regge
trajectory. However, our analysis is not conclusive regard-
ing this point since we have found trajectories compatible
with odderon, including the state 1�� [Eqs. (20) and (22)]
as well as excluding it [Eqs. (21) and (23)].
As a final remark, let us comment on our choice for the

holographic model to obtain glueball masses and the
odderon Regge trajectories. This model is very interesting
since masses can be obtained from the zeros of the
corresponding Bessel functions. However, it is well
known that a holographic hardwall model leads to asymp-
totic nonlinear Regge trajectories for very high states.

FIG. 1 (color online). Glueball masses (dots) for the states
1��, 3��, 5��, 7��, 9��, 11�� from the holographic hardwall
model using Dirichlet boundary condition, Eqs. (14) and (15).
We also plot an approximate linear Regge trajectory, correspond-
ing to Eq. (20), representing the odderon.

FIG. 2 (color online). Glueball masses (dots) for the states
1��, 3��, 5��, 7��, 9��, 11�� from the holographic hardwall
model using the Neumann boundary condition, Eqs. (16) and
(18). We also plot an approximate linear Regge trajectory,
corresponding to Eq. (22), representing the odderon.
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Nevertheless, for light states, as discussed in this work,
approximate linear Regge trajectories were found. In this
regard, it will be interesting to investigate the glueball
masses in the P ¼ C ¼ �1 sector within other holo-
graphic approaches, such as the softwall model [31,32],
which is known to provide linear Regge trajectories. We
leave this study for future work.
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