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Recent experimental results from RHIC and LHC on hard photon emission rates in heavy-ion collisions

indicate a large azimuthal asymmetry of photon emission rate parametrized by the elliptic flow v2.

Motivated by a recent proposal that the early magnetic field created by two colliding heavy ions may be

responsible for this large azimuthal asymmetry of photon emission rate, we compute the azimuthal

dependence of the photon emission rate from a strongly coupled finite temperature plasma with magnetic

field in the framework of gauge/gravity correspondence. We also propose and compute a new observable,

‘‘in/out-plane polarization asymmetry,’’ constructed from the polarization dependence of the photon

emission rates. We observe that both the azimuthal and polarization asymmetry of photon emissions are

strongly affected by the triangle anomaly (chiral anomaly) for the low frequency regime below 1 GeV.
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I. INTRODUCTION

The quark-gluon plasma created in relativistic heavy-ion
collisions is an interesting new state of matter where one
can test various theoretical ideas of QCD. The challenge is
that this plasma lives for a very short period of 10 fm, and
there are many indications that it is strongly coupled,
making perturbative computations very difficult.

Their rapid evolution in time after about 1 fm is believed
to be described fairly well by viscous hydrodynamics, but
the earlier dynamics still remains as an important open
problem. Once hydrodynamics sets in, the data needed to
describe the system reduce dramatically to a few transport
coefficients, and this is both a power and a limitation of
hydrodynamics. As the system is very likely strongly
coupled, there has been much research on using gauge/
gravity duality or AdS/CFT correspondence to describe the
hydrodynamic regime of strongly coupled plasma, essen-
tially computing the transport coefficients nonperturba-
tively [1]. Using gauge/gravity duality for early-time
dynamics has also been pursued while it requires some
amount of numerical analysis to solve relevant nonlinear
Einstein equations [2–6].

Some experimental probes see the created quark-gluon
plasma in a more refined way than the hydrodynamics
description. A good example is the photon emission spec-
tra from the plasma, especially at high frequency (and
momentum) whose scale is above the temperature scale
of the plasma. In a linear response framework that is
suitable for electromagnetic probes such as photon emis-
sion, the emission spectra mirror Green’s functions of the
vector current that the electromagnetism couples to. These
Green’s functions at high frequency momentum are prop-
erties of the plasma beyond hydrodynamics, and they do
depend on the microscopic details of the theory.

This breakdown of universality that has been acclaimed
for hydrodynamics is an important aspect one has to bear in
mind in applying AdS/CFT correspondence to photon
emissions, because, for example, N ¼ 4 super Yang-
Mills theory is very different from QCD microscopically.
There is, however, another sense of universality that may
originate just from the strongly coupled nature, and this
still remains as a useful argument for applying AdS/CFT
correspondence even for probes beyond hydrodynamics
such as photon emission.
Once photons are emitted from the plasma, they rarely

interact with the plasma again because of the weakness of
electromagnetic coupling. This aspect makes the photons
ideal probes to the early dynamics of heavy-ion collisions,
and there have been important experimental results from
PHENIX [7] and ALICE [8] on photon emissions. At
present, the number of photons observed experimentally
tends to exceed the theoretical predictions, but theoretical
computations are being refined to be closer to the experi-
ments [9,10]. What is challenging is that the observed
photons (both direct and indirect) are from the entire
history of the heavy-ion collisions, although different re-
gions of frequency should be sensitive to different parts of
the history. The low frequency regime will naturally be
sensitive to a somewhat later stage of plasma evolution
with lower temperatures as well as a hadronic regime
afterburner phase. The higher frequency spectrum is ex-
pected to get dominant contributions from early stages, but
the dynamics before 1 fm is still not very well understood.
One striking recent result from PHENIX [7] and ALICE

[8] is the large elliptic flow of direct photons at relatively
large transverse momentum pT > 1 GeV. At pT ¼ 2 GeV,
it is as large as v2 ¼ 0:25. Contrary to hadronic elliptic
flow, which builds up its magnitude through collective
hydrodynamic evolution, high frequency photons coming
from an early stage are not expected to be sensitive to this
late time collective evolution. (The low frequency spectra*hyee@uic.edu
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do get some effects from the Doppler shifts.) Given this, it
is natural to seek a more direct source of azimuthal asym-
metry relevant for the photon emission at the early stage of
the heavy-ion collision.

An interesting candidate is the magnetic field created by
two fast moving colliding heavy-charged nuclei [11]. Its
magnitude was estimated to be as large as eB ¼ 1017 G
�m2

�. Possible experimental signatures of the effects of
this magnetic field have been suggested previously in con-
junction with triangle anomaly, chiral magnetic/separation
effects [11–13] and chiral magnetic waves [14,15], leading
to charge-dependent two-particle correlations [16] and
charge-dependent elliptic flows of pions [17,18]. See also
Ref. [19]. These predictions are indeed observed experi-
mentally at STAR/PHENIX [20–23] and LHC [24], and
more experimental results are on the way.

The idea that the early magnetic field may affect photon
emissions leading to azimuthal asymmetry has been previ-
ously discussed in Refs. [25–29], mainly in the weak cou-
pling regime [25,26] or with conformal anomaly [27]. In
our present study, we look at the effect of magnetic field on
the photon creation, especially its azimuthal asymmetry that
leads to observable mock-up of elliptic flow, in a strongly
coupled finite temperature plasma in the framework of
gauge/gravity correspondence. See Refs. [30,31] for earlier
holographic computations for the photon emission rate
without magnetic field, and Refs. [32,33] for the photon
emission with an anisotropy introduced by an external
axionic perturbation [34]. References [35,36] computed
photon emission rates with magnetic field, but the detailed
elliptic flow has not been computed. See also Refs. [37,38]
for photon emissions in out-of-equilibrium conditions. As
the photon emissions are sensitive to microscopic details of
the theory, we choose to work with the model by Sakai and
Sugimoto [39], which is dual to the field theory that should
be closest to the real QCD in quenched approximation.
However, we should bear in mind that the background
geometry of the Sakai-Sugimoto model in a deconfined
phase has a problem of center symmetry arising from the
extra S1 dimension, first pointed out in Ref. [40]. This
drawback, however, does not bring an inconsistency to
our description of the quark flavor dynamics, as the center
symmetry becomes irrelevant in the presence of quarks, or
probe D8 branes, although it may affect the detailed inter-
actions between the quarks via background metric. We
leave a further discussion on this point to Sec. III.

Our results indicate that the azimuthal dependence of the
photon emission rates is more complicated than the simple
elliptic flow pattern, which necessitates looking at higher
moments of the azimuthal dependence, such as the quad-
rupole flow v4. We predict an interesting pattern of their
ratios, v4

ðv2Þ2 , as a function of frequency, which might be

relevant experimentally.
We also compute polarization asymmetry of the photons

emitted in the presence of the magnetic field. After

defining an observable, ‘‘in/out plane polarization asym-

metry,’’ AI=O, with respect to the reaction plane, we com-
pute it as a function of frequency. Although it seems
challenging to measure polarizations of photons in current
experiments, it might be an interesting direction to refine
the experimental photon measurements.
In both computations, we observe that triangle anomaly

of the chiral symmetry plays an indispensable role; in
gauge/gravity duality it manifests as a five-dimensional
(5D) Chern-Simons term that does affect the equations of
motion in the presence of the magnetic field. Essentially
the effects can be summarized as coming from the new
transport phenomenon of chiral magnetic waves of chiral
charges. We explicitly check that results with and without
the Chern-Simons term differ substantially from each
other, which indicates that any computation without prop-
erly including a chiral anomaly might be questioned.
In our analysis, we assume a static plasma and a constant

magnetic field. In comparison to experiments, one has to
integrate our results over the realistic time history of the
heavy-ion collisions. This procedure is based on an addi-
tional assumption of adiabaticity. We leave further refine-
ment of our study including time evolution of the plasma to
the future.

II. PHOTON EMISSION RATES FROM
EQUILIBRIUM PLASMA

In this section, we summarize photon emission rate
formula and useful relations between Green’s functions
for the case of translationally invariant thermal plasma.
Note that we will not assume rotational isotropy that is
broken by the presence of a magnetic field. The differential
photon emission rate summed over all polarization states
from a plasma in thermal equilibrium is given by

d�� ¼ d3k

ð2�Þ3
e2

2j ~kj�
��G<

��ðkÞjk0¼j ~kj; (2.1)

where G< is the Wightman function defined by

G<
��ðkÞ �

Z
d4xe�ikxhJEM� ð0ÞJEM� ðxÞi: (2.2)

The emission rate for a particular polarization state speci-
fied by �� is

d��ð��Þ ¼ d3k

ð2�Þ3
e2

2j ~kj �
����G<

��ðkÞjk0¼j ~kj: (2.3)

Our metric convention is � ¼ ð�;þ;þ;þÞ. We would
like to relate G< with the retarded Green’s function GR

defined by

GR
��ðkÞ � ð�iÞ

Z
d4xe�ikx�ðx0Þh½JEM� ðxÞ; JEM� ð0Þ�i; (2.4)

since GR is naturally computed in holography with
an incoming boundary condition on the black-brane
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horizon as we will see in the next section. It is convenient
to define

G>
��ðkÞ � �

Z
d4xe�ikxhJEM� ðxÞJEM� ð0Þi; (2.5)

and using Lehmann representation one can easily derive
the relation

G>
��ðkÞ ¼ �e�k

0
G<

��ðkÞ: (2.6)

On the other hand, from definitions of G>;< one has

GN
��ðkÞ �

Z
d4xe�ikxh½JEM� ðxÞ; JEM� ð0Þ�i

¼ �G<
��ðkÞ �G>

��ðkÞ
¼ ðe�k0 � 1ÞG<

��ðkÞ: (2.7)

Looking at the two definitions (2.4) and (2.7), one has the
following relation between GR and GN:

GR
��ðkÞ ¼ � 1

2�

Z þ1

�1
d~k0

1
~k0 � k0 � i"

GN
��ð~k0; ~kÞ

¼ � 1

2�
P
Z þ1

�1
d~k0

1
~k0 � k0

GN
��ð~k0; ~kÞ � i

2
GN

��ðkÞ;
(2.8)

where P denotes Cauchy principal integral. The relations
(2.7) and (2.8) are the basic starting point of our discussion.

From translational invariance and Hermiticity of JEM� ,

one easily derives

GN
��ðkÞ ¼ �GN

��ð�kÞ ¼ GN�
��ðkÞ; (2.9)

so that GN as well as G< and G> are Hermitian matrices
with (��) indices, which means importantly that

���GN
��ðkÞ; �����GN

��ðkÞ; (2.10)

are real. Contracting (2.8) with ��� or ����� therefore
gives one that

���GN
��ðkÞ ¼ �2 Im½���GR

��ðkÞ�;
�����GN

��ðkÞ ¼ �2 Im½�����GR
��ðkÞ�:

(2.11)

Note that

Im½�����GR
��ðkÞ� � ����� Im½GR

��ðkÞ�; (2.12)

in general, especially for circular polarization states where
�� is complex. Note also that

GN
��ðkÞ � �2 Im½GR

��ðkÞ�; (2.13)

in general, as GN is Hermitian but may not be real. Only in
the case of isotropic plasma,GN

��ðkÞ (andG<;>) is diagonal

and hence real, and then the equality in (2.13) holds.
From (2.8) and (2.11), one finally has

d�� ¼ d3k

ð2�Þ3
e2

2j ~kj
�2

e�k
0 � 1

Im½���GR
��ðkÞ�jk0¼j ~kj (2.14)

and

d��ð��Þ ¼ d3k

ð2�Þ3
e2

2j ~kj
�2

e�k
0 � 1

Im½�����GR
��ðkÞ�jk0¼j ~kj;

(2.15)

which we use for our numerical computation of photon
emission rates.

III. COMPUTATIONAL SETUP IN
HOLOGRAPHIC QCD

For our nonperturbative computation of photon emission
rates in the presence of the magnetic field at strong cou-
pling, we work in the Sakai-Sugimoto model, a holo-
graphic model that is closest to the large Nc QCD with
massless chiral quarks in quenched approximation. The
chiralities of massless quarks and the aspects of triangle
anomaly manifest themselves in the model through 5D
Chern-Simons terms in the action, which will play impor-
tant roles in our results later. The model was constructed

originally via embedding D8=D8 branes inside the holo-
graphic background generated byNc number ofD4 branes.
Roughly speaking, Nc D4 branes describe Yang-Mills

gluonic dynamics of large Nc QCD, whereas D8=D8
branes describe massless chiral quarks of left-handed/
right-handed chiralities, respectively.
We should discuss one cautionary point on the holo-

graphic D4 brane background in the deconfined phase in
which we are embedding probe D8 branes. The issue is a
mismatch of center ZNc

symmetry between the holo-

graphic D4 brane background and the true four-
dimensional (4D) Yang-Mills theory in a deconfined
phase, which was first pointed out in Ref. [40]. Recall
that a theory with only adjoint representations, such as a
pure Yang-Mills theory, has a center ZNc

symmetry for

each S1 compactified space time. The D4 background is
constructed by compactifying the D4 brane on an extra S1

space, so that the D4 brane theory has an extra ZNc
center

symmetry compared to the ordinary 4DYang-Mills theory.
The original idea of the D4 brane construction was that in
the energy scale below the compactification scale, one can
decouple the higher Kaluza-Klein modes and the zero
modes give the pure Yang-Mills theory in 4D. For this
idea to work in a large Nc limit, the center symmetry
arising from the compactification has to be broken; other-
wise the decoupling does not work due to a naive volume
independence in large Nc gauge theory. As discussed in
Ref. [40], the D4 geometry in a confined phase indeed has
a broken center symmetry for this extra compactification
direction, so that it is consistent with the 4D Yang-Mills
theory, but the D4 geometry in a deconfined phase has an
unbroken center symmetry along this extra S1 and has a
different, extra ZNc

symmetry compared to the 4D Yang-

Mills theory in a deconfined phase. Note that the center
symmetry breaking for the Euclidean time circle has a
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correct pattern consistent with the usual confinement-
deconfinement picture [41,42]: only the center symmetry
associated with the extra compactified direction has this
problem. Therefore the D4 background in a deconfined
phase is not describing a truly 4D Yang-Mills plasma, but
rather a higher dimensional theory in a deconfined phase.

For the probe D8 branes we are embedding, describing
fundamental quark flavor dynamics, the center symmetry
becomes irrelevant as can be also seen in the fact that the
D8 branes are localized in the S1 compactified direction,
and there is no problem in regard to the symmetry of the
theory. However, since the interactions between quarks are
governed by the background geometry representing Yang-
Mills degrees of freedom, the above mentioned issue be-
comes relevant in a more dynamical aspect of the theory,
which may affect the detailed predictions made in our
analysis using the D4 brane background, and it would
certainly be desirable to improve the theory or computa-
tions taking care of this problem, which we leave to a
future work. One may also use other holographic models
that do not have such a problem with center symmetry, for
example, the Klebanov-Strassler model [43], or a bottom-
up constructed model [44]. One issue with the former is,
however, that the chiral symmetry of the model is not
precisely that of massless QCD, which we emphasize in
our work via Chern-Simons terms. Another possibility
would be to use the proposal made in Ref. [40] using
T-duality along the Euclidean time circle to localize D3
branes, while keeping the center symmetry breaking along
the extra S1 circle. However, this construction based on the
T-duality along the Euclidean time circle works only in the
Euclidean space, and hence only for thermodynamic quan-
tities, and the proposal cannot be extended to real time
quantities that we are interested in for this work. It would
be quite worthwhile to devise a way to extend the proposal
to the real time quantities, so that it may be used for
computing many transport coefficients in the plasma.

With these cautionary remarks on our holographic
model, let us proceed with the details of the model. Since
electromagnetism couples to the vectorlike global symme-
try of these chiral quarks, we are interested only in the
dynamics of the 8-branes in quenched approximation for
our photon emission rate computation. The original model
sits in a 10-dimensional geometry that is a warped product
of 5D holographic space and an extra internal space of
S4 � S1, but for our purposes in this paper the internal
space does not play a meaningful role, and we will inte-
grate out our action over it to have a reduction to the 5D
holographic space from the start.

The resulting D8=D8 brane action is

SD8=D8 ¼ �CR
9
4

Z
d4xdUU

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det ðg�5D þ 2�l2sFÞ

q

� Nc

96�2

Z
d4xdU�MNPQRAMFNPFQR; (3.1)

where �-tensor is numerical and

C ¼ N
1
2
c

96�
11
2 g

1
2
sl

15
2
s

; R3 ¼ �gsNcl
3
s : (3.2)

The sign of the Chern-Simons term in the second line
encodes chirality that the 8-branes describe; the D8 brane
with the upper sign describes the left-handed UðNFÞL
chiral dynamics, and vice versa for D8 and the right-
handed chiral symmetry UðNFÞR. In the deconfined
phase of the theory that we are interested in here, the
5D geometry in the Eddington-Finkelstein coordinate is
given as

ds25D ¼
�
U

R

�3
2

�
�fðUÞdt2 þX3

i¼1

ðdxiÞ2
�
þ 2dUdt;

fðUÞ ¼ 1�
�
UT

U

�
3
;

(3.3)

which has a black-hole horizon at U ¼ UT with

UT ¼ R3

�
4�T

3

�
2
; (3.4)

in terms of temperature T. Since the final gauge theory
observables are independent of ls, one can conveniently
choose 2�l2s � 1, which will be assumed throughout this
paper. Sakai and Sugimoto [39] determined the values of
parameters in the model by fitting to the pion decay
constant and the 	 meson mass with Nc ¼ 3. In units
of giga-electron-volts, this gives us

C ¼ 0:0211; R3 ¼ 1:44; (3.5)

which defines the model without further free parameters.

In this background, the D8 and D8 branes do not meet
each other, and their dynamics are independent of each
other in leading Nc approximation. The relation between
these chiral fields on the 8-branes and the more conven-
tional vector/axial fields is given by

AV;A ¼ 1

2
ð�AL þ ARÞ; (3.6)

where AL;R mean the gauge fields on D8 and D8 branes,

respectively. Note that in terms of currents, this is equiva-
lent to

JV;A ¼ �JL þ JR: (3.7)

Electromagnetism couples to the vector symmetry with the
coupling strength e, which means practically for us that we
replace

AV ! eAEM; (3.8)
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where AEM is the electromagnetic gauge potential. In our
situation of having constant magnetic field along, say, the
x3 direction, this implies that we have

FV
12 ¼ eB; AA � 0; (3.9)

which is equivalent to having the same background mag-

netic fields on both D8 and D8 branes,

FL
12 ¼ FR

12 ¼ eB: (3.10)

It is easy to check that these constant background magnetic
fields satisfy the equations of motion of 8-branes.

Working in the Eddington-Finkelstein coordinate (3.3),
which is useful for computing retarded Green’s functions,
and using the identity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð1þMÞp ¼ 1þ 1

2
trMþ 1

8
ðtrMÞ2� 1

4
trðM2ÞþOðM3Þ;

(3.11)

the quadratic expansion of the action in the presence of the

background magnetic field Fð0Þ
12 ¼ eB becomes

Lð2Þ ¼ 1

2
ðAðUÞðFtUÞ2 � BðUÞðF3UÞ2 � CðUÞððF1UÞ2

þ ðF2UÞ2Þ �DðUÞððF13Þ2 þ ðF23Þ2Þ � EðUÞðF12Þ2
þ 2FðUÞFt3F3U þ 2GðUÞðFt1F1U þ Ft2F2UÞÞ
� NceB

8�2
ðAtF3U � A3FtU þ AUFt3Þ; (3.12)

where the coefficient functions are given by

AðUÞ ¼ CU
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3 þ ðeBÞ2R3

q
;

BðUÞ ¼ CUfðUÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3 þ ðeBÞ2R3

q
;

CðUÞ ¼ C
U4fðUÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U3 þ ðeBÞ2R3
p ;

DðUÞ ¼ C

�
R

U

�
3 U4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U3 þ ðeBÞ2R3
p ;

EðUÞ ¼ C

�
R

U

�
3 U7

ðU3 þ ðeBÞ2R3Þ32 ;

FðUÞ ¼ CU

�
R

U

�3
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3 þ ðeBÞ2R3

q
;

GðUÞ ¼ C

�
R

U

�3
2 U4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U3 þ ðeBÞ2R3
p :

(3.13)

The equations of motion derived from the above are

AðUÞ@tFtU � BðUÞ@3F3U �CðUÞð@1F1U þ @2F2UÞ
þFðUÞ@3Ft3 þGðUÞð@1Ft1 þ @2Ft2Þ �NceB

4�2
Ft3 ¼ 0;

@UðAðUÞFtUÞ þFðUÞ@3F3U þGðUÞð@1F1U þ @2F2UÞ
�NceB

4�2
F3U ¼ 0;

@UðBðUÞF3UÞ �DðUÞð@1F13 þ @2F23Þ þFðUÞ@tF3U

� @UðFðUÞFt3Þ �NceB

4�2
FtU ¼ 0;

@UðCðUÞF1UÞ þDðUÞ@3F13 þ EðUÞ@2F12 þGðUÞ@tF1U

� @UðGðUÞFt1Þ ¼ 0;

@UðCðUÞF2UÞ þDðUÞ@3F23 � EðUÞ@1F12 þGðUÞ@tF2U

� @UðGðUÞFt2Þ ¼ 0: (3.14)

Note that the triangle anomaly represented by the 5D Chern-
Simons termcontributes to the equationsofmotion.Physically,
this is because of an interplay between vector and axial sym-
metries via chiral magnetic waves in the presence of the
magnetic field. This implies that the resulting photon emission
rate encodes nontrivial effects from the triangle anomaly.
Wework in the gaugeAU ¼ 0, and solve the equations of

motion (3.14) forA�ðUÞ in the frequency-momentum space

assuming the factor eikx ¼ e�ik0tþi ~k	 ~x. Because there is a
residual SOð2Þ rotation symmetry on the transverse coor-
dinates ðx1; x2Þ, we can put k2 ¼ 0 without loss of general-
ity. As we are interested in the elliptic flow, we write

k1 ¼ k0 sin �; k3 ¼ k0 cos �; (3.15)

satisfying the on-shell condition k0 ¼ j ~kj � ! and showing
the azimuthal angle � from the direction of the magnetic
field explicitly. The equations of motion then become

AðUÞ@UAtþcos�BðUÞ@UA3þ sin�CðUÞ@UA1

� i!cos�FðUÞðA3þcos�AtÞ
� i!sin�GðUÞðA1þ sin�AtÞ
�NceB

4�2
ðA3þcos�AtÞ¼ 0;

@UðAðUÞ@UAtÞþ i!cos�FðUÞ@UA3þ i!sin�GðUÞ@UA1

�NceB

4�2
@UA3 ¼ 0;

@UðBðUÞ@UA3Þ�!2 sin�DðUÞðsin�A3�cos�A1Þ
� i!FðUÞ@UA3� i!@UðFðUÞðA3þcos�AtÞÞ
�NceB

4�2
@UAt ¼ 0;

@UðCðUÞ@UA1Þþ!2 cos�DðUÞðsin�A3�cos�A1Þ
� i!GðUÞ@UA1� i!@UðGðUÞðA1þ sin�AtÞÞ¼ 0;

@UðCðUÞ@UA2Þ�!2cos2�DðUÞA2�!2sin2�EðUÞA2

� i!GðUÞ@UA2� i!@UðGðUÞA2Þ¼ 0: (3.16)
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As we are interested in the retarded Green’s function of
the global symmetries that the above 5D gauge fields
describe, we need to establish a well-defined procedure
of extracting information on the corresponding currents in
the field theory side from the 5D profile of the solutions of
the above equations. We follow standard steps of gauge/
gravity duality dictionary. We first discuss how to extract
expectation values of the symmetry currents in the field
theory side from the 5D solutions. To construct the bound-
ary current expectation value hJ�i from the solution A�ðUÞ
of the above equations, one has to study the near boundary
asymptotics at U ! 1 and perform a careful holographic
renormalization. The necessity of a careful holographic
renormalization comes from the fact that we will turn on
space-time varying external sources to find retarded
Green’s functions at finite frequency momentum. In this
situation, it generally happens that the renormalized
boundary currents hJ�i not only are given by the coeffi-

cients of the subleading terms in the asymptotic expansion
but also get some additional contributions from the exter-
nal sources. Only after combining these two contributions
can the resulting currents hJ�i satisfy the correct conser-

vation Ward identity.
The near U ! 1 asymptotics of A� are found to be

A� ¼ Að0Þ
� þ Að1Þ

�

U
1
2

þ Að2Þ
�

U
þ Að3Þ

� log ðUÞ
U

3
2

þ
~A�

U
3
2

þ 	 	 	 ;
(3.17)

where we assume the dependence eikx ¼ e�ik0tþi ~k	 ~x implic-
itly. We will consider a general k� in our discussion of

holographic renormalization. Að0Þ
� is the external source,

and the subleading terms Að1Þ
� , Að2Þ

� , and Að3Þ
� are completely

fixed by the external source Að0Þ
� in the following way:

Að1Þ
t ¼ 0; Að3Þ

� ¼ 0;

Að1Þ
i ¼ �2iR

3
2ðk0Að0Þ

i þ kiA
ð0Þ
t Þ ¼ 2R

3
2Fð0Þ

ti ; i ¼ 1; 2; 3;

Að2Þ
t ¼ �2R3ðk0kjAð0Þ

j þ kjkjA
ð0Þ
t Þ ¼ �2R3@jF

ð0Þ
tj ;

Að2Þ
i ¼ �2R3ðkjkjAð0Þ

i � kik
jAð0Þ

j Þ ¼ �2R3@jF
ð0Þ
ij : (3.18)

The fact that the coefficient of the logarithmic term, Að3Þ
� ,

vanishes is special in this model, which would not be the
case for a 5D gauge theory in asymptotic AdS5 geometry.
The absence of a logarithmic term translates into the
absence of a contribution to the conformal anomaly from
the corresponding global symmetry in the 4D gauge theory
side. This can be understood because the 4D theory that
this holographic model supposedly describes is confor-
mally noninvariant even in the ultraviolet regime. The

piece ~A� is not determined by the external source, and it

encodes a dynamical freedom of the expectation value
hJ�i. It should be fixed by appropriate infrared boundary

conditions, which in our case will be the incoming

boundary condition on the black hole horizon. In the
Eddington-Finkelstein coordinate we are working, this
simply requires regularity of A�ðUÞ at the horizon U ¼
UT . In conjunction with the ultraviolet boundary condition

Að0Þ
� , these two boundary conditions determine the solution

A�ðUÞ uniquely.
Although hJ�i should contain ~A� representing dynami-

cal degrees of freedom, the full expression for hJ�i in-

volves additional contributions from (derivatives) of the

external source Að0Þ
� as we mentioned above. To find these

additional contributions, one normally goes through steps
of holographic renormalization by regularizing and sub-
tracting divergences as we describe in the following. For
this purpose, it is more convenient to go to the diagonal
metric frame,

ds25D ¼
�
U

R

�3
2

�
�fðUÞdt2� þ

X3
i¼1

ðdxiÞ2
�
þ

�
R

U

�3
2 1

fðUÞdU
2;

(3.19)

by the coordinate transformation,

t� ¼ t�
Z U

1
dU0 1

fðU0Þ
�
R

U0

�3
2 ¼ tþ 2R

3
2

U
1
2

þ 	 	 	 : (3.20)

Near the U ! 1 boundary, the temperature/magnetic
fields do not matter, and there is 4D Lorentz symmetry
one can use in discussing asymptotics and expectation
values in this frame. The near boundary behavior of A�

�

in the A�
U ¼ 0 gauge in this frame is found to be (we put �

to mean the gauge fields in this diagonal metric frame)

A�
� ¼ Að0Þ

� � 2R3@�F
ð0Þ�
�

1

U
þ

~A�
�

U
3
2

þ 	 	 	 : (3.21)

Note the absence of theU�1
2 term as well as the logarithmic

term. Upon inserting the above to the 5D holographic
action1

S5D¼�C

4

Z
d4xdU

�
2U

5
2F�UF

�UþR3

U
1
2

F��F
��

�
; (3.22)

there appears a divergence,

Sreg5D ��C

2
R3U

1
21
Z

d4xFð0Þ
��Fð0Þ��; (3.23)

where we regularize the divergence at U ¼ U1. The coun-
terterm at U ¼ U1 is hence chosen to be

Sct ¼ þC

2
R3U

1
21
Z

d4xF��F
��jU¼U1 ; (3.24)

1One can neglect effects from temperature and magnetic fields
in near U ! 1 boundary as they are sufficiently subleading. The
5D Chern-Simons term is also irrelevant in divergences and
minimal counterterms, and we will consider it only at the end
in the final results.
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to cancel the divergence minimally. Then the renormalized
current expectation value from Sren ¼ Sreg þ Sct is

hJ�i ¼ lim
U1!1ð�CU

5
21@UA�ðU1Þ þ 2CR3U

1
21@�F��ðU1ÞÞ

¼ 3

2
C ~A�

�: (3.25)

The result is simple without further contributions from the
source; this is special in this model, which is related to the
absence of a logarithmic term in the expansion (3.21).

The 5D Chern-Simons term does not introduce further
divergences, so the minimal counterterm (3.24) remains
unchanged. It only modifies the regularized action Sreg by
(recall our A�

U ¼ 0 gauge)


Sreg ¼ �NceB

12�2

Z
d4xdU�12��A�F�U

� Nc

24�2

Z
d4xdU�����AB

�F��F�U; (3.26)

with �t123 ¼ 1, and AB is the gauge field responsible for the
background magnetic field, AB

1;2 ¼ � eB
2 x2;1. The correc-

tion to hJ�i from this is thus


hJ�i ¼ �NceB

12�2
�12��A

ð0Þ� � Nc

24�2
�����A

B�Fð0Þ��:

(3.27)

When we consider both D8 and D8 branes together in
discussing vector/axial symmetries, one can still add a
further finite piece in the counterterm Sct, called the
Bardeen counterterm, to ensure the conservation of vector
symmetry, and this will modify hJ�i additionally [45].

Although one may deal with them carefully to get the
final results correctly, for our problem of computing
vector-vector Green’s functions it turns out that these
modifications from (3.27) and the Bardeen counterterm
simply drop in the final results. Recall that the vector
current is a simple sum of left- and right-handed currents,
so that the modification (3.27) gives rise to


hJVi¼NceB

6�2
�12��A

ð0Þ�
A � Nc

12�2
�����A

B�Fð0Þ��
A ; (3.28)

where Að0Þ
A � 1

2 ð�Að0Þ
L þ Að0Þ

R Þ is the source for the axial

current JA ¼ �JL þ JR. The modification from the
Bardeen counterterm is also easily found to be


hJVi¼NceB

3�2
�12��A

ð0Þ�
A þ Nc

12�2
�����A

B�Fð0Þ��
A : (3.29)

Both (3.28) and (3.29) give the response of hJVi propor-
tional to the external axial source AA only, so that they do
not contribute to the vector-vector Green’s functions.

Based on this observation, we will use the formula (3.25)
for the current expectation values for simplicity, without
worrying about further corrections from the 5D Chern-
Simons term. We stress that the presence of the 5D

Chern-Simons term does affect our results via bulk equa-
tions of motion (3.14); it affects the dynamical coefficient
~A� and hence the current expectation values through equa-

tions of motion. This can easily be seen by adding and
subtracting (3.14) for upper/lower signs of the Chern-

Simons term (corresponding to D8=D8 branes for left/
right-handed chiralities) to get

AðUÞ@tFV;A
tU �BðUÞ@3FV;A

3U �CðUÞð@1FV;A
1U þ@2F

V;A
2U Þ

þFðUÞ@3FV;A
t3 þGðUÞð@1FV;A

t1 þ@2F
V;A
t2 Þ

�NceB

4�2
FA;V
t3 ¼0;

@UðAðUÞFV;A
tU ÞþFðUÞ@3FV;A

3U þGðUÞð@1FV;A
1U þ@2F

V;A
2U Þ

þNceB

4�2
FA;V
3U ¼0;

@UðBðUÞFV;A
3U Þ�DðUÞð@1FV;A

13 þ@2F
V;A
23 ÞþFðUÞ@tFV;A

3U

�@UðFðUÞFV;A
t3 ÞþNceB

4�2
FA;V
tU ¼0;

@UðCðUÞFV;A
1U ÞþDðUÞ@3FV;A

13 þEðUÞ@2FV;A
12 þGðUÞ@tFV;A

1U

�@UðGðUÞFV;A
t1 Þ¼0;

@UðCðUÞFV;A
2U ÞþDðUÞ@3FV;A

23 �EðUÞ@1FV;A
12 þGðUÞ@tFV;A

2U

�@UðGðUÞFV;A
t2 Þ¼0; (3.30)

where AV;A ¼ 1
2 ð�AL þ ARÞ. It is clear that axial compo-

nents are necessarily excited in computing vector-vector
Green’s functions due to the Chern-Simons term. A dia-
grammatic representation is given in Fig. 1. Therefore, the
effects from the triangle anomaly to our photon emission
observables are totally dynamical and are not sensitive to
the issues of additional boundary contributions. In retro-
spect this makes good sense because at the end we are
dealing with only vectorlike observables of electromagne-
tism, which should be unambiguously defined.
What remains to find hJ�i in the original Eddington-

Finkelstein coordinate is to perform the coordinate trans-

formation of (3.20) on A�ðUÞ, so that one can express ~A�
� in

terms of ~A� and Að0Þ
� . One has to be careful about our gauge

choices AU ¼ 0 and A�
U ¼ 0; starting from A�ðUÞ and

performing the coordinate transformation (3.20), the

FIG. 1. Contribution of triangle anomaly to the vector-vector
Green’s functions in the presence of the magnetic field.
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resulting A�
U is not zero and one needs to do a further gauge

transformation to remove A�
U. Note that @t ¼ @t� , but @U �

@U� . The computation is straightforward, and the result is

~A�
t ¼ ~At þ 8

3
R

9
2@t@jF

ð0Þ
tj ;

~A�
i ¼ ~Ai þ 4R

9
2

�
@t@jF

ð0Þ
ij þ 2

3
@2t F

ð0Þ
ti � 1

3
@i@jF

ð0Þ
tj

�
;

(3.31)

from which one obtains the current expectation values via

hJ�i ¼ 3
2C

~A�
� as in (3.25). One can check that the first

equation in (3.14) gives one the correct chiral Ward identity
(up to the additional boundary contributions and the
Bardeen counterterm discussed above)

@�hJ�i ¼ �NceB

4�2
Fð0Þ
t3 ; (3.32)

in the presence of external chiral gauge fields eB and Að0Þ.
Once we know how to extract the expectation values

from the solutions as above, we can easily compute the
retarded Green’s functions in the following way. The lead-

ing component Að0Þ
� in the near boundary expansion (3.17)

is interpreted in the QCD field theory side as an external
gauge potential coupling to the (chiral) current J�L;R. The

chirality depends on the sign of the Chern-Simons term, or

equivalently on whether we are looking at the D8 or D8
brane. By demanding an incoming boundary condition at
the horizon, which is simply a regularity at the horizon in
our Eddington-Finkelstein coordinate, the solution is

uniquely determined by this external source Að0Þ
� ; it is clear

that the solution linearly depends on Að0Þ
� . One then obtains

the expectation value of chiral current from the solution by

using (3.25) and (3.31). As the result is linear in Að0Þ
� , one

writes

hJ�i ¼ �GR
�
�ðkÞAð0Þ

� ; (3.33)

which gives one the retarded Green’s function GR
�� by the

definition of Kubo’s formulation of real-time response
functions. For the upper sign of the Chern-Simons term in
(3.14) (that is, from D8 brane), one obtains Green’s func-
tion of the left-handed chiral current GR

LL, and vice versa

for the lower sign (that is, D8 brane) and the right-handed
GR

RR. The desired vector-vector Green’s function for the
photon emission rate is then

GR
VV ¼ GR

LL þGR
RR: (3.34)

Because the two chiral Green’s functions are simply re-
lated to each other by

GLLðeBÞ ¼ GRRð�eBÞ; (3.35)

or equivalently

GLLð�Þ ¼ GRRð�� �Þ; (3.36)

in terms of azimuthal angle � with respect to the magnetic
field, it is enough to compute GLL only.
We numerically solve the equations of motion (3.14), or

more precisely (3.16), to compute the retarded Green’s
functions from the relation (3.33). Instead of solving the

equations with a given Að0Þ
� from the ultraviolet (UV)

boundary U ! 1, it is numerically much easier to solve
them from the horizon U ¼ UT toward the UV boundary,
starting with a regularity boundary condition at the hori-
zon. Inspecting the equations of motion (3.16) near the
horizon U ¼ UT , the regularity condition uniquely fixes
the derivatives @UA�ðUTÞ and @2UA�ðUTÞ in terms of the

value at the horizon A�ðUTÞ, which allows one to start

solving Eq. (3.16) from the horizon. Practically, we use
@UA�ðUTÞ and @2UA�ðUTÞ to proceed a small step to U ¼
UT þ � with a small number � ¼ 0:01, and start our nu-
merical solving of Eq. (3.16) from that point until a UV

cutoff U ¼ Umax . Given this solution, one obtains A
ð0Þ
� and

~A� by comparing with the near boundary expansion (3.17)

and (3.18) at the position U ¼ Umax . More precisely, we

solve the following linear system of equations for ðAð0Þ; ~AÞ:

A�ðUmax Þ ¼ Að0Þ
� þ Að1Þ

�

U
1
2
max

þ Að2Þ
�

Umax

þ
~A�

U
3
2
max

þ Að4Þ
�

U2
max

;

ð@UA�ÞðUmax Þ ¼ � 1

2

Að1Þ
�

U
3
2
max

� Að2Þ
�

U2
max

� 3

2

~A�

U
5
2
max

� 2
Að4Þ
�

U3
max

;

(3.37)

where the left-hand sides are given by the numerical solu-

tion, and Að1;2;4Þ
� are linearly given by Að0Þ

� as in (3.18). Note

that we have included one more term, Að4Þ, in the above
expansion on the right-hand side than in (3.17) for a better

numerical precision of extracting ðAð0Þ; ~AÞ from the above.

The expressions for Að4Þ
� can easily be found, and we skip

their explicit expressions.

From ðAð0Þ; ~AÞ, one then constructs ðAð0Þ; hJiÞ using
(3.25) and (3.31). Since it is clear that the results are
linearly dependent on the horizon data A�ðUTÞ that we

start with, one writes

Að0Þ
� ¼ S�

�A�ðUTÞ; hJ�i ¼ R�
�A�ðUTÞ ; (3.38)

with two matrices S andR. One easily computes these two
matrices by performing the above described numerical
procedures for each four unit vector of A�ðUTÞ. Once
they are found, one relates ðAð0Þ; hJiÞ directly by

hJ�i ¼ R�
�ðS�1Þ�� Að0Þ

� ¼ ðR 	 S�1Þ��

Að0Þ
� � �GR

�
�Að0Þ

� ; (3.39)

so that the retarded Green’s function is finally computed as
GR ¼ �R 	 S�1 in a matrix form. In the total photon
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emission rate formula (2.14), one needs the trace of the
Green’s function and

���GR
�� ¼ GR

�
� ¼ �trðR 	 S�1Þ; (3.40)

which is particularly simple in this matrix form. However,
the full matrix Green’s function contains much more in-
formation than the simple trace, such as polarization states
of emitted photons. We will discuss polarization asymme-
try of the photons in Sec. V, which we propose to be an
important new experimental signature of triangle anomaly
in heavy-ion experiments.

From explicit expressions for Að1;2;4Þ
� , one notes that the

expansion parameter in the near boundary series (3.37) is

x ¼ R
3
2!

U
1
2
max

; (3.41)

so that the larger the energy ! is, the bigger Umax should

be for a good numerical precision of Að0Þ
� and ~A� (and

hence of the retarded Green’s functions) from solving

Eq. (3.37). From (3.37), the error on ðAð0Þ; ~AÞ from neglect-
ing higher order terms on the right-hand side is of order x2.
In our numerical analysis, we have controlled x2 to be
much less than 0.01, so that our numerical results should
be reliable up to better than 1%. Also, the structure of
equations of motion (3.14) is such that the derivative of the
first equation in (3.16) is equivalent to the remaining four
equations. Therefore, once the first equation is satisfied at
one point in U, say, at U ¼ UT , it should remain satisfied
for allU if one solves the other equations correctly. In other
words, it is a consistent constraint equation of the system.
It serves, in fact, useful in our numerical analysis by
providing a test of the numerical precision, and we have
checked that our solutions satisfy it with much better
precision than 1%. Another independent check is the chiral
Ward identity (3.32), which also holds to a good precision.
This gives us the conservation Ward identities of our final
vector-vector Green’s function,

k�GR
�
�ðkÞ ¼ GR

�
�ðkÞk� ¼ 0; (3.42)

which are checked to be true with a very good precision.

IV. ELLIPTIC (v2) AND QUADRUPOLE (v4)
FLOWS OF PHOTONS

With the computations described in the previous section,
we present our results for the azimuthal dependence of the
photon emission rates in the presence of the magnetic field.
We introduce the mode expansion in the azimuthal angle �
with respect to the magnetic field direction as

d��

d3k
ð�Þ ¼ �0ð1� 2v2 cos ð2�Þ þ 2v4 cos ð4�Þ þ 	 	 	Þ;

(4.1)

with the elliptic flow v2 and the quadrupole flow v4. The
negative sign in front of v2 in the above definition is due to
the relation

� ¼ �

2
� �; (4.2)

between � and the more conventional angle � from the
reaction plane (note that the magnetic field is perpendicu-
lar to the reaction plane). In Fig. 2, we show some
exemplar plots of azimuthal dependence of photon emis-

sion rates
d��

d3k
ð�Þ for different energies. We take T ¼

0:2 GeV, eB ¼ 0:4 GeV2 for an illustrative purpose (we
will also consider more realistic values of the magnetic
field later). For useful comparison, we also include results
obtained after dropping the Chern-Simons term (the
dashed curves), which shows the importance of a triangle
(chiral) anomaly in the results, especially for low energy
! 
 1 GeV. As is clear from the plots, the angular
dependence is drastically affected by the triangle anomaly
for the low energy regime (the plots in the left), and the
mode expansion becomes more complicated than simply
being characterized by an elliptic flow. Especially, the
size of the quadrupole moment v4 is comparable in this

2
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FIG. 2 (color online). Azimuthal angle dependence of photon emission rates for three different energies ! ¼ 0:1, 0.5, 1 GeV with
temperature T ¼ 0:2 GeV and magnetic field eB ¼ 0:4 GeV2. The dashed curves are the results when the Chern-Simons term is
turned off.
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regime. We expect that these modifications of the azimu-
thal dependence are due to the existence of the chiral
magnetic wave modes that affect the retarded Green’s
functions via its pole structure

1

ð!� v
k cos �Þ þ
1

ð!þ v
k cos�Þ ; (4.3)

where v
 is the velocity of the chiral magnetic wave and

the two contributions are from left- and right-handed
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FIG. 3 (color online). Elliptic flow v2 versus photon energy ! for T ¼ 0:2 GeV and eB ¼ 0:4 GeV2. The right plot is the result
without the Chern-Simons term (triangle anomaly).
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FIG. 4 (color online). The ratio v4=ðv2Þ2 versus photon energy ! for T ¼ 0:2 GeV and eB ¼ 0:4 GeV2. The right plot is the result
without the Chern-Simons term (triangle anomaly).

FIG. 6 (color online). Definition of in- and out-plane
polarizations.
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FIG. 5 (color online). Elliptic flow v2 versus photon energy !
for T ¼ 0:2 GeV and eB ¼ 4m2

� ¼ 0:08 GeV2.
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chiral magnetic waves, respectively. We plot v2 (in
Fig. 3) and the ratio v4=ðv2Þ2 (in Fig. 4) to highlight
this effect, for example, the violation of the usual scaling
v4 � v2

2. In the elliptic flow v2, we notice that the elliptic
flow can even be negative for the low energy ! 

0:3 GeV due to the effect from the triangle anomaly.
Current experiments give data only for ! � 1 GeV, so
that the experimental relevance of this observation is not
high at the moment, but it may become important in the
future. In Fig. 5, we plot the elliptic flow v2 for a realistic
value of the magnetic field eB ¼ 4m2

� � 0:08 GeV2. The
general trends are the same as we describe in the above,
although we observe that the overall magnitude of the
elliptic flow is rather small, v2 � 10�3. We should take
this as a result from the strong coupling computation via
gauge/gravity correspondence. The particular reason why
the strong coupling gives such a small azimuthal imbal-
ance of the photon emission even with a large strength of
the magnetic field is not completely clear to us, and it
might deserve a further study.

V. POLARIZATION ASYMMETRY OF PHOTONS

Our computational framework in gauge/gravity corre-
spondence is able to describe the photon emissions with
specific polarization states of the photons. With our pre-
vious choice of photon momentum

k� ¼ !ð1; sin �; 0; cos �Þ; (5.1)

we define the in-plane polarization with

��IN ¼ ð0; 0; 1; 0Þ; (5.2)

and the out-plane polarization with

��OUT ¼ ð0; cos�; 0;� sin �Þ: (5.3)

See Fig. 6 for a schematic explanation of our definition of
the polarization states. We then define a new observable,

the ‘‘in/out-plane polarization asymmetry’’ AI=O by

AI=O ¼
d��

d3k
ð�INÞ � d��

d3k
ð�OUTÞ

d��

d3k
ð�INÞ þ d��

d3k
ð�OUTÞ

: (5.4)

In Fig. 7, we plot the azimuthal dependence of the in/out-

plane polarization asymmetry AI=O for different energies.
As before, we observe that the Chern-Simons term affects
the results in a fundamental way for low energy regime
! 
 1 GeV, and we expect the chiral magnetic wave pole
to be responsible for this modification. The general trend is

that AI=O is positive for the low energy regime! 
 1 GeV,
whereas it becomes negative for higher energies ! �
1 GeV. Although current experiments seem to find it
difficult to produce data for the photon polarization, our
observation may become relevant in more refined experi-
mental measurements in the future.
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