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We consider AdS2 � R2 solutions supported by a magnetic field, such as those which arise in the

near-horizon limit of magnetically charged AdS4 Reissner-Nordstrom black branes. In the presence of an

electrically charged scalar field, such magnetic solutions can be unstable to spontaneous formation of a

vortex lattice. We solve the coupled partial differential equations that govern the charged scalar, gauge

field, and metric degrees of freedom to lowest nontrivial order in an expansion around the critical point

and discuss the corrections to the free energy and thermodynamic functions arising from the formation of

the lattice. We describe how such solutions can also be interpreted, via S-duality, as characterizing

infrared crystalline phases of conformal field theories doped by a chemical potential, but in zero magnetic

field; the doped conformal field theories are dual to geometries that exhibit dynamical scaling and

hyperscaling violation.
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I. INTRODUCTION

A topic of recent interest has been the holographic
description of phases of quantum field theory with spatial
anisotropy and/or inhomogeneity [1–15]. This is motivated
in part by the crucial role that momentum relaxation due to
inhomogeneities plays in transport phenomena in con-
densed matter systems, and in part by intrinsic interest in
the rich physics of such phases.

Our goal in this work is twofold. On the one hand, as an
extension of the ideas discussed in [16], we would like to
illustrate the emergence of crystalline ground states
(‘‘solids’’) in conformal field theories doped by a chemical
potential coupling to a globally conservedU(1) charge, but in
zero magnetic field. In 2þ 1 dimensions, monopole opera-
tors associated with the global U(1) symmetry [16–18] serve
as order parameters for solid phases in doped conformal field
theories (CFTs). Electric-magnetic duality allows one to find
a dual descriptionwhere themagnetic degrees of freedomare
manifested in terms of electrically charged operators. In the
bulk gravitational description, this allows us to view the
formation of the solid by studying vortex lattice formation
in the theory of a charged scalar moving in a background
magnetic field. A crucial advantage of studying the solid
phases of doped CFTs by using this dual charged scalar is
that theDirac quantization condition on themonopole charge
translates into an exact commensurability relation between
the area of the unit cell of the crystal and the density of doped
charges [16,19].

On the other hand, an open problem in the study of holo-
graphic lattices has been to find, analytically, gravitationally

back-reacted solutions for a crystalline lattice of dimension
d > 1. This has largely been because of the relative diffi-
culty of solving coupled systems of partial differential
equations, instead of the ordinary differential equations
which normally govern simple backgrounds in gauge/
gravity duality. Here, we give an example of such a crys-
talline metric in d ¼ 2. Our work builds on the earlier
papers [3], which found an elegant solution for a vortex
lattice in the probe approximation, and [11], where the
backreaction of such a lattice on bulk gauge fields was
studied in a different setting.
The organization of this paper is as follows. In Sec. II,

we review the basic unperturbed AdS2 � R2 solution. In
Sec. III, we incorporate a charged scalar field and describe
the vortex lattice solution. In Sec. IV, we describe the basic
physics visible in the perturbative vortex lattice solution.
In Sec. V, we characterize how such a lattice could also
emerge in the IR geometry of a gravitational solution
which exhibits dynamical scaling with hyperscaling viola-
tion, as the S-dual of a doped CFT in zero magnetic field.
Possible directions for future research are discussed in
Sec. VI.

II. MAGNETIC AdS2 � R2 SOLUTIONS

Consider the theory with action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R� 1

4
F��F

�� � 2�

�
; (2.1)

where �< 0. It has AdS2 � R2 solutions with metric

ds2 ¼ L2

�
� dt2

r2
þ dr2

r2
þ dx2 þ dy2

�
; (2.2)

where
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L2
¼ �2�: (2.3)

The gauge field supporting the solution is

Fxy ¼ Qmdx ^ dy; (2.4)

with Qm fixed in terms of the AdS radius by the equation

Qm ¼ ffiffiffi
2

p
L: (2.5)

In particular, this means that for these solutions, fixing the
magnetic field fixes also the cosmological constant and
the AdS radius.

In addition to its intrinsic interest, this solution arises
as the near-horizon geometry of extremal magnetically
charged AdS/Reissner-Nordstrom black branes with
AdS4 asymptotics. In this context, the AdS2 near-horizon
region has played a crucial role in elucidating the non-
Fermi–liquid behavior of probe fermions [20–22] scatter-
ing off the bath of locally critical excitations represented
by the AdS2 geometry [23,24].

III. THE VORTEX LATTICE

Our interest is not in the pure AdS2 solution (2.2). We
wish to include also an electrically charged scalar field, c ,
in the full action. In part, this is because a generic such
theory could include such scalars; in part, it is motivated by
the duality considerations to be described in Sec. V.

In any case, here, we will see that in some ranges of
parameters, the charged scalar will qualitatively change
the IR physics. The simplest case in which we can see this
effect will be directly in the AdS2 � R2 background of
Sec. II. We will impose a hard wall cutoff at r ¼ r0 in the
deep IR, along with suitable boundary conditions, to be
described below. We can think of r0 as a proxy for a
‘‘confinement scale’’ or a ‘‘temperature.’’ Tuning the mag-
netic field relative to the ‘‘temperature’’ will trigger the
scalar instability.

After including the c coupling to the gauge field, the
action becomes

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R� 2�� 1

4
F2 � jr�c j2

�m2jc j2 � �jc j4
�
: (3.1)

We have defined r� ¼ @� þ ieA�, where e is the electric

charge of the scalar field. From this point on we will set
e ¼ 1. This action has a stress-energy tensor of the form

T�� ¼ � g��

2
Lmat þ 1

2
F��F

�
� þ e2A�A�jc j2

þ 1

2
½@�c @�c

� þ iec ðA�@� þ A�@�Þc � þ H:c:�;
(3.2)

where

Lmat ¼ 1

4
F2 þ jr�c j2 þm2jc j2 þ �jc j4: (3.3)

We may expand the magnitude of jr�c j2 as
jr�c j2 ¼ j@�c j2 þ iA�ðc @�c � � c �@�c Þ þ A2jc j2:

(3.4)

At this point, we can calculate the Euler-Lagrange equation
for c by differentiating with respect to c �,

@�ð ffiffiffiffiffiffiffi�g
p r�c Þ ¼ � ffiffiffiffiffiffiffi�g

p ðiA�r�c �m2c � 2�jc j2c Þ;
(3.5)

and the equation of motion for the gauge field,

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
F��Þ ¼ iðc @�c � � c �@�c Þ þ 2A�jc j2:

(3.6)

In addition to these equations of motion, we will also
need to solve the Einstein equations,

R�� � ðR� 2�Þ
2

g�� ¼ T��; (3.7)

when we include backreaction of the c condensate on the
gauge field and the metric.
We will expand perturbatively in a small parameter �

around the solution c ¼ 0 with background gauge field of
the form

Ax ¼ Qcy; Ay ¼ 0: (3.8)

The scalar field in the competing vortex phase will itself
be of order �. For fixed r0 and boundary conditions (to be
discussed below), we will choose Qc to be just at the onset
for the transition to forming vortices. At this critical value
of the magnetic field, the c ¼ 0 solution will be degener-
ate with a vortex lattice solution. As we increase the
magnetic field to slightly above its critical value, c ¼ 0
will no longer be the preferred solution, and the vortex lattice
will be preferred. As is familiar, the onset of the transition is
signalled by the existence of a purely normalizable solution
for c that respects the IR boundary conditions.
We can parametrize the backreaction of the scalar on the

gauge sector through a perturbative expansion in the dis-
tance away from the critical field. The scalar will have the
form

c ðr; x; yÞ ¼ �c 1ðr; x; yÞ þ �3c 3ðr; x; yÞ þ � � � (3.9)

and the gauge field will have the form

Axðr; x; yÞ ¼ Qyþ �2ax2ðr; x; yÞ þ � � � ; (3.10)

Ayðr; x; yÞ ¼ �2ay2ðr; x; yÞ þ � � � ; (3.11)

with At ¼ Ar ¼ 0. When we consider lattice solutions
which are periodic in x and y, the backreaction of c on
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the gauge field will require both Ax and Ay to be nonzero at

Oð�2Þ, with both x and y dependence.
A similar statement holds for the metric at Oð�2Þ. Our

metric ansatz, to Oð�2Þ, will be

ds2¼L2

�
1

r2
ðð�1þ�2aðr;x;yÞÞdt2þð1þ�2aðr;x;yÞÞdr2Þ

þð1þ�2bðr;x;yÞÞðdx2þdy2Þ
�
: (3.12)

Because at zeroth order in epsilon the AdS2 � R2 metric is
exactly supported by the magnetic field (i.e. the gauge field
is not a probe), we find it necessary to include metric
backreaction once we backreact on the gauge field. This
distinguishes our situation from that considered in e.g. [11].

The radial magnetic field will be

Br ¼ Qþ �2ð@yax2ðr; x; yÞ � @xa
y
2ðr; x; yÞÞ: (3.13)

In general, when we backreact on the magnetic field, we
may expect there to be a nonnormalizable piece at order �2,
i.e. Axðr ! 0Þ ¼ ðQþ �Q�2Þy. This shifts the naive criti-
cal value of the field at the transition. However, because the
critical point is actually only dependent on the dimension-
less combinationQ=r20, we can (and will) impose that there

is no non-normalizable correction to the gauge field in
our backreacted solutions. That is, we will set �Q ¼ 0.
The value of the critical point will still have anOð�2Þ shift;
it will manifest itself as anOð�2Þ shift in the location of the
hard wall, r0 ! r0 þ �r0�

2. These two scenarios are
equivalent; in both cases we should think of the backreac-
tion of c on the metric and gauge field as inducing a shift
in the dimensionless parameter which controls the critical
point at Oð�2Þ.

A. Basic droplet

We now examine the solutions of the field equation for
c , in the limit where we can neglect the backreaction of c
on the gauge field and on the metric. (This will be at order
�.) Very similar equations have been examined in the
literature on vortices in holographic superconductors
[3,25,26]. The basic building block for the solutions we
will study is the ‘‘droplet’’ solution of [25].

We will begin by setting � ¼ 0 in the potential for the
scalar and proceed with the metric and the mass of the
(dualized) monopole field unspecified. Both of these will
affect the radial solution for the scalar, but we will see that
the spatial part of c 1 decouples from the radial equation
for all metrics we might consider, and so we can find the
basic form of the droplet solution while leaving the metric
general.

For metrics with components that only depend on r and
for which gxx ¼ gyy, we can solve this equation by sepa-
ration of variables, assuming that

c 1 ¼ �0�ðrÞgðyÞeikx; (3.14)

where �0 is an overall constant. Inserting our choice of
gauge (3.8) yields, after some algebraic manipulation,

1

�nðrÞ
�
grr

gxx
�00
nðrÞ þ 1ffiffiffiffiffiffiffi�g

p
gxx

@

@r
ð ffiffiffiffiffiffiffi�g
p

grrÞ�0
nðrÞ

�
� m2

gxx

¼ � 1

gnðyÞ ðg
00
nðyÞ � ðQyþ kÞ2gnðyÞÞ ¼ ��n; (3.15)

where �n is the eigenvalue from the separation of variables.
First we will consider the equation for gðyÞ, which will
yield the basic droplet solution. This solution will only
exist in the parameter ranges that admit a normalizable
solution to the radial equation; we will discuss this in the
next section. The equation for g becomes

g00n � ðQyþ kÞ2gn ¼ �ngn: (3.16)

Now, redefining Y ¼ ffiffiffiffi
Q

p ðyþ k
QÞ, the gn equation

becomes

g00nðYÞ �
�
Y2 þ �n

Q

�
gnðYÞ ¼ 0: (3.17)

Solving, we get that

gnðYÞ ¼ cþD�þð
ffiffiffi
2

p
YÞ þ c�D��ði

ffiffiffi
2

p
YÞ; (3.18)

where c� are constants, �� ¼ 1
2 ð�1� �n

Q Þ, andD�ðxÞ is the
parabolic cylinder function.
The reader may recognize the differential equation for

gn, (3.16), as the same eigenvalue problem that arises in the
study of the quantum mechanics of the simple harmonic
oscillator. More properly, this is the case for appropriate
choices of the separation constant. In these cases, we can
write the (normalizable) solution for gn in terms of the
familiar Hermite polynomials,

gn ¼ e�Y2=2HnðYÞ; (3.19)

with eigenvalues �n ¼ 2Qðnþ 1=2Þ. The nth eigenvalue
here characterizes the nth Landau level of the c particles.
The ‘‘droplet’’ solutions with this shape were first dis-
cussed in the series of papers in [25], in a related but
distinct context. The single droplet solution is when
n ¼ 0, which is just a Gaussian centered at y ¼ �k=Q,

gðyÞ ¼ e�Y2=2. Note that gn ¼ constant is not a solution to
the equations of motion.

B. Vortex lattice

Of more interest to us is a solution which preserves some
discrete subgroup of the translation invariance of the origi-
nal system. The basic droplet of Sec. III A breaks trans-
lations entirely. However, more symmetric solutions can
be obtained by taking linear combinations of droplets,
which still solve the (linearized) equations of motion
neglecting back reaction.
A vortex lattice can be constructed as follows [3], using

the zeroth Landau level solutions for the c field. The basic
solution is
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c 0ðy; kÞ ¼ e�Y2

2 ¼ e�
Q
2ðyþk

QÞ2 : (3.20)

An appropriate superposition to give a lattice in the x� y
plane is

�latðx; yÞ ¼ 1

L

X1
l¼�1

cle
iklxc 0ðy; klÞ; (3.21)

where

cl � e
�i�

v2

v2
1

l2

; kl � 2�l

v1

ffiffiffiffi
Q

p
(3.22)

for arbitrary v1 and v2.
One can write this in terms of the elliptic theta

function �3,

�3ðv;	Þ�
X1

l¼�1
ql

2
z2l; q� ei�	; z� ei�v; (3.23)

as

c 1ðx; y; rÞ ¼ �0�ðrÞ�latðx; yÞ;
�latðx; yÞ � e

�Qy2

2 �3ðv; 	Þ (3.24)

with

v �
ffiffiffiffi
Q

p ðxþ iyÞ
v1

; 	 � 2�i� v2

v2
1

: (3.25)

That the solution (3.21) represents a lattice is now
evident from the basic properties of the elliptic theta
function. For instance

�3ðvþ 1; 	Þ ¼ �3ðv; 	Þ (3.26)

and

�3ðvþ 	; 	Þ ¼ e�2�iðvþ	=2Þ�3ðv; 	Þ; (3.27)

implying that �lattice returns to its value (up to a phase)
upon translation by the lattice generators

a ¼ 1ffiffiffiffi
Q

p v1@x; b ¼ 1ffiffiffiffi
Q

p
�
2�

v1

@y þ v2

v1

@x

�
: (3.28)

These have been fixed such that the area of a unit cell is
2�=Q, containing exactly one flux quantum. It is this
quantization condition which translates, in the electromag-
netic dual, to the commensurability condition between the
area of the unit cell and the density of doped charges
[16,19].

That �lat should be called a vortex lattice, despite the
fact that it is composed of an array of the droplet solutions
of [25], is evident from the fact that �3 vanishes on the
lattice spanned by half-integral multiples of the lattice
generators (giving rise to vortex cores) and has a phase
rotation of 2� around each such zero.

Some common lattice shapes are obtained by choosing
particular values of the parameters v1, v2. A rectangular

lattice can be obtained by setting v2 ¼ 0. In this case all
coefficients in equation (3.21) are equal, cl ¼ c ¼ 1. The
ratio of length to width of the rectangle is parametrized by

v1. For the special choice v1 ¼
ffiffiffiffiffiffiffi
2�

p
, the lattice is square.

Another special choice is v2 ¼ 1
2v

2
1; this yields a rhombic

lattice. In this case cl ¼ 1 for l � 0mod 2 and cl ¼ �i for
l � 1mod 2. For the special case v1 ¼ 2

ffiffiffiffi
�

p
, the rhombus

is square (but now rotated 45� with respect to the x axis),

and for v1 ¼ 2
ffiffiffi
�

p

3
1
4

the lattice is composed of equilateral

triangles (though the unit cell is still a rhombus).
At this point, nothing has fixed the ‘‘moduli’’ v1, v2 of

the vortex lattice, nor the overall magnitude �0 of c 1. In
standard Landau-Ginzburg theories, apparently the trian-
gular lattice is preferred. One could find preferred shapes
in the approach here by including leading non-linearities in
jc j in the free energy, and minimizing the free energy
density. It might be interesting to do this, while introducing
parameters to vary that could lead to phase transitions in
the preferred lattice shape.

C. The radial equation and boundary conditions

Now we consider the differential equation for �ðrÞ. At
order � we are still in an AdS2 � R2 background, which
means that c should scale as a power law in r. Choosing
the solution that vanishes at the boundary, we get

�ðrÞ ¼ r
; (3.29)

where 
 ¼ 1
2 ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðQþm2L2Þp Þ.

At the hard wall cutoff, r ¼ r0, we will need to impose a
consistent set of boundary conditions. One way to do this
is to consider a method very similar to the prescription of
[27]. We will add a mirror image of the spacetime to the
other side of the wall and glue them together at the IR
boundary, r ¼ r0. Thus, we have two asymptotic UV
boundaries (in our coordinates at r ¼ 0 and r ¼ 2r0) and
mirror solutions for the metric and the fields on either side
of the wall. We will require the metric and fields to be
continuous at the wall, but their derivatives will have a
discontinuity. That is, we impose Israel junction conditions
at the wall, including any localized energy-momentum
sources present there. At the end of the day, we can
quotient by the Z2 symmetry to leave just one copy of
the desired spacetime.
In order to support the discontinuity at the IR wall and

thus solve the equations of motion at the wall, there must
be a source of stress-energy at r ¼ r0. Therefore we will
add an action, Swall, localized to the wall and solve the
equations of motion. One way that this is different from the
situation discussed in [27] is that while those authors
needed only to add a localized cosmological constant to
the wall (as everything was only a function of the radial
variable), we now have spatial ðx; yÞ dependence, so our
boundary action must also have spatial dependence,
Swall ¼ Swallðx; yÞ.
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Which terms in the equations of motion will contribute
to the boundary stress-energy? When integrating the equa-
tions of motion across the wall, the first derivative of any
function of r will not contribute, whereas the second
derivative willZ r0þ�

r0��
drf0ðrÞ ¼ fðr0 þ �Þ � fðr0 � �Þ ¼ 0; (3.30)

Z r0þ�

r0��
drf00ðrÞ ¼ f0ðr0 þ �Þ � f0ðr0 � �Þ

¼ �2f0ðr0 � �Þ: (3.31)

Therefore, in order to solve for the action at the wall, we
only need to consider the terms in the equations of motion
which have second derivatives of functions of r. At zeroth
order in � the gauge field is independent of r, and the
Einstein equations only depend on up to first derivatives of
the metric functions. In this case, integrating the equations
across the wall we find no contributions, and we find that
we do not need an Swall at zeroth order in �.

At first order in �, we need to consider integrating the c
equation of motion across the wall. We will add the term

Sc
wall ¼

Z
r¼r0

d3x
ffiffiffiffiffiffiffi�h

p
�m2

wjc j2 (3.32)

to the action, where h�� is the induced metric at r ¼ r0,

and �mw is a localized shift in the mass of c . The nonzero
contributions to the equation of motion when integrated
over the wall are

�
Z r0þ�

r0��
dr

ffiffiffiffiffiffiffi�g
p

grrc 00 ¼
Z r0þ�

r0��
dr

ffiffiffiffiffiffiffi�h
p

�m2
wc�ðr� r0Þ;

(3.33)

which gives the result �m2
w ¼ 2
=L.

Note that after adding the wall-localized mass term
(3.32), the strategy for finding the critical field at which a
phase transition occurs is the following. For a fixed choice
of the wall localized mass and the location of the wall r0,
there is a critical value of the B-field at which the purely
normalizable solution for c obeys the boundary condi-
tions. In this paper, we are always expanding about this
critical field, with � parametrizing the distance from
criticality.

We note also that we will need to add additional terms to
Swall when we consider the equations of motion at Oð�2Þ in
the next section.

D. Higher order corrections to the gauge
field and metric

The relevant equations of motion are the Einstein
equations and the Euler-Lagrange equations for c , A�,

Eqs. (3.5) and (3.6).
In an AdS2 � R2 background, all the unknown functions

scale as power laws in r. At Oð�Þ there is only the c
equation of motion. From Sec. III we know there exists a
lattice solution of the form

c 1ðr; x; yÞ ¼ �0r


X1

l¼�1
e
2�il

ffiffi
Q

p
x

v1 e
�Q

2ðyþ 2�il

v1

ffiffi
Q

p Þ2
; (3.34)

where �0 is the magnitude of c 1 and the scaling
exponent is


 ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðQþm2L2Þ

q �
: (3.35)

c 1 acts as a source in the gauge field equation of motion
and Einstein equations at Oð�2Þ. Therefore we can extract
the r scaling in the Oð�2Þ corrections and solve the equa-
tions of motion for the spatial dependence. We write

fiðr; x; yÞ ¼ �2
0r

2
fiðx; yÞ; (3.36)

where fi ¼ a, b, ax2, a
y
2. By assuming a normalizable radial

dependence of this form for each field, we are implicitly
setting one integration constant to zero per function. Our
choice of solution for each of these fields will also fix the
form of the localized stress energy we will need to add at
the wall in order to have a consistent solution.
Now we examine the differential equations at Oð�2Þ.

The equation of motion for Ar gives us the constraint

@xa
x
2 þ @ya

y
2 ¼ 0: (3.37)

Besides this, we have two additional gauge field equations
of motion (one each for x, y) and 5 nontrivial Einstein
equations (for Gtt, Grr, Gxx ¼ Gyy, Grx, Gry) at Oð�2Þ.
These are seven equations and four unknown functions.
Luckily, three of them are redundant, and we can find a
consistent solution once we have chosen the form of the
source, c 1. The Einstein equations are

2ð@yax2 � @xa
y
2Þ þQð@2x þ @2yÞðaþ bÞ þ 2Qð4
2 � 1Þb ¼ S1ðc 1Þ

2ð@xay2 � @ya
x
2Þ þQð@2x þ @2yÞða� bÞ þ 2Qð2
þ 1Þb ¼ S2ðc 1Þ

2
ay2 þQð
� 1Þ@xa�Q
@xb ¼ S3ðc 1Þ
2
ax2 �Qð
� 1Þ@yaþQ
@yb ¼ S4ðc 1Þ

2ð@xay2 � @ya
x
2Þ � 2Qð
� 1Þð2
� 1Þaþ 2Qð2
2 � 
þ 1Þb ¼ S5ðc 1Þ

(3.38)

and the gauge field equations are
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ð@2x þ @2y þ 2
ð2
� 1ÞÞax2 �Q@yb ¼ S6ðc 1Þ ð@2x þ @2y þ 2
ð2
� 1ÞÞay2 þQ@xb ¼ S7ðc 1Þ; (3.39)

where the c -dependent source terms are given by

S1ðc 1Þ ¼ �Q

2
ð2
2 þQ2m2 þ 2Q2y2Þjc 1j2 þ iQ2yðc �

1@xc 1 � c 1@xc
�
1Þ �Qðj@xc 1j2 þ j@yc 1j2Þ

S2ðc 1Þ ¼ Q

2
ð�2
2 þQ2m2 þ 2Q2y2Þjc 1j2 � iQ2yðc �

1@xc 1 � c 1@xc
�
1Þ þQðj@xc 1j2 þ j@yc 1j2Þ

S3ðc 1Þ ¼ Q


2
@xjc 1j2 S4ðc 1Þ ¼ �Q


2
@yjc 1j2

S5ðc 1Þ ¼ �Q

2
ð2
2 þQ2m2 þ 2Q2y2Þjc 1j2 þ iQ2yðc �

1@xc 1 � c 1@xc
�
1Þ �Qðj@xc 1j2 � j@yc 1j2Þ

S6ðc 1Þ ¼ � i

2
Q2ðc �

1@xc 1 � c 1@xc
�
1 þ 2iyQjc 1j2Þ S7ðc 1Þ ¼ i

2
Q2ðc 1@yc

�
1 � c �

1@yc 1Þ

(3.40)

and a, b, ax2, a
y
2, c 1 are now only functions of x, y as we have omitted the power law r dependence.

We know that the vortex lattice solution is periodic in x, y with periodicity v1ffiffiffi
Q

p in the x direction and 2�
v1

ffiffiffi
Q

p in the

y direction (this is only for the rectangular lattice); therefore, we can expand each of these functions as a double Fourier
series in x, y as

fiðx; yÞ ¼
X
k;l

v1e
2�ik

ffiffi
Q

p
x

v1 eilv1

ffiffiffi
Q

p
ye

�k2�2

v2
1

�i�kl�l2v2
1

4 ~fiðk; lÞ; (3.41)

where fi ¼ a, b, ax2, a
y
2, and we have pulled out the exponential function of m, n which will be present in all of the source

terms. Notice that the periodicity implies that each unit cell has a net flux density of 2�Q . It remains to Fourier transform the

source terms in the equations of motion in order to bring them into the form of Eq. (3.41) and then solve algebraic equations

for the polynomial coefficients ~fiðk; lÞ. In order to do this, we will use properties of exponentials and the Fourier transform
to write an infinite sum of Gaussians as an infinite sum of exponentials,

X
k

e
�1

2ðyþ2�k
v1

Þ2
e
�1

2ðyþ2�ðkþlÞ
v1

Þ2 ¼ X
k

eiv1ky
v1

2
ffiffiffiffi
�

p e
�v2

1
k2

4 �i�kl�l2�2

v2
1 : (3.42)

First we will do this for Q ¼ 1. In this case we also have L ¼ 1=
ffiffiffi
2

p
, � ¼ �1, and m2 ¼ 2ð
2 � 
� 1Þ. Plugging in

our ansatz of Eq. (3.41), we get the following algebraic equations for the ~fiðk; lÞ:

2i

�
lv1~a

x
2 �

2�k

v1

~ay2

�
þ 2ð4
2 � 1Þ~b�

��
2�k

v1

�
2 þ ðlv1Þ2

�
ð~aþ ~bÞ ¼ 
ð1� 2
Þ

2
ffiffiffiffi
�

p þ �3=2k2

v2
1

þ l2v2
1

4
ffiffiffiffi
�

p

2i

�
2�k

v1

~ay2 � lv1~a
x
2

�
þ 2ð2
þ 1Þ~b�

��
2�k

v1

�
2 þ ðlv1Þ2

�
ð~a� ~bÞ ¼ � 


2
ffiffiffiffi
�

p � �3=2k2

v2
1

� l2v2
1

4
ffiffiffiffi
�

p

2
~ay2 þ
2�ik

v1

ð
ð~a� ~bÞ � ~aÞ ¼ i

ffiffiffiffi
�

p
k

2v1

2
~ax2 þ ilv1ð~a� 
ð~a� ~bÞÞ ¼ � il
v1

4
ffiffiffiffi
�

p

2i

�
2�k

v1

~ay2 � lv1~a
x
2

�
� 2ð
� 1Þð2
� 1Þ~aþ 2ð2
2 � 
þ 1Þ~b ¼ 1þ 
� 2
2

2
ffiffiffiffi
�

p
�
2
ð2
� 1Þ �

�
2�k

v1

�
2 � ðlv1Þ2

�
~ax2 � ilv1

~b ¼ � ilv1

4
ffiffiffiffi
�

p
�
2
ð2
� 1Þ �

�
2�k

v1

�
2 � ðlv1Þ2

�
~ay2 þ

2�ik

v1

~b ¼ ik
ffiffiffiffi
�

p
2v1

:

(3.43)

From this we can see that we expect ~a and ~b to be real and ~ax2 and ~ay2 to be purely imaginary. For k ¼ l ¼ 0 we get the
solution
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~a ¼ 
ð2
2 þ 
� 4Þ � 1

4ð
� 1Þð4
2 � 1Þ ffiffiffiffi
�

p ; ~b ¼ � 


4ð2
þ 1Þ ffiffiffiffi
�

p ; ~ax2 ¼ ~ay2 ¼ 0; (3.44)

and in all other cases the solutions are

~aðk; lÞ ¼ �
v2
1ðð
þ 1Þ4k2�2 þ v2

1ð2þ ð
þ 1Þl2v2
1 � 2
ð2
2 þ 
� 4ÞÞÞ

D

~bðk; lÞ ¼ � 16k4�4 þ ð8k2�2v2
1 þ 2l2v6

1Þð1þ l2v2
1 þ 
ð2� 3
ÞÞ þ v4

1ð�l4v4
1 þ 4
2ð2
2 � 3
þ 1ÞÞ

2D

~ax2ðk; lÞ ¼
ilv3

1ð4k2�2 þ v2
1ð1þ l2v2

1 þ ð2� 3
Þ
ÞÞ
D

~ay2ðk; lÞ ¼ � 2�ikv1ð4k2�2 þ v2
1ð1þ l2v2

1 þ ð2� 3
Þ
ÞÞ
D

;

(3.45)

where

D ¼ 2
ffiffiffiffi
�

p ð16k4�4 þ 8k2�2v2
1ðl2v2

1 þ 2
ð1� 2
ÞÞ þ v4
1ðl4v4

1 þ 4l2v2
1
ð1� 2
Þ þ 4
ð
� 1Þð4
2 � 1ÞÞÞ: (3.46)

Note that the Eqs. (3.43) are not solvable for 
 ¼ � 1
2 , 1. In the case we have chosen, where Q ¼ 1, 
 ¼

1
2 ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2m2

p Þ. Thus, we can only solve these equations for some values of m.

E. Oð�2Þ stress energy at the wall

At Oð�2Þ we need to consider the gauge field equations of motion and the Einstein equations integrated across the wall.
We will now consider the following action at the wall:

Swall ¼
Z
r¼r0

d3x
ffiffiffiffiffiffiffi�h

p f�m2
wjc j2 þ �2A�J

�
w þ �2ðTwÞ��g; (3.47)

where we have added a current J�w that couples to the gauge field, as well as a source of stress-energy ðTwÞ�� localized at
the wall. This is the most general form of action we can add to the wall and should easily lead to a solution. Because we
don’t want the boundary current or stress tensor to enter into the equations of motion at zeroth order, we have assumed that
each term enters the action at Oð�2Þ.

First we will consider integrating the gauge field equations of motion across the wall. The relevant equations are those
for Ax, Ay. The equations we must solve are

Z r0þ�

r0��
dr

ffiffiffiffiffiffiffi�g
p

grrgxxðar;x;y2 Þ00 ¼
Z r0þ�

r0��
dr

ffiffiffiffiffiffiffi�h
p

hxxðJwÞx;y�ðr� r0Þ; (3.48)

which have the solutions

ðJwÞx;y ¼ � 4


L
ax;y2 ðr0; x; yÞ: (3.49)

Finally, we must consider the Einstein equations. There are three equations that include second derivatives of the fields,
Gtt, Gxx, and Gyy. The total stress-energy from the action at the wall takes the form

�
ffiffiffiffiffiffiffi�h

p
h��

2
Lwall þ �2

ffiffiffiffiffiffiffi�h
p ðA�ðJwÞ� þ ðTwÞ��Þ; (3.50)

where Lw is the integrand of Swall. After integrating the Einstein equations, we get the following set of equations for Tw:




r30
bðr0; x; yÞ ¼ L5

2r30

�
�m2

wjc 1ðr0; x; yÞj2 þQy

L2
ðJwÞx þ r20

L2
ðTwÞtt þ 1

L2
ðTwÞxx þ 1

L2
ðTwÞyy

�



2r0
ðaðr0; x; yÞ � bðr0; x; yÞÞ ¼ � L5

2r0

�
�m2

wjc 1j2 �Qy

L2
ðJwÞx � r20

L2
ðTwÞtt � 1

L2
ðTwÞxx þ 1

L2
ðTwÞyy

�



2r0
ðaðr0; x; yÞ � bðr0; x; yÞÞ ¼ � L5

2r0

�
�m2

wjc 1j2 þQy

L2
ðJwÞx � r20

L2
ðTwÞtt þ 1

L2
ðTwÞxx � 1

L2
ðTwÞyy

�
;
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which have the solution

ðTwÞtt¼ 


r20L
3
ðaðr0;x;yÞ�bðr0;x;yÞÞþ2
L

r20
jc 1ðr0;x;yÞj:2

ðTwÞxx¼ðTwÞyyþ4
Qy

L
ax2ðr0;x;yÞ

ðTwÞyy¼�2
Ljc 1ðr0;x;yÞj2

þ 


2L3
ð3bðr0;x;yÞ�aðr0;x;yÞÞ: (3.51)

We note that, as with the original Randall-Sundrum
matching [27], the wall-localized stress energy violates
the null energy condition. This is not a significant con-
cern here (as it was not there); warped solutions micro-
scopically realizing Randall-Sundrum-like warping have
been found in the full string theory, and we expect
similar solutions could be found in this more involved
case. It does mean that the wall should not be considered
as a ‘‘brane,’’ which has Goldstone modes that allow it
to fluctuate in the transverse dimensions.

F. Pictures of the modulated phase

We conclude this section with representative plots of
the scalar supporting the vortex lattice c 1ðx; yÞ (Fig. 1),
the modulation of flux density in the crystal (Fig. 2), and a
representative crystalline metric function (plotted as a
function of (x, y) in Fig. 3 and (r, y) in Fig. 4). All plots
are for values of the parameters given by Q ¼ 1,


 ¼ 1
2 þ

ffiffi
3

p
2 , v1 ¼

ffiffiffiffiffiffiffi
2�

p
(a square lattice). The functions

have been approximated keeping 121 terms in the Fourier
series (i.e., with k, l running from�5 to 5 in the formulas
above).

FIG. 1 (color online). The scalar vortex lattice configuration
c 1ðx; yÞ.

FIG. 2 (color online). TheOð�2Þ correction to theAx gaugefield,
which controls the modulation of the flux density in the lattice.

FIG. 3 (color online). The metric function bðx; yÞ generated by
the backreaction of a square vortex lattice.

FIG. 4 (color online). The metric function in front of
dx2 þ dy2, now plotted as a function of y and r. We have chosen
x ¼ 2 for this plot.
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IV. COMMENTS ON PHYSICS OF THE
LATTICE MODEL

From the form of the deformed metric in Sec. III, we can
infer some basic facts about the physics of the lattice
solution. The IR wall geometry we have implemented is
a bottom-up implementation of IR confinement [28]. In
physical observables, powers of the IR radial cutoff r0 can
be replaced by powers of 1=�, with � the scale of con-
finement. However, it is common in such solutions that also
at finite temperature, one could (after the transition from
confinement to deconfinement represented by a horizon at
some r < r0) replace powers of r0 by 1=T. Using this
correspondence, we can infer the leading corrections to
thermodynamic functions.

The free energy density F will receive a correction at
Oð�2Þ. It will have the general form

F 	 Tð1þ �2T�2
 þ � � �Þ; (4.1)

where the leading term comes from the AdS2 geometry
(and gives rise to the notorious extensive ground-state
entropy), and the subleading term is due to the physics of
the vortex lattice. One can see that the Oð�2Þ corrections
will scale like ��2
 in the confining geometry quite
explicitly, both from the form of the wall action (3.47)
and from the � expansion of the contributions to the bulk
action.

The schematic formula (4.1) makes it clear that for a
given value of � and 
, there is an IR scale beneath which
one should not trust perturbation theory. To avoid this
region, one must keep

T > �
1

: (4.2)

As 
 increases, the regime of trustworthiness of the line-
arized solution shrinks; this is in keeping with the simple
intuition that the perturbation expansion in powers of �r


will break down at smaller values of r for larger 
.
Free classical defects would contribute a correction to

the free energy density proportional to T (and, of course,
inversely proportional to the lattice spacing). The exponent

 therefore parametrizes an anomalous scaling of the free
energy per vortex, characteristic of the strongly coupled
field theory.

What happens beyond the regime where perturbation
theory around the transition is valid? One natural specula-
tion is that as one proceeds to the deep IR, the different
lattice sites ‘‘decouple’’ in a manner similar to that seen in
AdS2 fragmentation [29]. It is possible that this would
proceed via another phase transition (at a temperature/
energy scale lower than the transition to the vortex lattice
state) to a ‘‘fragmented’’ state. Such a fate was proposed in
[24] for the D-brane lattice models of [2], where it was
speculated that this might also characterize the physics of
generic AdS2 horizons. The growing localization of the
dominant contribution to the low-temperature entropy on

distinct lattice sites in the gravity solution provides support
for this idea, in perturbation theory.
Finally, it is worth emphasizing that the lattices dis-

cussed here are quite distinct from those obtained in related
literature by considering a periodic spatial variation in the
chemical potential�ðxÞ [10]. The key difference lies in the
nature of the IR behavior. In systems with a finite charge
density, spatial modulations of� can and will be cancelled
by the background charge carriers—they will be screened.
The hard lattices of the sort discussed here, in contrast,
cannot be screened (physically, one cannot screen a mag-
netic field), and their effects should be expected to persist
to the deep IR. In the S-dual perspective, such a feature is
natural for the analog of ‘‘Wigner crystallization’’ of
charged carries that are added to a conformal field theory.

V. CONNECTING WITH MORE GENERAL
GRAVITY SOLUTIONS

Here, we describe how the lattice solutions we found in
Sec. III should also arise in ‘‘IR completions’’ of metrics
with rather general dynamical critical exponent z and
hyperscaling violation parameter � [30–33]. The basic
point will be that, as in [34,35], the AdS2 can arise in the
deep IR, where corrections to the action supporting such
solutions can become important.
The bigger physics picture follows. As discussed in [16],

one can expect expectation values of monopole operators
to serve as order parameters for translation-breaking
phases in doped critical field theories. By S-duality in the
four-dimensional bulk, one can map the magnetically
charged field, dual to the monopole operator, to an electri-
cally charged field. The doping maps to a background
magnetic field. Then, the lattices found in Sec. III give
concrete examples of the solids described in [16], in
strongly coupled quantum field theory. The considerations
of this section show that this can happen in models with
rather general z and �.

A. Basic EMD theory and magnetic solutions

We start with the bulk gravity theory represented by an
Einstein-Maxwell-Dilaton action,

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ðR� 2ð@�Þ2 � fð�ÞF��F
�� � Vð�ÞÞ;

(5.1)

where the gauge-coupling function is of the form

fð�Þ ¼ e2
� (5.2)

and the scalar potential takes the form

Vð�Þ ¼ 1

L2
e���: (5.3)

This theory supports solutions of the form
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ds2 ¼ L2

 
� �aðrÞ2dt2 þ dr2

�aðrÞ2 þ
�bðrÞ2ðdx2 þ dy2Þ

!
(5.4)

with scalar profile

�ðrÞ ¼ K log ðrÞ: (5.5)

In the simplest solutions, �a and �b take power-law scaling
forms, and one finds

�aðrÞ ¼ Car
1�
; �bðrÞ ¼ Cbr

� (5.6)

in the vicinity of the horizon (with differences arising as
one goes towards the UV, if one wishes to find asymptoti-
cally AdS solutions, as in e.g. [30]; note that we use the
convention that r ! 1 is the UVand r ! 0 is the IR in this
section, in contrast with earlier sections). The two expo-
nents 
 and �, fixed by the parameters 
 and � in the
action, capture the scaling properties of the IR fixed point
induced by doping the CFT. The physically relevant dy-
namical critical exponent z and the hyperscaling violation
exponent � are determined in terms of 
 and � by the
equations

� ¼ �� 2

2ð�� zÞ ; 
 ¼ �

2ð�� zÞ : (5.7)

General values of these exponents were first obtained in
dilatonic systems in [31].

In many cases that have been studied, these solutions can
in fact be supported in two different ways. If one studies an
electrically charged black brane, Gauss’s law yields the
solution

F ¼ Qe

fð�Þ �bðrÞ2 dt ^ dr: (5.8)

One then finds extremal solutions where K < 0 and�!1
near the horizon r	 0. This means that the coupling is
vanishing. As discussed in [30], in the very near-horizon
regime, the solution is then unreliable; in a full UV com-
plete theory like string theory, higher derivative corrections
will usually become important, because new light states
appear as g ¼ e
� ! 0. This difficulty can be avoided by
turning on a small temperature, since this cuts off the
running of the dilaton; and the near-horizon solutions for
finite T are simple to write down as well.

However, in a four-dimensional bulk, one can also use
bulk electric-magnetic duality to find a representation of
the solution in terms of a magnetically charged black
brane, i.e. a field theory immersed in a background
magnetic field. This allows us to make contact with our
discussion in Secs. II and III and with the picture of [16] as
follows:

(i) Suppose one is interested in studying the physics of
monopole operators to diagnose the phase structure
of the ‘‘electric’’ model. One could introduce
monopoles into the theory (5.1) and compute their
correlators using semi-classical techniques in a

multisoliton background. However, it is easier to
realize that by electric/magnetic duality, one can
represent the monopoles as quanta of fundamental
electrically charged fields in a dual theory, where the
electric background (5.8) is dualized to a background
magnetic field.

(ii) As mentioned above, the running dilaton indicates
an ‘‘IR incompleteness’’ of the solution—as the
dilaton runs to extreme values, new corrections
typically become important and deform the solu-
tion. For magnetically charged black branes in these
dilatonic system, one possible result of the correc-
tions is the emergence, in the deep IR, of an AdS2
geometry. This was discussed for Lifshitz scaling
metrics in [34] and for general � and z in [35].

The end result is that in critical theories dual to dila-
tonic systems with fairly generic z and �, if we are
concerned mostly with the physics at very low energies,
we can study monopole operators by considering the
dynamics of electrically charged scalars in an AdS2
throat supported by magnetic flux. This provides a rather
general setting where our analysis in Sec. III could be
relevant.

VI. DISCUSSION

There are many interesting directions for future explo-
ration of the analytical vortex lattice solutions described
here. We briefly mention some of these now.

(i) It should be possible to find analogous perturbative
crystalline geometries emerging directly out of so-
lutions with various values of z and �, without
invoking the transition to an AdS2 spacetime [36].

(ii) It would be natural to explore replacing the IR Israel
thin wall considered here, with a black brane
horizon.

(iii) Onewould like to compute simple correlation func-
tions in these backgrounds. For instance, quasiuni-
versal features have been seen in the transport
properties of simple holographic lattice models in
[10]. Their analogues in this system are worth
exploring [36].

(iv) Most ambitiously, it would be nice to find the full
nonlinear solution to the coupled set of partial
differential equations that characterize the system.
This would most likely rely on powerful numerical
techniques. This program should yield new insights
on the ‘‘fragmentation’’ phenomenon, and the
eventual emergence of a solid in a ‘‘confined’’
phase of the boundary gauge theory.
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