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We examine the relationships between three proposals for the six-dimensional (2,0) theory: the discrete

light-cone quantization (DLCQ) of Aharony et al. [Adv. Theor. Math. Phys. 1, 148 (1998); Adv. Theor.

Math. Phys. 2, 119 (1998)], the deconstruction prescription of Arkani-Hamed et al. [J. High Energy Phys.

01 (2003) 083], and the five-dimensional maximally supersymmetric Yang-Mills proposal of Douglas and

Lambert et al. [J. High Energy Phys. 02 (2011) 011; J. High Energy Phys. 01 (2011) 083]. We show that

Arkani-Hamed et al. gives a deconstruction of five-dimensional maximally supersymmetric Yang-Mills.

The proposal of Aharony et al. uses a subset of the degrees of freedom of five-dimensional Yang-Mills,

and we show that compactification of it on a circle of finite radius agrees with the DLCQ arising from the

proposal of Douglas and Lambert et al. or from the deconstruction proposal of Arkani-Hamed et al.
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I. INTRODUCTION

In this paper we wish to examine the relationships
between various proposals for the six-dimensional (2,0)
theory. In particular, these include the discrete light-cone
quantization (DLCQ) definition based on the instanton
quantum mechanics [1,2], a definition via deconstruction
from a family of four-dimensionalN ¼ 2 superconformal
field theories based on circular quivers [3] and the more
recent conjecture that the (2,0) theory on anS1 of radiusR5 is
equivalent to five-dimensional maximally supersymmetric
Yang-Mills (5DMSYM)with couplingg2YM ¼ 4�2R5 [4,5].

The 5D MSYM conjecture relies on 5D MSYM being a
consistent quantum theory at the nonperturbative level and
not just an effective theory valid below some cutoff.Without
this the conjecture is devoid of meaning since either 5D
MSYM simply does not exist as a complete quantum theory,
so that the conjecture is manifestly false, or it can only be
defined as the (2,0) theory on S1, so that the conjecture is
tautological. On the other hand this is perhaps one of the
more interesting aspects of this proposal: namely, that a
perturbatively nonrenormalizable and divergent [6] field
theory is in fact nonperturbatively well defined without
additional UV degrees of freedom. Recently, several highly
nontrivial tests of this proposal have been performed [7–15].

From the traditional, Wilsonian, viewpoint 5DMSYM is
a nonrenormalizable effective theory obtained by integrat-
ing out degrees of freedom above some scale (proportional
to 1=g2YM). The UV is then described by a conformal field
theory, which in this case is the six-dimensional (2,0)
theory. The viewpoint that we explore here is different.

In particular, the proposal of [4,5] is that all the states of
the UV theory are already present in 5D MSYM. This may
seem paradoxical, however the issue is that there is no
physically well-defined separation of the theory into per-
turbative, i.e. power series in g2YM, and nonperturbative

sectors. Perturbative calculations should only be viewed
as low energy approximations where the effective coupling
geff ¼ g2YME is small and hence do not probe the UV

behaviour.
Thus we seek other ways to define 5D MSYM. A

method that comes to mind is that of deconstruction [16].
We will show how 5D MSYM on a (discretized) circle of
radius R4 can be deconstructed from an N ¼ 2 super-
conformal circular quiver gauge theory with N nodes. In
particular, for any process involving KK modes up to some
finite level L the correlation functions of 5DMSYM can be
reproduced to arbitrary accuracy by takingN suitably large
compared to L. One could then think of the deconstruction
as providing a quantum definition of 5DMSYM in terms of
a well-defined theory. Indeed we will see that this relates
directly the proposal of [3] to that of [4,5]. In other words,
an alternative interpretation of the proposal of [3] is that
one cannot deconstruct 5D MSYM on an S1 of radius R4

and coupling g2YM without also deconstructing the (2,0)

theory on a torus with radii R4, R5 where R5 ¼ g2YM=4�
2,

keeping all KK modes.
Another method to define a theory is to consider DLCQ

and we revisit the proposal of [1,2]. This proposal has the
miraculous feature that it only requires knowing the dy-
namics of the (2,0) theory on S1 in the limit that R5 ! 0.
Thus it does not require knowledge of the theory at finite
R5 ¼ g2YM=4�

2. We will show that this DLCQ of the (2,0)

theory on a circle of finite size agrees with a DLCQ
obtained from 5D MSYM defined using deconstruction
or assuming it is the (2,0) theory on S1.
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The rest of this paper is organized as follows. In Sec. II
we perform a discretization of one dimension in 5DMSYM
and show explicitly that the resulting action is in the same
universality class as the four-dimensional deconstructed
quiver theory of [3], both leading to the action of 5D
MSYM on S1 in the limit where the spacing goes to zero.
Furthermore, in the spirit of deconstruction, we argue that
the quantum theory of the quiver conformal field theory can
be made to be arbitrarily close to that of the discretized 5D
MSYM theory on a circle of radiusR4. In Sec. III we review
the infinite momentum frame (IMF) and DLCQ descrip-
tions of the (2,0) theory and argue that, unlike for the
DLCQ, there is no obvious simplification of the theory in
the IMF. On the other hand we show that a reduction of the
DLCQ prescription [1,2] of the (2,0) theory on a circle of
finite radius agrees with the DLCQ description obtained
from either 5D MSYM (assuming the conjecture of [4,5])
or the deconstruction proposal [3]. Finally, Sec. IV contains
our conclusions and further comments.

II. DECONSTRUCTING 5D MSYM

Our aim in this section is to deconstruct 5D MSYM
starting from a well-defined four-dimensional quiver gauge
theory. The idea of deconstruction is that the quiver or
theory space can, in the Higgs phase of the 4D theory, be
interpreted as a discretized physical direction with spacing
a ¼ 1=vG. Here v is the Higgs vev andG the 4D coupling.
A priori, the 5D theory emerges only at energies below 1=a
and is UV-completed by the well-defined 4D quiver theory
[16]. However, for a superconformal theory one can attempt
to take the spacing to zero, or in other words the UV cutoff
to infinity. For this one needs to start with a 4D theorywhich
does not experience a phase transition at strong coupling
[3]. We will show that the superconformal quiver gauge
theory introduced in Sec. II D exactly reproduces 5D
MSYM on a discretized circle by matching the two actions.
Note that our discretization process is not quite the same as
replacing the circle by a lattice; for a discussion on how to
latticize a theory while preserving some degree of super-
symmetry, see [17]. Rather, wewill replace functions of the
circle by piecewise constant functions. We will then pro-
ceed to discuss the relation of [3] to the proposal of [4,5].

A. Discretized 5D MSYM: gauge fields

Let us begin with the bosonic part of the action of 5D
MSYM with gauge group SUðKÞ

SB5D ¼ 1

g2YM

Z
d5xTr

�
� 1

4
F��F

�� � 1

2
D�X

ID�XI

þ 1

4
½XI; XJ�½XI; XJ�

�
; (2.1)

where �;�¼0;...;4 and I;J¼1; . . . ;5. In view of discretiz-
ing and compactifying the four-direction, we will write

Fmn ¼ @mAn � @nAm � i½Am; An�
F4m ¼ @4Am �DmX

6

D4X
I ¼ @4X

I � i½X6; XI�;
(2.2)

where we have renamed A4 ¼ X6, and m; n ¼ 0; . . . ; 3.
In order to proceed we first discretize the line whose

coordinate is x4 by splitting it into an infinite number of
equal segments of length a and take the fields to be
constant along each segment. This has the effect of reduc-
ing the gauge symmetries to those of four-dimensions. In
the limit that a ! 0 we expect that the full five-
dimensional gauge symmetry is restored. The integral
over x4 becomes a Riemann sum, which approximates
the integral as a ! 0. Keeping only terms which will be
relevant for the gauge field Am, this gives

SB-Gauge5D-Discr ¼
a

g2YM

Z
d4x

X1
k¼�1

Tr

�
� 1

4
FðkÞ
mnFðkÞmn

� 1

2
~@4A

ðkÞ
m ~@4AðkÞm

�
; (2.3)

where ~@4 is a discretized version of the derivative involving
the forward difference operator

~@4f
ðkÞ ¼ fðkþ1Þ � fðkÞ

a
: (2.4)

We then compactify the discretized direction by identifying

fðNþkÞ�fðkÞ and truncating the sum such that Na ¼ 2�R4

S
B-Gauge
5D-Disc ¼ a

g2YM

Z
d4x

X½N2�
k¼½N2��Nþ1

Tr

�
� 1

4
FðkÞ
mnFðkÞmn

� 1

2
~@4A

ðkÞ
m ~@4AðkÞm

�
: (2.5)

As the last step we perform a discrete Fourier transform

AðkÞ
m ¼ 1ffiffiffiffi

N
p X½N2�

p¼½N2��Nþ1

BðpÞ
m qkp; (2.6)

with q¼e2�i=N; Note that the reality condition on Am

imposes Bð�kÞ
m ¼By

mðkÞ. From now on we will omit the sum

ranges over Fourier mode indices, to be understood as
above.
In terms of the Fourier modes the derivatives on the

gauge fields become

~@4A
ðkÞ
m ¼ 1ffiffiffiffi

N
p

a

X
s

BðsÞ
m qksðqs � 1Þ; (2.7)

whereas the gauge field strengths can be organized as
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FmnF
mn¼ð@mAn�@nAmÞ2�2i½Am;An�ð@mAn�@nAmÞ�½Am;An�½Am;An�

¼ 1

N

X
k;s;s0

qkðs�s0Þð@mBð�sÞ
n �@nB

ð�sÞ
m Þð@mBðs0Þn�@nBðs0ÞmÞ� 2i

N3=2

X
k;s;s0;s00

qkðs�s0�s00Þ½Bð�sÞ
m ;Bð�s0Þ

n �ð@mBðs00Þn�@nBðs00ÞmÞ

� 1

N2

X
k;s;s0;s00;s000

qkðsþs0�s00�s000Þ½Bð�sÞ
m ;Bð�s0Þ

n �½Bðs00Þm;Bðs000Þn�: (2.8)

Plugging these expressions into (2.3) and performing the sums over k and some of the s-indices, we obtain

SB-Gauge5D-Disc ¼
a

g2YM

Z
d4xTr

�
�1

4

X
s

ð@mBð�sÞ
n �@nB

ð�sÞ
m Þð@mBðsÞn�@nBðsÞmÞþ i

2N1=2

X
s;s0

½Bð�sÞ
m ;Bð�s0Þ

n �ð@mBðsþs0Þn�@nBðsþs0ÞmÞ

þ 1

4N

X
s;s0;s00

½Bð�sÞ
m ;Bð�s0Þ

n �½Bðs00Þm;Bðsþs0�s00Þn��1

2

1

a2
X
s

jqs�1j2Bð�sÞ
m BðsÞm

�
: (2.9)

In the above we used
P½N2�

k¼½N2��Nþ1
qkðp�sÞ ¼ N�p;s.

B. Discretized 5D MSYM: scalars

We proceed to consider the scalar part of 5D MSYM compactified on a discretized circle. Following the same steps as
for the gauge fields and defining the Fourier transforms in terms of

XðiÞ
A ¼ 1ffiffiffiffi

N
p X

s

qisYðsÞ
A ; (2.10)

we arrive at

SB-Scalar5D-Disc ¼ � a

2g2YM

Z
d4x

�X
s

@mY
ðsÞ
A @mYð�sÞ

A � 2iffiffiffiffi
N

p X
s;s0

½BðsÞ
m ; Yðs0Þ

A �@mYð�s�s0Þ
A � 1

N

X
s;s0;s00

½BðsÞ
m ; Yðs0Þ

A �½Bð�s00Þm; Yðs00�s�s0Þ
A �

�

� a

4Ng2YM

Z
d4x

X
s;s0;s00

½YðsÞ
A ; Yðs0Þ

B �½Yð�s00Þ
A ; Yðs00�s�s0Þ

B � þ 1

g2YM

Z
d4x

X
s

@mY
ðsÞ
6 Bð�sÞmðq�s � 1Þ

� iffiffiffiffi
N

p
g2YM

Z
d4x

X
s;s0

½BðsÞ
m ; Yðs0Þ

6 �Bð�s�s0Þmðq�s�s0 � 1Þ þ iffiffiffiffi
N

p
g2YM

X
s;s0

½YðsÞ
6 ; Yðs0Þ

I �Yð�s�s0Þ
I ðq�s�s0 � 1Þ

� 2

ag2YM

Z
d4x

X
s

sin 2

�
�s

N

�
YðsÞ
I Yð�sÞ

I ; (2.11)

where A 2 fI; 6g. Note that there is an asymmetry between
the A ¼ I and A ¼ 6 terms. In particular, there is no KK
mass for Y6.

C. Discretized 5D MSYM: fermions

The fermionic part of the 5D MSYM action is naturally
given by

SF5D¼
1

g2YM

Z
d5xTr

�
� i

2
�c i�

�D�c iþ i

2
�c i�

I
ij½XI;c j�

�
;

(2.12)

where � ¼ 0; . . . ; 4, I ¼ 1; . . . 5, i, j ¼ 1; . . . ; 4. The c ’s
are complex four-component spinors of Spin(1, 4) satisfy-
ing a symplectic Majorana condition and transforming in
the 4 of Spin(5).1

However, it will be convenient to rewrite this in terms of
complex two-component 4DWeyl spinors, such that we are

able to comparewith the action obtained from the 4D quiver
theory via the deconstruction description. We decompose

c 1 ¼
�1

��2��3

 !
; c 2 ¼

�2

��2��4

 !
;

c 3 ¼
�i�4

�i�2��2

 !
; c 4 ¼

i�3

i�2��1

 !
;

(2.13)

such that the symplectic Majorana condition is satisfied.
Note that the action written in terms of the �’s will not have
manifest 5D Lorentz invariance.
The kinetic terms will give

SF-Kin5D ¼ 1

g2YM

Z
d5xTrði ��1 ��mDm�1þ i ��2 ��

mDm�2

þ i ��3 ��
mDm�3þ i ��4 ��

mDm�4þ�3D4�1

� i ��3D4
��1þ i�4D4�2� i ��4D4

��2Þ; (2.14)

where ��¼�y. Use has been made of the identities
ði�2Þ�� ¼ �� and �Tði�2Þ¼�� , as well as integration by
parts.

1For our spinor conventions, we defer the reader to the
Appendix.
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We can also work out the Yukawa interactions. We will only explicitly write down the terms involving X5. They are

SF-Int5D ¼ 1

g2YM

Z
d5xTr

�
� i

2
�c 1½X5; c 1� þ i

2
�c 2½X5; c 2� þ i

2
�c 3½X5; c 3� � i

2
�c 4½X5; c 4�

�
¼ 1

g2YM

Z
d5xTrð�i½�1; �3�X5 � i½ ��1; ��3�X5 þ i½�2; �4�X5 þ i½ ��2; ��4�X5Þ: (2.15)

Similarly to the bosonic case, we can turn the four-direction into a discretized one with spacing a, so that the integral
becomes a sum, the derivative becomes a forward difference operator, etc. The discretization procedure produces the
following action for the quadratic terms that we found above

SF-Kin5D-Disc ¼
a

g2YM

Z
d4x

X1
k¼�1

Trð� ðkÞ3
~@4�

ðkÞ
1 � i �� ðkÞ3

~@4 ��
ðkÞ
1 þ i� ðkÞ4

~@4�
ðkÞ
2 � i �� ðkÞ4

~@4 ��
ðkÞ
2 þ i �� ðkÞ1 ��m@m�

ðkÞ
1 þ i �� ðkÞ2 ��m@m�

ðkÞ
2

þ i �� ðkÞ3 ��m@m�
ðkÞ
3 þ i �� ðkÞ4 ��m@m�

ðkÞ
4 þ � ðkÞ3 ½XðkÞ

6 ; � ðkÞ1 � � �� ðkÞ3 ½XðkÞ
6 ; �� ðkÞ1 � þ � ðkÞ4 ½XðkÞ

6 ; � ðkÞ2 � � �� ðkÞ4 ½XðkÞ
6 ; �� ðkÞ2 �

þ �� ðkÞ1 ��m½AðkÞ
m ; � ðkÞ1 � þ �� ðkÞ2 ��m½AðkÞ

m ; � ðkÞ2 � þ �� ðkÞ3 ��m½AðkÞ
m ; � ðkÞ3 � þ �� ðkÞ4 ��m½AðkÞ

m ; � ðkÞ4 �Þ: (2.16)

We then compactify the discretized direction, which truncates the sum, and also perform a discrete Fourier transform
such that

� ðkÞ ¼ 1ffiffiffiffi
N

p X½N2�
p¼½N2��Nþ1

	ðpÞqkp and �� ðkÞ ¼ 1ffiffiffiffi
N

p X½N2�
p¼½N2��Nþ1

�	ðpÞq�kp; (2.17)

which lets us write the ~@4�
ðkÞ derivatives as

~@ 4�
ðkÞ ¼ 1ffiffiffiffi

N
p

a

X
s

	ðsÞqksðqs � 1Þ: (2.18)

The final answer for the kinetic and mass terms is

SF-Kin5D-Disc ¼
a

g2YM

Z
d4x

X
s

Tr

�
� i

a
ð1� q�sÞð	ðsÞ

3 	ð�sÞ
1 � �	ð�sÞ

3 �	ðsÞ
1 þ 	ðsÞ

4 	ð�sÞ
2 � �	ð�sÞ

4 �	ðsÞ
2 þ i �	ðsÞ

1 ��m@m	
ðsÞ
1

þ i �	ðsÞ
2 ��m@m	

ðsÞ
2 þ i �	ðsÞ

3 ��m@m	
ðsÞ
3 þ i �	ðsÞ

4 ��m@m	
ðsÞ
4 Þ
�
þ a

g2YM
ffiffiffiffi
N

p
Z

d4x
X
s;s0

Trð �	ðsÞ
1 ��m½Bðs�s0Þ

m ; 	ðs0Þ
1 �

þ �	ðsÞ
2 ��m½Bðs�s0Þ

m ; 	ðs0Þ
2 � þ �	ðsÞ

3 ��m½Bðs�s0Þ
m ; 	ðs0Þ

3 � þ �	ðsÞ
4 ��m½Bðs�s0Þ

m ; 	ðs0Þ
4 � þ ½	ðsÞ

1 ; 	ðs0Þ
3 �Yð�s�s0Þ

6

� ½ �	ðsÞ
1 ; �	ðs0Þ

3 �Yðsþs0Þ
6 þ ½	ðsÞ

2 ; 	ðs0Þ
4 �Yð�s�s0Þ

6 � ½ �	ðsÞ
2 ; �	ðs0Þ

4 �Yðsþs0Þ
6 Þ: (2.19)

The Yukawa interactions are dealt with in a similar way. We will once again discuss the sample term (2.15). Upon
discretizing we get

SF-Int5D-Disc ¼ � ia

gYM2

Z
d4x

X1
k¼�1

Trð½� ðkÞ1 ; � ðkÞ3 �X5ðkÞ þ ½ �� ðkÞ1 ; �� ðkÞ3 �XðkÞ
5 � ½� ðkÞ2 ; � ðkÞ4 �XðkÞ

5 � ½ �� ðkÞ2 ; �� ðkÞ4 �XðkÞ
5 Þ: (2.20)

After compactifying and Fourier transforming we end up with

SF-Int5D-Disc ¼ � ia

g2YM
ffiffiffiffi
N

p X
s;s0

Tr
Z

d4x½ð½ �	ðsÞ
1 ; �	ðs0Þ

3 � � ½ �	ðsÞ
2 ; �	ðs0Þ

4 �ÞYðsþs0Þ
5 þ ð½	ðsÞ

1 ; 	ðs0Þ
3 � � ½	ðsÞ

2 ; 	ðs0Þ
4 �ÞYð�s�s0Þ

5 � (2.21)

and similar expressions for other interaction terms involving different scalar components. This concludes our discussion of
5D MSYM on a discretized circle.

D. Deconstruction: setup

We now turn to the deconstruction picture. As the four-dimensional starting point we will use the N ¼ 2 super-
conformal AN (circular) quiver theory, in the large N limit. The expectation from [3] is to obtain, upon Higgsing, a theory
with enhanced supersymmetry in 5D.

The full action of the N ¼ 2 AN quiver theory, written in terms of N ¼ 1 superfields, is given by
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S4D ¼ X½N2�
i¼½N2��Nþ1

tr
Z

d4x

�
1

8�
Im

�


Z

d2�W�ðiÞWðiÞ
�

�
�
Z

d2�d2 ��e2V
ðiÞ
�yðiÞe�2VðiÞ

�ðiÞ �
Z

d2�d2 ��e2V
ðiþ1Þ

QyðiÞe�2VðiÞ
QðiÞ

�
Z

d2�d2 ��e�2Vðiþ1Þ ~QðiÞe2VðiÞ ~QyðiÞ þ
Z

d2�W ðiÞ þ
Z

d2 �� �W ðiÞ
�
; (2.22)

with 
 ¼ �=2�þ 4�i=G2, where G is the four-
dimensional gauge coupling. Note that the range of the
sum (i.e. the labeling of the nodes of the quiver) has been
conveniently chosen so as to match the discrete mode
expansion of the previous sections. With that in mind, we
will again suppress the sum ranges from now on, for
brevity.

Each node has an SUðKÞ gauge field and is connected to
its neighbours by bifundamental and anti-bifundamental
matter fields. The trace should accordingly be thought of as
being over each term in the respective representation of

SUðKÞðiÞ. The superpotential encodes the matter structure
and is given by

W ðiÞ ¼ �i
ffiffiffi
2

p
G tr½ ~QðiÞ�ðiÞQðiÞ �QðiÞ�ðiþ1Þ ~QðiÞ�: (2.23)

In terms of components,2 the bosonic part of the action
is then

SB4D¼
X
i

Z
d4xtr

�
� 1

4G2
FðiÞ
mnFðiÞmn�Dm�

ðiÞDm�ðiÞy

�DmQ
ðiÞDmQðiÞy�Dm

eQðiÞ
Dm eQðiÞy�VS

�
; (2.24)

where m, n ¼ 0; . . . ; 3 and the covariant derivatives are
defined as

Dm�
ðiÞ ¼ @m�

ðiÞ � i½AðiÞ
m ;�ðiÞ�

DmQ
ðiÞ ¼ @mQ

ðiÞ � iAðiÞ
m QðiÞ þ iQðiÞAðiþ1Þ

m

Dm
~QðiÞ ¼ @m ~QðiÞ � iAðiþ1Þ

m
~QðiÞ þ i ~QðiÞAðiÞ

m :

(2.25)

The scalar potential VS is given by

VS ¼ VF þ VD; (2.26)

where

VF ¼ X
i

trðFy
QðiÞFQðiÞ þ Fy

~QðiÞF ~QðiÞ þ Fy
�ðiÞF�ðiÞ Þ;

VD ¼ G2

2

X
i

DðiÞADðiÞ
A ;

(2.27)

with A an adjoint gauge symmetry index. In turn, one
has that

FQðiÞ ¼ �i
ffiffiffi
2

p
Gð ~QðiÞ�ðiÞ ��ðiþ1Þ ~QðiÞÞ

F ~QðiÞ ¼ �i
ffiffiffi
2

p
Gð�ðiÞQðiÞ �QðiÞ�ðiþ1ÞÞ

F�ðiÞ ¼ �i
ffiffiffi
2

p
GðQðiÞ ~QðiÞ � ~Qði�1ÞQði�1ÞÞ;

(2.28)

for the F-terms and

DðiÞA ¼ tr½TAð½�ðiÞ;�ðiÞy� þQðiÞQðiÞy � ~QðiÞy ~QðiÞ

�Qði�1ÞyQði�1Þ þ ~Qði�1Þ ~Qði�1ÞyÞ�; (2.29)

for the D-terms. Note that since we are working with
SUðKÞ gauge groups, the D-term potential involves both
single and double-trace terms coming from

ðTAÞijðTAÞkl ¼ �i
l�

k
j �

1

K
�i
j�

k
l ; (2.30)

where our normalization for the generators is
trðTATBÞ ¼ �AB.
The fermionic part of the four-dimensional theory is

given in component form by the expression

SF4D¼
X
i

tr
Z
d4x

�
i

G2
��ðiÞ ��mDm�

ðiÞ þ i �
ðiÞ ��mDm

ðiÞ þ i �c ðiÞ ��mDmc

ðiÞþ i �~c
ðiÞ
��mDm

~c ðiÞ

� i
ffiffiffi
2

p ð ��ðiþ1Þ �c ðiÞ � �c ðiÞ ��ðiÞÞQðiÞ� i
ffiffiffi
2

p ð�ðiÞc ðiÞ�c ðiÞ�ðiþ1ÞÞQðiÞy

� i
ffiffiffi
2

p ð�ðiþ1Þ ~c ðiÞ � ~c ðiÞ�ðiÞÞ ~QðiÞy� i
ffiffiffi
2

p ð ��ðiÞ �~c ðiÞ� �~c
ðiÞ ��ðiþ1ÞÞ ~QðiÞ

� i
ffiffiffi
2

p
Gð ~c ðiÞ
ðiÞ�
ðiþ1Þ ~c ðiÞÞQðiÞþ i

ffiffiffi
2

p
Gð �
ðiÞ �~c ðiÞ� �~c

ðiÞ
�
ðiþ1ÞÞQðiÞy� i

ffiffiffi
2

p
Gð
ðiÞc ðiÞ �c ðiÞ
ðiþ1ÞÞ ~QðiÞ

þ i
ffiffiffi
2

p
Gð �c ðiÞ �
ðiÞ� �
ðiþ1Þ �c ðiÞÞ ~QðiÞy� i

ffiffiffi
2

p
Gðc ðiÞ ~c ðiÞ � ~c ði�1Þc ði�1ÞÞ�ðiÞ

þ i
ffiffiffi
2

p
Gð �~c ðiÞ �c ðiÞ� �c ði�1Þ �~c ði�1ÞÞ�ðiÞy� i

ffiffiffi
2

p ½ ��ðiÞ; �
ðiÞ��ðiÞ� i
ffiffiffi
2

p ½�ðiÞ;
ðiÞ��ðiÞy
�
: (2.31)

2We follow the conventions of [18]. The superfield expansions can be found in the Appendix.
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E. Deconstruction: gauge fields

Deconstruction instructs us to expand the above theory

around a real hypermultiplet vev, hQðiÞi ¼ vffiffi
2

p 1K�K. This

leads to a Higgsing of the gauge group down to the diago-
nal subgroup SUðKÞN ! SUðKÞ; hence the trace (now
denoted by Tr) will be over the latter gauge group.

Let us explicitly describe the setup of the calculation for
the gauge fields. As a result of Higgsing (2.24), we get

SB-Gauge4D-Higgs¼
1

G2

X
i

Z
d4xTr

�
�1

4
FðiÞ
mnFðiÞmn�1

2
v2G2ð2AðiÞ

m AðiÞm

�AðiÞ
m Aðiþ1Þm�Aðiþ1Þ

m AðiÞmÞ
�
: (2.32)

Note that the gauge fields have acquired a mass, but that the
mass matrix is off-diagonal,

AðiÞMijA
ðjÞ; (2.33)

where

M ¼ v2G2

2 �1 0 0 0 . . . �1

�1 2 �1 0 0 . . . 0

0 �1 2 �1 0 . . . 0

..

. ..
. . .

. . .
. . .

. ..
. ..

.

0 . . . 0 0 �1 2 �1

�1 . . . 0 0 0 �1 2

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
:

(2.34)

In more compact notation the above can be expressed as

M ¼ v2G2½21N�N � ð�þ��1Þ�; (2.35)

with�ij ¼ �iþ1;j the so-called N � N ‘‘shift’’ matrix. The

latter can be straightforwardly diagonalized into a ‘‘clock’’
matrix (see e.g. [19–21])

Q ¼ diagðq½N2��Nþ1; . . . ; q�1; q0; q; . . . ; q½N2�Þ; (2.36)

with q ¼ e2�i=N . To be specific,

O�1�O ¼ Q and O�1��1O ¼ Q�1: (2.37)

The precise form of O is given by

Oss0 ¼ 1ffiffiffiffi
N

p qss
0

and ðO�1Þss0 ¼ 1ffiffiffiffi
N

p q�ss0 ; (2.38)

where the exponent on the RHS is a product of the two
labels. Note that Oy ¼ O�1.
We can use this to diagonalize the mass matrices

~M ¼ O�1MO ¼ v2G2½21N�N � ðQþQ�1Þ�; (2.39)

and the mass-matrix eigenvalues can be read off easily

~Mkk¼v2G2½2�ðe2�ik=Nþe�2�ik=NÞ�
¼v2G2

�
2�2cos

�
2�k

N

��
¼4v2G2sin2

�
�k

N

�
: (2.40)

In order to implement the above at the level of the action,
one needs to redefine the gauge fields by the same matrix
O, such that

AðiÞ ¼ 1ffiffiffiffi
N

p qijBðjÞ and AðiÞ ¼ 1ffiffiffiffi
N

p q�ijBy
ðjÞ: (2.41)

Note that the unitarity of O and the reality of A imply a
reality condition for the B’sX

j

q�ijBy
ðjÞ ¼

X
j

qijBðjÞ ¼ X
j

q�ijBð�jÞ; (2.42)

where in the last step we have taken j ! �j which does
not affect the sum, and hence

By
ðjÞ ¼ Bð�jÞ: (2.43)

Then for the mass term appearing in (2.32) we have

AðiÞMi
jA

ðjÞ ¼ By
ðkÞO

yk
i Mi

jO
j
lB

ðlÞ ¼ Bð�kÞ ~MklB
ðlÞ; (2.44)

while for the field strength

X
i

FðiÞ
mnFðiÞmn ¼ X

i

½ð@mAðiÞ
n � @nA

ðiÞ
m Þ2 � 2i½AðiÞ

m ; AðiÞ
n �ð@mAðiÞn � @nAðiÞmÞ � ½AðiÞ

m ; AðiÞ
n �½AðiÞm; AðiÞn��

¼ X
s

ð@mBð�sÞ
n � @nB

ð�sÞ
m Þð@mBðsÞn � @nBðsÞmÞ � 2i

N1=2

X
s;s0

½Bð�sÞ
m ; Bð�s0Þ

n �ð@mBðsþs0Þn � @nBðsþs0ÞmÞ

� 1

N

X
s;s0;s00

½Bð�sÞ
m ; Bð�s0Þ

n �½Bðs00Þm; Bðsþs0�s00Þn�: (2.45)

In the intermediate steps of the above, one obtains sums similar to (2.8), some of which can be explicitly performed.
Putting everything together, we arrive at the final answer for the gauge fields,

S
B-Gauge
4D-Higgs¼

1

G2

Z
d4xTr

�
�1

4

X
s

ð@mBð�sÞ
n �@nB

ð�sÞ
m Þð@mBðsÞn�@nBðsÞmÞþ i

2N1=2

X
s;s0

½Bð�sÞ
m ;B�ðs0Þ

n �ð@mBðsþs0Þn�@nBðsþs0ÞmÞ

þ 1

4N

X
s;s0;s00

½Bð�sÞ
m ;Bð�s0Þ

n �½Bðs00Þm;Bðsþs0�s00Þn��1

2
ð4v2G2ÞX

s

sin2

�
�s

N

�
Bð�sÞ
m BðsÞm

�
: (2.46)
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F. Deconstruction: scalar fields

We continue by considering the scalar field terms in the
action. In particular we have upon Higgsing (2.28)

FQðiÞ ¼�i
ffiffiffi
2

p
Gð ~QðiÞ�ðiÞ��ðiþ1Þ ~QðiÞÞ

F ~QðiÞ ¼�ivGð�ðiÞ��ðiþ1ÞÞ� i
ffiffiffi
2

p
Gð�ðiÞQðiÞ �QðiÞ�ðiþ1ÞÞ

F�ðiÞ ¼�ivGð ~QðiÞ� ~Qði�1ÞÞ� i
ffiffiffi
2

p
GðQðiÞ ~QðiÞ� ~Qði�1ÞQði�1ÞÞ

(2.47)

and from (2.29)

DðiÞA¼Tr

�
TA

�
½�ðiÞ;�ðiÞy�� ~QðiÞy ~QðiÞþ ~Qði�1Þ ~Qði�1Þy

þQðiÞQðiÞy�Qði�1ÞyQði�1Þþ vffiffiffi
2

p ðQðiÞþQðiÞyÞ

� vffiffiffi
2

p ðQði�1Þ þQði�1ÞyÞ
��

: (2.48)

The covariant derivatives will give

Dm�
ðiÞ ¼@m�

ðiÞ � i½AðiÞ
m ;�ðiÞ�

DmQ
ðiÞ ¼@mQ

ðiÞ� iffiffiffi
2

p vðAðiÞ
m �Aðiþ1Þ

m Þ�iAðiÞ
m QðiÞþiQðiÞAðiþ1Þ

m

Dm
~QðiÞ ¼@m ~QðiÞ� iAðiþ1Þ

m
~QðiÞþ i ~QðiÞAðiÞ

m : (2.49)

Combining the above will lead to a variety of mass and
interaction terms in addition to contributions coming from
the kinetic terms. Similar to the gauge field example, the
mass matrices can be diagonalized by working with rede-
fined fields

�ðiÞ ¼ 1ffiffiffiffi
N

p qij�̂ðjÞ ~QðiÞ ¼ 1ffiffiffiffi
N

p qij ~̂Q
ðjÞ

QðiÞ ¼ 1ffiffiffiffi
N

p qijQ̂ðjÞ:

(2.50)

At this stage wewould like to bring the reader’s attention
to the following fact: in the subsequent calculation one
finds that for cubic and quartic interactions involving
matter fields with different node indices there is disagree-
ment with the discretized 5D description for generic values
of N. This is no cause for concern since we have already
mentioned that the prescription of [3,16] requires large N.
In fact, in the large-N limit there is a simplification arising
from the redefinitions (2.50). Note that in terms of the
hatted fields, one has e.g.

~QðiÞ ~Qði�1Þ ¼ qijqði�1Þk ~̂QðjÞ ~̂QðkÞ ’ qijqik ~̂Q
ðjÞ ~̂QðkÞ

; (2.51)

for each fixed k � N. Thus, provided that we restrict
attention to processes involving KK modes up to some

finite level L, there is no difference between ~QðiÞ ~Qði�1Þ

and ~QðiÞ ~QðiÞ to leading order inN � L. Hence, ignoring all
1=N corrections, one can write

FQðiÞ ’ �i
ffiffiffi
2

p
G½ ~QðiÞ;�ðiÞ�

F ~QðiÞ ’ �ivGð�ðiÞ ��ðiþ1ÞÞ � i
ffiffiffi
2

p
G½�ðiÞ; QðiÞ�

F�ðiÞ ’ �ivGð ~QðiÞ � ~Qði�1ÞÞ � i
ffiffiffi
2

p
G½QðiÞ; ~QðiÞ�

(2.52)

and

DðiÞA’Tr

�
TA

�
½�ðiÞ;�ðiÞy�þ½ ~QðiÞ; ~QðiÞy�þ½QðiÞ;QðiÞy�

þ vffiffiffi
2

p ðQðiÞþQðiÞyÞ� vffiffiffi
2

p ðQðiÞþQðiÞyÞ
��

: (2.53)

Moreover, the covariant derivatives will now be

Dm�
ðiÞ ¼ @m�

ðiÞ � i½AðiÞ
m ;�ðiÞ�

DmQ
ðiÞ ’ @mQ

ðiÞ � i½AðiÞ
m ;QðiÞ� � iffiffiffi

2
p vðAðiÞ

m � Aðiþ1Þ
m Þ

Dm
~QðiÞ ’ @m ~QðiÞ � i½AðiÞ

m ; ~QðiÞ�; (2.54)

and to leading order in 1=N, the bifundamental scalars
behave as adjoints of the diagonal SUðKÞ.
The above simplification also dictates that to leading

order we can ignore both the trace parts ofQ and ~Q as well
as the double-trace terms coming from the D-terms: First
note that the commutator structure of the F- and D-terms

above is going to eliminate the trace part of theQs and ~Qs.
Furthermore, any double-trace expressions coming from
the second term of ðTAÞijðTAÞkl ¼ �i

l�
k
j � 1

K �
i
j�

k
l in the

D-term potential are also going to vanish.

With this in mind, we can treat the�, Q and ~Q on equal
footing. It will be useful to express the complex scalars in
terms of their real and imaginary parts. So we write

�̂ðiÞ ¼ 1

G
ffiffiffi
2

p ðYðiÞ
1 � iYðiÞ

2 Þ

~̂Q
ðiÞ ¼ 1

G
ffiffiffi
2

p ðYðiÞ
3 � iYðiÞ

4 Þ

Q̂ðiÞ ¼ 1

G
ffiffiffi
2

p ðYðiÞ
5 � iYðiÞ

6 Þ:

(2.55)

Now, consider terms involving only the adjoint scalars
�. The only contribution to their mass is going to come
from the F-term potential, while the quartic interaction
will come from the D-term,

SB-�4D-Higgs ¼
X
i

Z
d4xTr

h
�Dm�

ðiÞDm�ðiÞy

�G2

2
½�ðiÞ;�ðiÞy�2 � v2G2ð2�ðiÞ�ðiÞy

��ðiÞ�ðiþ1Þy ��ðiþ1Þ�ðiÞyÞ
i
: (2.56)

This expression is identical in structure to the one for the
gauge fields (2.32) and we can proceed analogously. Our
redefinition in terms of hatted fields diagonalizes the mass
matrix, and in terms of real components one obtains, e.g.
for the real part of �,
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SB-Y1

4D-Higgs ¼
1

G2

Z
d4xTr

�
� 1

2

X
s

@mY
ð�sÞ
1 @mYðsÞ

1 þ i

N1=2

X
s;s0

½Bð�sÞ
m ; Yð�s0Þ

1 �@mYðsþs0Þ
1

þ 1

2N

X
s;s0;s00

½Bð�sÞ
m ; Yð�s0Þ

1 �½Bðs00Þm; Yðsþs0�s00Þ
1 � þ 1

4N

X
s;s0;s00

½Yð�sÞ
1 ; Yð�s0Þ

1 �½Yðs00Þ
1 ; Yðsþs0�s00Þ

1 �

� 1

2
ð4v2G2ÞX

s

sin 2

�
�s

N

�
Yð�sÞ
1 YðsÞ

1

�
: (2.57)

Since at leading order in 1=N we can treat �, Q and ~Q similarly, it is straightforward to evaluate the rest of the scalar
terms. The only point of special interest is that the field Y6 does not pick up a mass during the Higgsing process and there is
an asymmetry between the A ¼ I and A ¼ 6 terms. The final result is

SB-Scalars4D-Higgs ¼
1

G2

Z
d4xTr

�
� 1

2

X
s

@mY
ð�sÞ
A @mYðsÞ

A þ i

N1=2

X
s;s0

½Bð�sÞ
m ; Yð�s0Þ

A �@mYðsþs0Þ
A

þ 1

2N

X
s;s0;s00

½Bð�sÞ
m ; Yð�s0Þ

A �½Bðs00Þm; Yðsþs0�s00Þ
A � þ 1

4N

X
s;s0;s00

½Yð�sÞ
A ; Yð�s0Þ

B �½Yðs00Þ
A ; Yðsþs0�s00Þ

B �

� 1

4NG2

Z
d4x

X
s;s0;s00

½YðsÞ
A ; Yðs0Þ

B �½Yð�s00Þ
A ; Yðs00�s�s0Þ

B �

þ v

G

Z
d4x

X
s

@mY
ðsÞ
6 Bð�sÞmðq�s � 1Þ � ivffiffiffiffi

N
p

G

Z
d4x

X
s;s0

½BðsÞ
m ; Yðs0Þ

6 �Bð�s�s0Þmðq�s�s0 � 1Þ

þ ivffiffiffiffi
N

p
G

X
s;s0

½YðsÞ
6 ; Yðs0Þ

I �Yð�s�s0Þ
I ðq�s�s0 � 1Þ � 1

2
ð4v2G2ÞX

s

sin 2

�
�s

N

�
Yð�sÞ
I YðsÞ

I

�
: (2.58)

G. Deconstruction: fermions

We now proceed to study the effect of expanding the fermionic part of the action (2.31) around hQðiÞi ¼ vffiffi
2

p 1K�K. This

gives rise to the following mass terms:

SF-mass
4D-Higgs ¼

X
i

Tr
Z

d4x½�ivð ��ðiþ1Þ �c ðiÞ � �c ðiÞ ��ðiÞÞ � ivð�ðiÞc ðiÞ � c ðiÞ�ðiþ1ÞÞ � ivGð ~c ðiÞ
ðiÞ � 
ðiþ1Þ ~c ðiÞÞ

� ivGð �~c ðiÞ
�
ðiþ1Þ � �
ðiÞ �~c ðiÞÞ� (2.59)

In order to diagonalize the fermion mass matrices, define

ð�ðiÞ; 
ðiÞ; c ðiÞ; ~c ðiÞÞ ¼ 1

G
ffiffiffiffi
N

p X
s

qisðG	ðsÞ
1 ; 	ðsÞ

2 ; 	ðsÞ
3 ; 	ðsÞ

4 Þ; (2.60)

and note that the large-N simplifications which we used in (2.51) will also apply for products of bifundamental fermions.
The fermion mass terms then become

SF-Mass
4D-Higgs ¼ � iv

G
Tr
Z

d4x
X
s

ð1� q�sÞ½	ð�sÞ
1 	ðsÞ

3 � �	ðsÞ
1 �	ð�sÞ

3 þ 	ð�sÞ
2 	ðsÞ

4 � �	ðsÞ
2 �	ð�sÞ

4 �: (2.61)

For the fermion kinetic terms we have

SF-Kin4D-Higgs ¼
i

G2

X
s

Tr
Z

d4x½ �	ðsÞ
1 ��m@m	

ðsÞ
1 þ �	ðsÞ

2 ��m@m	
ðsÞ
2 þ �	ðsÞ

3 ��m@m	
ðsÞ
3 þ �	ðsÞ

4 ��m@m	
ðsÞ
4 �

þ 1

G2
ffiffiffiffi
N

p X
s;s0

Tr
Z

d4x½ �	ðsÞ
1 ��m½Bðs�s0Þ

m ;	ðs0Þ
1 � þ �	ðsÞ

2 ��m½Bðs�s0Þ
m ; 	ðs0Þ

2 � þ �	ðsÞ
3 ��mðBðs�s0Þ

m 	ðs0Þ
3 � qs�s0	ðs0Þ

3 Bðs�s0Þ
m Þ

þ �	ðsÞ
4 ��mðqs�s0Bðs�s0Þ

m 	ðs0Þ
4 � 	ðs0Þ

4 Bðs�s0Þ
m Þ�; (2.62)
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while the terms involving � become in the large-N limit

SF-Int-�4D-Higgs ¼
1

G2
ffiffiffiffi
N

p X
s;s0

Tr
Z

d4x½�i½	3ðsÞ; 	4ðs0Þ�ðYð�s�s0Þ
1 þ iYð�s�s0Þ

2 Þ þ i½ �	ðs0Þ
4 ; �	ðsÞ

3 �ðYðsþs0Þ
1 � iYðsþs0Þ

2 Þ

� i½ �	ðsÞ
1 ; �	ðs0Þ

2 �ðYðsþs0Þ
1 þ iYðsþs0Þ

2 Þ � i½	ðsÞ
1 ; 	ðs0Þ

2 �ðYð�s�s0Þ
1 � iYð�s�s0Þ

2 Þ�: (2.63)

Finally, for the terms involving Q we will have, again in the large-N limit

SF-Int-Q4D-Higgs ¼ � i

G2
ffiffiffiffi
N

p X
s;s0

Tr
Z

d4x½ð½ �	ðsÞ
1 ; �	ðs0Þ

3 � � ½ �	ðsÞ
2 ; �	ðs0Þ

4 �ÞYðsþs0Þ
5 þ ð½	ðsÞ

1 ; 	ðs0Þ
3 � � ½	ðsÞ

2 ; 	ðs0Þ
4 �ÞYð�s�s0Þ

5 �

þ 1

G2
ffiffiffiffi
N

p X
s;s0

Tr
Z

d4x½ð½ �	ðsÞ
1 ; �	ðs0Þ

3 � þ ½ �	ðsÞ
2 ; �	ðs0Þ

4 �ÞYðsþs0Þ
6 � ð½	ðsÞ

1 ; 	ðs0Þ
3 � þ ½	ðsÞ

2 ; 	ðs0Þ
4 �ÞYð�s�s0Þ

6 �: (2.64)

and similar expressions for terms involving ~Q.

H. Comparing discretized 5DMSYM to deconstruction
and the (2,0) theory

Having obtained explicit expressions for all terms in
both discretized and compactified 5D MSYM, as well as
the Higgsed N ¼ 2 AN quiver theory, we are now in a
position to compare the two. We see that the kinetic and
mass terms for the gauge field in the expressions (2.9) and
(2.46) fix the relations

1

G2
¼ a

g2YM
and G2v2 ¼ 1

a2
; (2.65)

since je2�is=N � 1j2 ¼ 4sin 2ð�sN Þ. These further yield

a ¼ 1

Gv
and g2YM ¼ G

v
: (2.66)

It is straightforward to check that, with these identifica-
tions, all terms between the 5D and 4D calculations match
exactly, that is (2.11) with (2.58) and (2.19) with (2.61),
(2.62), and (2.21) with (2.64). Thus, we arrive at the con-
clusion that the AN quiver theory at large N deconstructs
5D MSYM on a discretized circle with spacing a.3

During the course of the 4D calculation, we noted (and
just confirmed) that in order to get agreement between the
two descriptions we needed to ignore corrections of
Oð1=NÞ. This is not surprising. The claim of deconstruc-
tion is not that one finds 5D MSYM exactly, at all scales.
Rather, if we restrict to observables that only involve KK
modes up to some level L then correlation functions of
these can be computed to arbitrary accuracy in the decon-
structed theory by choosing N � L [16].

Let us expand upon this point. For fixed N we have two
theories at hand. One is the superconformal quiver gauge
theory with N nodes and coupling G2 ¼ 1=v2a2. The
other is the discretized 5D MSYM on a circle of radius
R4 ¼ Na=2�. This latter theory is a truncated version of
the full 5D MSYM on a circle, analogous to a KK
reduction keeping the first N levels. It is a deformation
of 4D MSYM obtained by adding a finite number of
massive fields which form complete short N ¼ 4 mul-
tiplets at each level. It is renormalizable and we view it as
an effective field theory below the scale N=R4. If we
examine physical processes up to some scale L=R4, we
then expect the effect of any modes of 5D MSYM with
energy above N=R4 that we neglected in the discretization
to be suppressed by powers of L=N.
Let us now compare the quantum theories arising

from these two actions. We restrict attention to correla-
tion functions of local operators composed from the
fields that appear in the Lagrangians but only up to
some scale L=R4. The correlation functions obtained
in the two theories will agree up to powers of L=N,
arising from the differing interaction terms in the action.
By taking N � L we can match the computations of the
discretized 5D MSYM arbitrarily well by using the
quiver theory and in particular we could take the limit
N ! 1 with R4 fixed. This allows us to compute a large
class of local correlators of 5D MSYM on a circle of
radius R4 as a limit of the superconformal quiver gauge
theories.
The deconstruction that we have just obtained is

precisely the deconstruction of the (2,0) theory that was
proposed in [3]. These authors noted that the four-
dimensional SCFT has an SLð2;ZÞ S-duality which maps
G ! 2�N=G. Hence, in addition to the perturbative
spectrum of states, arising from the deconstruction of the
four-direction, with masses

M2
KK1 ¼ 4G2v2sin 2

�
�L

N

�
¼ 4

a2
sin 2

�
�L

N

�
L 2 Z;

(2.67)

there is also a dual tower of magnetically charged soliton
states with

3Alternatively, one can compare the deconstructed theory to
5D MSYM compactified on a circle without prescribing any kind
of discretization but truncating the KK tower at level N. This
leads to a four-dimensional action which is similar to the one we
have obtained by discretization but with two differences. First,
the mass spectrum of the fundamental fields is the familiar KK
pattern of M2 ¼ L2=R2. Second, one finds no powers of q in the
interaction terms. Nevertheless, the discussion that follows is
similar.
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M2
KK2¼4

ð2�Þ2v2N2

G2
sin2

�
�L

N

�
¼4ð2�Þ2N2

g4YM
sin2

�
�L

N

�
L2Z: (2.68)

In the limit N � L these can be identified as two KK
towers corresponding to compactification of a six-
dimensional theory with radii R4 ¼ Na=2� and R5 ¼
g2YM=4�

2, both of which are freely adjustable parameters.
In addition there will be a complete SLð2;ZÞ invariant
spectrum of states carrying both types of KK momenta.
Thus the deconstruction argument of [3] shows that one
cannot deconstruct 5D MSYM without also simulta-
neously deconstructing a six-dimensional theory with 16
supersymmetries and an SO(5) R-symmetry—presumably
the (2,0) theory.

In the limit a ! 0, N ! 1, with R4 ! 1 the 4D theory
results are matched to uncompactified 5D MSYM with
arbitrary value for the coupling g2YM, which suggests that
deconstruction in principle provides a quantum definition
of 5D MSYM at all scales. Finally, the remaining tower of
KK modes of masses MKK2 is nothing but the instanton-
soliton tower of [22,23]. This matches the content of the
conjecture of [4,5].

We note that since 5D MSYM is not well defined (at
least naively), we cannot claim that the deconstructed
theory is 5D MSYM. Rather, our discussion shows that
deconstruction provides a controlled definition of 5D
MSYM. Our purpose here was to find a way of identifying
parameters between the 4D and 5D descriptions and this
approach has enabled us to do so in a natural way.

III. THE DLCQ OF THE (2,0) THEORY
AND 5D MSYM

We now shift gears and turn our attention to the (2,0)
proposals of [1,2]. In order to compare the latter to the
proposal that the (2,0) theory on S1 is equivalent to 5D
MSYM, we will need to quickly review the philosophy
behind the infinite momentum frame (IMF) and the related
discrete light-cone quantization (DLCQ). There are vari-
ous outstanding conceptual and technical issues with the
IMF, and especially DLCQ, which need to be addressed
before one can claim to have a complete understanding of a
theory that is defined using these methods. However, it is
not our intention to resolve or discuss these issues here.
Rather, we will accept the IMF and DLCQ prescriptions at
face value and focus on the arguments leading to the
proposal of [1,2].

A. IMF and DLCQ

The basis for the IMF is that, since we are considering a
Lorentz-invariant field theory, we can examine it in any
frame we like. By a judicious choice of frame the physics
might be simpler to analyze. To this end let us consider an
M5-brane wrapped on an S1 of radius R5 and boost it along

the compact x5 direction. The energies and momenta trans-
form as (E ¼ P0)

E0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p ðE�uP5Þ P0
5¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p ðP5�uEÞ

P0
i¼Pi;

(3.1)

where i ¼ 1; . . . ; 4. If we introduce light-cone coordinates

x� ¼ 1ffiffiffi
2

p ðt� x5Þ; P� ¼ 1ffiffiffi
2

p ðE� P5Þ;

then (3.1) can be written as

P0þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1�u

1þu

s
Pþ P0� ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þu

1�u

s
P� P0

i¼Pi: (3.2)

Let us write u ¼ ð1� �2Þ=ð1þ �2Þ so that an infinite boost
corresponds to � ! 0. This limit defines the IMF. In what
follows we always only consider the term of leading order
in �. We find that to leading order (3.1) becomes

P0þ ¼ �Pþ P0� ¼ 1

�
P� P0

i ¼ Pi: (3.3)

Thus if we view the original S1 as an orbifold,

ðt; xi; x5Þ ffi ðt; xi; x5 þ 2�R5Þ; (3.4)

then in the IMF we have

ðxþ0; x�0; xi0Þ ffi ðxþ0 þ 2�Rþ; x�0; xi0Þ; (3.5)

where

Rþ ¼ R5=
ffiffiffi
2

p
�: (3.6)

Next let us consider on-shell modes in the unboosted
frame with momentum P5 ¼ n=R5 for some integer n.
These have energy

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
5 þ P2

i þm2
q

¼ jnj
R5

�
1þ F

�
R2
5P

2
?

n2

��
; (3.7)

where we have denoted P2
? ¼ P2

i þm2 and FðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

p � 1 ¼ 1
2 xþ 
 
 
 . Here m allows for the possibility

of massive states that can arise on the Coulomb branch. We
see that

P0þ ¼ jnj þ nffiffiffi
2

p
R5

�þ jnj�ffiffiffi
2

p
R5

F

�
R2
5P

2
?

n2

�
P0� ¼ jnj � nffiffiffi

2
p

�R5

þ jnjffiffiffi
2

p
R5�

F

�
R2
5P

2
?

n2

�
P0
i ¼ Pi:

(3.8)

We find that modes with n < 0 have diverging P0� in the
IMF and thus decouple. Therefore, we can simply look at
the effective theory with these modes integrated out. This
can be made arbitrarily precise by taking � suitably small.
Therefore, we restrict to n > 0 for which
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P0þ ¼
ffiffiffi
2

p
n�

R5

þ n�ffiffiffi
2

p
R5

F

�
R2
5P

2
?

n2

�
P0� ¼ nffiffiffi

2
p

R5�
F

�
R2
5P

2
?

n2

�
P0
i ¼ Pi:

(3.9)

Now in the original theory we have states with all values
of n. However for fixed R5, in the � ! 0 limit the finite
momentum states are those that have large n, with n� finite.
This is the traditional IMF picture (as used e.g. in [24]) and
is valid for any finite R5 but takes n ! 1. Physically this
corresponds to the fact that the only modes left in the
infinite momentum frame are those that were moving
sufficiently fast against the boost so that they have finite
velocity after the boost. Note also that for any given � there
are still infinitely many n that must be included if one
wishes to describe the full theory.

There is another possibility which is to take R5 small

with Rþ ¼ R5=
ffiffiffi
2

p
� fixed. This is the DLCQ construction

and does not require large n.4 Fixing n here simply means
truncating to a fixed momentum sector of the theory. One
must then still allow n to be arbitrary in order to describe
the full theory.

In either case we find

P0þ ¼
ffiffiffi
2

p
n�

R5

P0� ¼� R5

2
ffiffiffi
2

p
n�

ðP2
i þm2Þ P0

i¼Pi: (3.10)

Note that we have the three parameters R5, n and � and in
the limit � ! 0 we have just one constraint, namely that
n�=R5 is fixed. To arrive at (3.10) from (3.9) we simply
require that P?R5=n � 1 in the limit � ! 0.

B. Application to the (2,0) theory

The DLCQ construction of [1,2] works as follows. In the
limit that R5 is small the (2,0) theory on S1 is well
described by weakly coupled 5D MSYM with coupling
g2YM ¼ 4�2R5. As observed in [1,2], this is something of a
miracle since Lagrangian field theories usually become
strongly coupled when compactified on a small circle. In
this limit states with n units of momentum along the
compact direction correspond to solitons that carry instan-
ton number n. These states are heavy when R5 is small so
that keeping P? fixed means slow motion in the transverse
directions. This is the Manton approximation [27] for
solitons whereby the relevant degrees of freedom corre-
spond to motion on the soliton moduli space. In the limit
that g2YM � R5 ! 0 all other interactions can be neglected.
Thus we find that the theory reduces to motion on the
moduli space of n instantons.5 In the IMF, this corresponds
to the second possibility discussed at the end of the

previous section: for fixed Rþ ¼ R5=
ffiffiffi
2

p
�, sending

R5 ! 0 also requires � ! 0 and therefore the DLCQ de-
scription of the (2,0) theory is given by quantummechanics
on the n-instanton moduli space.
There also exists an alternative derivation directly from

the (2,0) system of [28]. This system is essentially 5D
MSYM covariantly embedded into 6 dimensions using a
nondynamical vector field C�. Choosing C� spacelike,
C� ¼ g2YM�

�
5 , leads to 5D MSYM along x0; . . . ; x4 with

coupling g2YM. However one can also consider a null em-
bedding corresponding to an infinitely boosted D4-brane.
Deferring to [29] for the details, we simply wish to observe
here that for the choice C� ¼ g2��

þ, where g2 is an arbi-
trary parameter with dimensions of length, one finds

Pþ ¼ � 4�2n

g2

P� ¼ 1

2g2
g��@�m�@�m�

P i ¼ 1

2g2
Tr
Z

d4xFijF
j�;

(3.11)

where n is the instanton number, g�� is the metric on the

n-instanton moduli space with coordinatesm� and Fij, Fi�
are obtained from the field strength of the instanton and are
determined by the ADHM construction.6

We note that the derivation of (3.11) in [29] is exact,
starting from the (2,0) system of [28], and does not require
taking the limit of an infinite boost. Examining the spec-
trum of Pþ shows that it can be identified with that of the
(2,0) theory reduced on a null circle obtained by the
identification

xþ ffi xþ þ g2

2�
: (3.12)

Comparing (3.11) with (3.10) we find that Pþ ¼ Pþ if we

identify Rþ ¼ R5=
ffiffiffi
2

p
� ¼ g2=4�2. In addition (3.12) pre-

cisely matches (3.5). Thus for any finite value of g2, we
obtain the DLCQ picture of the (2,0) theory. In particular,
finite g2 requires that R5 ¼ g2YM=4�

2 ! 0 as � ! 0 and so
again we only need the extreme IR of 5D MSYM.
Having obtained the DLCQ at finite Rþ it would appear

that we can arrange for Rþ ! 1 in the limit that R5,
� ! 0, leading to a description of the uncompactified
(2,0) theory. At this stage one needs to be careful: In a
null compactification the radius of the xþ identification is
not physically meaningful by itself as a Lorentz boost can
rescale Rþ. But in the IMF, when we choose a specific
frame with fixed Pþ ¼ n=Rþ, this can be done if we also
scale n ! 1 [26]. This gives the DLCQ description of the

4See e.g. [25,26] for DLCQ in the context of matrix theory.
5We will come back to the details of this derivation shortly.

6There is also a generalization that arises on the Coulomb
branch, where one finds that P�¼ 1

2g2
ðg��ð@�m��L�Þ�

ð@�m��L�ÞþVÞ. Here V / g��L
�L� and L� is a triholomor-

phic Killing vector on the instanton moduli space [29].
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(2,0) theory on R1;5 as the large-n limit of superquantum
mechanics on the instanton moduli space [1,2].

This conclusion is a puzzling feature of the DLCQ
proposal, since we have somehow managed to define the
six-dimensional (2,0) theory, which is the UV of 5D
MSYM, by only using information contained in the ex-
treme IR of 5D MSYM. The origin of this is the miracle
mentioned above, namely that the (2,0) theory becomes
weakly coupled when compactified on a circle with a small
radius. This miracle is also important for S-duality of four-
dimensional maximally supersymmetric Yang-Mills since
it ensures that the four-dimensional coupling constant is
given by the ratio of the two circle radii and hence that
modular transformations, such as interchanging the two
circles, map strong to weak coupling [30].

In addition, one needs to keep in mind that, on top of the
usual concerns about the IMF and DLCQ, the instanton
moduli space has singularities which must somehow be
dealt with in the quantum theory. For example the authors
of [1,2] provide one resolution in terms of turning on mild
noncommutativity as a regulator,7 in view of switching it
back off at the end of any explicit calculation.

C. The (2,0) theory in the IMF

Having reviewed the DLCQ proposal, let us instead
consider an IMF prescription. If we assume that the (2,0)
theory on S1 is equivalent to 5D MSYM, then we can also
consider a traditional IMF description of the (2,0) theory
with a finite value for R5 > 0 but large n.

First, what is 5D MSYM at large n and low energies8

described by? It is given by an expansion around the
ground state in the nth soliton sector. At low velocities
this leads to the Manton approximation of slow motion on
the soliton moduli space [27]. For a recent detailed dis-
cussion on instanton-solitons of 5D MSYM see [31].

However, now we would like to see what happens to this
description beyond the low-energy approximation. It is
well known that the Manton approximation is not exact,
although in the case of monopoles in four dimensions it can
be shown to be valid as long as the moduli velocities
remain small [32]. Nevertheless at finite g2YM the Manton

approximation does not capture all the dynamics of 5D
MSYM. For the particular example of monopoles in four
dimensions there are estimates that the radiation produced
in soliton scattering scales as the third or fifth power of the
velocity [33,34]. We expect that the instanton-soliton so-
lutions relevant for 5D MSYM will behave in a similar
way: at nonzero velocity these effects can only be ne-
glected in the strict g2YM ! 0 limit. Therefore, the IMF

picture does not simply reduce to quantum mechanics on

the instanton moduli space for finite R5 ¼ g2YM=4�
2.

Rather, it contains an infinite number of additional radia-
tion modes that represent fluctuations about the soliton.
One might hope that in the large-n limit there could be a

further suppression of the massive modes so that the
Manton approximation is again valid. For example, the
solitons become heavy at large n so their centre-of-mass
velocity must be bounded by 1=n to ensure that the mo-
mentum remains small. However, this seems unlikely to
extend to all moduli as the large-n moduli space contains
configurations where the solitons are widely separated. It
would then seem that various ‘‘light’’ massive modes,
obtained in the small-n moduli space, can be lifted to the
large-n moduli space. For instance, one can imagine con-
figurations of well-separated solitons where only a few are
moving, in which case their velocities are not required to
be small to ensure that the total excitation energy of the
system is small. Therefore, the radiation and other nonzero
modes seem to be insensitive to the value of n and we do
not expect any additional suppression at large n.
Hence there does not appear to be any significant sim-

plification by considering the (2,0) in the IMF as there was
with DLCQ.

D. A DLCQ of 5D MSYM

To complete the circle of ideas we can also consider a
DLCQ of 5D MSYM and compare it to a compactified
version of the proposal [1,2]. To this end, let us start with
5D MSYM and compactify on x4 with radius R4. To
construct a DLCQ it is sufficient to only consider a small
R4. Compactifying 5D MSYM on S1 with coupling g2YM
we find 4D MSYM with coupling G2 ¼ g2YM=2�R4,
coupled to a tower of KK modes. For small R4 this is
strongly coupled but if the proposal of [4,5] is true then
5D MSYM on S1 admits an S-duality since it is the (2,0)
theory on S1 � S1. Evidence for this can be found in [7].
Alternatively, we could use the 4D quiver deconstruction
approach as the quantum definition of 5D MSYM, as
argued in Sec. II H. This has a built-in S-duality for the
theory on a (discretized) circle.
Applying S-duality we arrive at weakly coupled 4D

Yang-Mills with gauge coupling G2 / 2�R4=g
2
YM ! 0,

but where the tower of KK modes around x4 are now given
by their S-duals, which will be some sort of monopole
states. What exactly are these? From the point of view of
the (2,0) theory S-duality corresponds to swapping x4 with
x5. Therefore S-duality takes momentum modes around x4

to momentum modes around x5. In 5D MSYM momentum
modes around x5 are given by instanton-solitons along
the R4 spanned by x1; . . . ; x4. Compactifying this R4 to
R3 � S1 leads to so-called calorons, namely instantons that
are periodic along x4 (monopoles are special cases of
calorons that are invariant along S1). As before we decom-
pactify the theory by taking n, R4=� ! 1. Thus we find
that the DLCQ of 5D MSYM on R1;4 is given by quantum

7A noncommutative deformation corresponds to blowing up
the moduli space singularities.

8Here, low energies means small excitation energy above the
BPS bound of the n instanton sector.
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mechanics of the caloron moduli space (see also [35] for a
related discussion). Note that the use of S-duality was
crucial for this argument. As we mentioned this is guaran-
teed in deconstructed theory. If we start with 5DMSYM on
its own then S-duality on an S1 of finite size is tantamount
to assuming that it is the (2,0) theory on S1 � S1 and
therefore essentially assumes the conjecture of [4,5].

Let us compare this with the DLCQ proposal con-
structed above for the (2,0) theory on R1;5. To obtain a
DLCQ of the (2,0) theory on R1;4 � S1 we can take an
orbifold that acts as x5 ffi x5 þ 2�R5 and hence need to
consider instantons that are periodic: once again one is lead
to the moduli space of calorons. Thus we find agreement
between the DLCQ of the (2,0) theory onR1;4 � S1 at finite
radius and the DLCQ of 5D MSYM on R1;4 at finite
coupling.

IV. CONCLUSIONS

In this paper we have discussed the relationships be-
tween three proposals for the (2,0) theory: deconstruction
[3], DLCQ [1,2] and 5D MSYM [4,5]. In particular we
explicitly showed how deconstruction leads to the action of
5D MSYM. This provides a definition of the full 5D
MSYM as a limit of a family of well-defined four-
dimensional superconformal field theories. Furthermore
we showed how the DLCQ construction is also consistent
with the view that the (2,0) theory on S1 is given by 5D
MSYM by showing that they both lead to the same DLCQ
of the (2,0) theory on a finite circle. This crucially assumed
the S-duality property of the 5D theory, which is explicit
when defined in terms of deconstruction.

A common feature of all these proposals is that they do
not require any new states that do not appear in 5D MSYM
to describe the (2,0) theory. This is the central observation
in [4,5] and therefore this is compatible with both [1,2] and
[3]. Conversely, these proposals provide some support to
the claim that although 5D MSYM is perturbatively diver-
gent [6] and power counting nonrenormalizable, it should
not simply be viewed as the low-energy effective theory of
the (2,0) theory on S1 in the Wilsonian sense, meaning that
some heavy states have been integrated out. Rather, the
spectrum and interactions are those of the (2,0) theory. The
proposals of [1–3] offer alternative methods for computing
physical quantities beyond the techniques of traditional
perturbative quantum field theory.

In addition there are still other ways that may be used to
define the (2,0) theory starting from the conformal field
theory of an arbitrary number of M2-branes [36]. For
example, one can consider a large number of M2-branes
that are blown up via a Myers effect into M5-branes
wrapped on an S3 of finite radius. It was argued in [37]
that the resulting fluctuations of the M5-branes are given
by 5D MSYM on S2, where S3 is viewed as a Hopf
fibration over S2. Furthermore 5D MSYM on a three-torus
of finite size can be obtained from cubic arrays of

M2-branes [38]. In principle all these proposals give defi-
nitions of 5D MSYM and the (2,0) theory on S1. It remains
to be seen if they are equivalent.
Finally, we should also mention some other recent pro-

posals for the (2,0) theory which we did not discuss. One
very interesting proposal is [39] which considers the (2,0)
theory on R� S5. Realizing S5 as a Hopf bundle over CP2

one can then perform an Zk orbifold that acts on Uð1Þ
fiber. In the large k limit one therefore finds the (2,0) theory
is given by 5D MSYM on R� CP2. In this scenario the
radius of CP2 determines the scale g2YM and 1=k plays the
role of a dimensionless coupling constant. Furthermore,
since k is discrete, there is hope that perturbation theory
about large k is finite allowing one to extrapolate to
small k.
In addition, there have been other recent conjectures for

the (2,0) theory that focus on novel Lagrangian descrip-
tions for the self-dual tensor directly in six dimensions [40]
or five-dimensional models that include the KK towers of
states [41,42]. It would be interesting to understand the
relation of these papers to the conjectures we discuss here.
In particular, since the proposals discussed here capture at
least a significant portion of the dynamics of the (2,0)
theory, these other proposals should be related to them in
some concrete way.
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APPENDIX

Here we collect our conventions for the gamma matrices
used in Sec. II C. The Spin(1,4) gamma matrices are
given by

�� ¼
(

0 i�m

i ��m 0

 !
;

�12�2 0

0 12�2

 !)
;

C5 ¼
�2 0

0 �2

 !
;

(A1)

with m ¼ 0; . . . ; 3 and �m ¼ f1; �ig and ��m ¼ f1;��ig.
They satisfy

f��; ��g ¼ 2	�� �0ð��Þy�0 ¼ ��

�0�1�2�3�4 ¼ �i C5�
�C�1

5 ¼ ð��ÞT
ðC5�

�ÞT ¼ �C5�
� CT

5 ¼ �C5:

(A2)

On the other hand, the Hermitian Spin(5) gamma matrices
are given by
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�1 ¼ �2 0
0 ��2

� �
; �2 ¼ ��1 0

0 �1

� �
; �3 ¼ 0 12�2

12�2 0

� �
; �4 ¼ 0 �i12�2

i12�2 0

� �
;

�5 ¼ ��3 0
0 �3

� �
; K ¼ 0 i�2

i�2 0

� � (A3)

and satisfy

f�I; �Jg ¼ 2�IJ; ð�IÞy ¼ �I; �1�2�3�4�5 ¼ 1 KT ¼ �K; ðK�IÞT ¼ �K�I: (A4)

The conjugate fermions are defined as

�c i � c y
i �

0 (A5)

and satisfy the symplectic Majorana condition

�c i ¼ c T
j C5K

j
i : (A6)

We also give the superfield expansion, used in Sec. II D. In Wess-Zumino gauge, one has that

VðiÞ ¼ ���m ��AðiÞ
m þ i�2 �� ��ðiÞ � i ��2��ðiÞ þ 1

2
�2 ��2DðiÞ

WðiÞ
� ¼ �i�ðiÞ

� þ ��D
ðiÞ � i

2
ð�m ��n�Þ�FðiÞ

mn þ �2ð�mDm
��ðiÞÞ�

�ðiÞ ¼ �ðiÞ þ i��m ��@m�
ðiÞ � 1

4
�2 ��2�ðiÞ þ ffiffiffi

2
p

�
ðiÞ � iffiffiffi
2

p �2@m

ðiÞ�m ��þ �2F�ðiÞ

(A7)

for the vector multiplets, while

QðiÞ ¼ QðiÞ þ i��m ��@mQ
ðiÞ � 1

4
�2 ��2hQðiÞ þ ffiffiffi

2
p

�c ðiÞ � iffiffiffi
2

p �2@mc
ðiÞ�m ��þ �2FQðiÞ

~QðiÞy ¼ ~QðiÞy � i��m ��@m ~QðiÞy � 1

4
�2 ��2h ~QðiÞy þ ffiffiffi

2
p

�� �~c
ðiÞ þ iffiffiffi

2
p ��2��m@m

�~c
ðiÞ þ ��2Fy

~QðiÞ

(A8)

for the hypermultiplets, where we are using the same letter for the chiral superfields as for their scalar components in the
hope that no confusion will arise.
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