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We discuss how the 1=Nc expansion and the chiral random matrix theory (�RMT) can be used in the

study of large-Nc gauge theories. We first clarify the parameter region in which each of these two

approaches is valid. While the fermion mass m is fixed in the standard large-Nc arguments (’t Hooft

large-Nc limit), m must be scaled appropriately with a certain negative power of Nc in order for the gauge

theories to be described by the �RMT. Then, although these two limits are not compatible in general, we

show that the breakdown of chiral symmetry can be detected by combining the large-Nc argument and the

�RMT with some care. As a concrete example, we numerically study the four-dimensional SUðNcÞ gauge
theory with Nf ¼ 2 heavy adjoint fermions, introduced as the center symmetry preserver keeping the

infrared physics intact, on a 24 lattice. By looking at the low-lying eigenvalues of the overlap-Dirac

operator for a massless probe fermion in the adjoint representation, we find that the chiral symmetry is

indeed broken with the expected breaking pattern. This result reproduces a well-known fact that the chiral

symmetry is spontaneously broken in the pure SUðNcÞ gauge theory in the large-Nc and the large-volume

limit and therefore supports the validity of the combined approach. We also provide an interpretation of

the gap and unexpected Nc scaling, both of which are observed in the Dirac spectrum.
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I. INTRODUCTION

From a field theoretical point of view, strongly coupled
gauge theories such as quantum chromodynamics (QCD)
are of great interest as they have a number of nontrivial
phenomena in themselves. Because it is difficult to study
those theories analytically, effective theory approaches and
the large-Nc limit are often considered. For example, if one
considers the low-energy limit of QCD (and also theories
with spontaneous chiral symmetry breaking (S�SB)), the
form of the low energy effective theory is tightly con-
strained by the symmetries so that one obtains the chiral
Lagrangian. If we further go to the � regime, where the
length of the box containing the system is much smaller
than the pion Compton length, all such theories fall into
one of three universality classes, which are exactly
described by the chiral random matrix theory (�RMT).
In Ref. [1] this property was used to demonstrate S�SB
from the first principles by confirming that the spectrum of
the Dirac operator calculated on the lattice agrees with the
�RMT prediction. Another example is the ’t Hooft
large-Nc limit [2] (See also the most recent review paper
[3]). In particular, the large-Nc volume independence (the
so-called Eguchi-Kawai (EK) volume independence) [4]
and the orbifold equivalence [5,6] have recently received
much attention in the context of the lattice Monte Carlo
simulation (see, e.g., [7–9]).

Given the remarkable successes of these two
approaches, it is natural to consider how they can be
combined to study various QCD-like theories. Once the
combined approach has been established, it has several
interesting applications. One of them is the search for the
conformal window or the walking technicolor model
(WTM), where the approach is used to see whether or
not chiral symmetry is broken. A candidate of the minimal
WTM is the SUð2Þ gauge theory with two flavors of
fermions in the adjoint representation [10,11]. So far,
numerical results from (large-volume) lattice simulations
indicate that this theory is inside the conformal window
[12]. This situation may change when the number of colors
increases from two. Then, the study of the large-Nc limit
provides additional information useful to understand the
phase diagram of the conformal window depicted in
Ref. [13].
In this paper, we discuss how to utilize the �RMT and

the large-Nc equivalence to study the large-Nc gauge theo-
ries, and provide the theoretical argument for the detection
of S�SB.1 It turns out that some care is required because
the valid parameter regions for these two techniques are
different in general: in the �RMT limit (see Sec. IV for the
definition), the ’t Hooft large-Nc expansion fails due to the
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1In Refs. [7,14,15], the authors already used the �RMT
techniques for numerical studies of chiral symmetry breaking
of SUðNcÞ gauge theories in the quenched limit and the theories
with adjoint fermions, respectively. However, there is a subtlety
(the difference of the limiting procedures explained in Sec. IV),
which makes the conclusion ambiguous [15]. In this paper we
clarify this point in order to fully justify the method.
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nontrivial Nc dependence of the expansion coefficients.
Therefore, we cannot use the EK volume equivalence to
relate the small-volume with the large-volume lattice the-
ory in the �RMT limit. However, we argue that the chiral
properties of the large-volume theory can still be studied
from the small-lattice model with finite Nc by using the
analytic continuation provided unbroken center symmetry.

Bearing the above motivation in mind, as a first step, we
study pure SUðNcÞ gauge theories on a 24 lattice, aiming at
taking the large-Nc limit. The goal is to find how we should
extract physics in the large-volume limit from small lattice
simulations. We call our theory on a 24 lattice the 24-lattice
model to avoid possible confusion with the EK model for
which the ’t Hooft limit is usually assumed. Following the
argument by Eguchi and Kawai in the ’t Hooft limit, we let
our lattice theory keep the center symmetry by introducing
two flavors of heavy adjoint fermions.2 But notice that the
theory we deal with is essentially the pure SUðNcÞ gauge
theory since they do not play any role in the low-energy
dynamics. On the gauge configurations obtained, we cal-
culate the low-lying spectrum of the overlap-Dirac operator
in the adjoint representation and compare with the �RMT
prediction; an agreement between them should provide the
evidence for S�SB or equivalently non-zero chiral conden-
sate in the ’t Hooft limit. Using the EK volume equiva-
lence, therefore, we conclude that chiral symmetry of pure
SUðNcÞ gauge theory is indeed broken. While the agree-
ment of the Dirac spectrum is confirmed as expected, the
Nc scaling of the spectrum turns out to be different from the
one expected from the usual ’t Hooft large-Nc counting. To
be specific, we found that the eigenvalues scale as 1=Nc

rather than 1=N2
c at a reasonably weak coupling. We will

present a possible explanation for this phenomenon in
Sec. V, which does not override the occurrence of S�SB.

This paper is organized as follows. In Sec. II, we review
the ’t Hooft large-Nc limit and its properties, especially the
EK volume equivalence and the orbifold equivalence. In
Sec. III we review the �RMT—the definition and the
relationship with the � regime of QCD-like theories with
S�SB. In Sec. IV we discuss the difference between the
�RMT limit and the ’t Hooft limit, in which we can use the
�RMT technique and the EK volume equivalence, respec-
tively. Having this difference in mind, we explain how the
�RMT, combined with numerical simulations on a small
lattice, can be used to study S�SB of the large-Nc gauge
theories. In Sec. V we present the numerical results of the
24-lattice model; we first confirm that the center symmetry
is unbroken in the presence of two flavors of heavy adjoint
fermions and then proceed to the analysis of the Dirac
spectrum, including comparisons with the �RMT predic-
tion and determination of the Nc scaling.

II. THE ’T HOOFT LARGE-Nc LIMIT

Let us first consider the SUðNcÞ pure Yang-Mills theory,

SYM ¼ 1

4g2YM

Z
d4xTrF2

��: (1)

The ’t Hooft large-Nc limit [2] is the large-Nc limit in
which the ’t Hooft coupling constant � ¼ g2YMNc and the
space-time V are fixed.3 The energy scale under consid-
eration (e.g., distance between operators, the size of the
Wilson loop) is also fixed. In this limit the 1=Nc expansion
has a natural topological structure,

hÔi ¼ X1
g¼0

cgð�; VÞN�2g
c ; (2)

where Ô is a properly normalized single trace operator. In

the perturbation theory, contribution of order N�2g
c comes

from the genus-g nonplanar diagrams, i.e., the Feynman
diagrams which can be drawn on the two-dimensional
surface with g handles (Fig. 1). The connected correlation
functions of more than one operator have the same struc-
ture. Therefore the 1=Nc expansion is the same as the genus
expansion. In the string theory, a genus-g surface corre-
sponds to the string world-sheet with g closed string loops.
Actually the Feynman diagrams can naturally be regarded
as dynamical triangulations of the two-dimensional sur-
faces, and 1=N2

c can be identified with the string coupling
constant. In Maldacena’s gauge/gravity duality conjecture
[16], certain gauge theories are explicitly related to string
theories. In the large-Nc limit, only the genus zero diagrams
(planar diagrams) survive, or in the string terminology, the
quantum string effect is suppressed at large-Nc.
Next let us consider QCD with Nf fundamental fermi-

ons. The fermionic part of the action is given by

Sfermion ¼
XNf

f¼1

Z
d4x �c fund

f ð��D� þmfÞc fund
f : (3)

In the ’t Hooft limit, in addition to the ’t Hooft coupling
and the space-time volume, the fermion massmf must also

FIG. 1. Two-dimensional surface of genus g.

2Although we added two heavy adjoint fermions, one heavy
adjoint fermion is good enough to keep the center symmetry
[8,14].

3More precisely, we take the coupling at some energy scale to
be fixed. For example, in the case of the lattice regularization, we
can take the bare lattice ’t Hooft coupling to be the same. Then
the beta function depends only on � at large Nc, and hence �
remains Nc independent at any energy scale up to a 1=Nc
correction.
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be fixed. Because the fermions have OðNfNcÞ degrees of
freedom while the gluons have OðN2

cÞ, every time we re-
place the gluon loop with the fermion loop we obtain the
factor Nf=Nc. Hence the 1=Nc-expansion becomes

hÔi ¼ X1
g;b¼0

cg;bð�; V;mfÞN�2g
c � ðNf=NcÞb; (4)

where b is the number of fermion loops. Therefore, when
Nf is fixed, diagrams with fermion loops are suppressed.

(They are not suppressed if one considers the adjoint
fermion instead.) In the ’t Hooft large-Nc limit, the pa-
rameters �, V and mf are fixed, because otherwise a non-

trivial Nc-dependence can appear through the coefficient
cg;bð�; V;mfÞ. For example, in QCD, if mf decreases with

Nc, Nc-dependent infrared divergence appears because the
pion becomes lighter and the standard 1=Nc-counting in
the ’t Hooft limit can be destroyed completely.

In the ’t Hooft large-Nc limit, various nice properties
hold. Below we introduce the EK equivalence and the
orbifold equivalence.

A. The large-Nc equivalences in the ’t Hooft limit

1. The Eguchi-Kawai equivalence

Let us consider Wilson’s lattice gauge theory on the L4

periodic lattice,

SW ¼ 2N2
cb
X
n

X
�<�

�
1� 1

Nc

ReTrP��ðnÞ
�
; (5)

where�, � run from 1 to 4, b ¼ 1=� ¼ 1=ðg2YMNcÞ, n runs
through the L4 lattice, and the plaquette P�� is given by

P��ðnÞ ¼ Un;�Unþ�;�U
y
nþ�;�U

y
n;�: (6)

The unitary link variables Un;� are related to the

Hermitian gauge field A� by Un;� ¼ eiaA�ðnÞ, where a is

the lattice spacing. The nature of the theory is character-
ized by the expectation values of the Wilson loops,

WðCÞ ¼ TrðUn;�Unþ�;�Unþ�þ�;� . . .Þ; (7)

where C is a closed path on the lattice and the right hand
side is the trace of the product of the link variables alongC.
Note that the loop C can be larger than the lattice; one can
just write a closed loop on the infinite lattice and impose
the periodic boundary condition. This theory has the ðZNc

Þ4
center symmetry, which multiply a phase factor to the link
variables,

Un;� ! e2�ik�=NcUn;� ðk� 2 ZÞ: (8)

Let us consider the ’t Hooft large-Nc limit, in which the
coupling constant b and the lattice size L are fixed. As long
as the ðZNc

Þ4 center symmetry is not broken spontaneously,

the expectation values of the Wilson loops do not depend
on L. This is called the Eguchi-Kawai equivalence [4]. One
can also introduce fermions with the periodic boundary

condition; for example, for both the fundamental and
adjoint fermions, the Dirac spectrum does not depend on
Lwhen Nf and the mass are fixed. Therefore one can study

the large-Nc theory on the infinite lattice by using a small
lattice, say 14 or 24.
In the pure glue theory, the ðZNc

Þ4 center symmetry is

actually broken in the weak coupling limit b ! 1 with
fixed L [17]. The breakdown of the center symmetry can
easily be understood by calculating the one-loop effective
action as a function of the Wilson line phases, by assuming
four Wilson line phases to be static and diagonal. Then the
off-diagonal fluctuation of the link variables provides an
attractive interaction between the diagonal elements, so
that the eigenvalues of the link variables favor the same
value and hence the center symmetry breaks. It is nothing
but the deconfinement transition in a very small volume.
Introducing the adjoint matter.—The situation changes

drastically when one adds the adjoint fermions, because
they provide the repulsive force between eigenvalues.
When one massless Majorana adjoint fermion is intro-
duced, the theory is roughly the dimensional reduction
of the four-dimensional N ¼ 1 pure super Yang-Mills
theory. In the continuum theory, the forces acting on the
Wilson line phases cancel to all order in perturbation
theory. By taking into account the nonperturbative effects,
both the center-symmetric [18] and center-broken [19]
phases can exist (The importance of the nonperturbative
effect was nicely demonstrated in a related context in [20]).
Whether the center symmetry breaks or not on a lattice is a
subtle issue which depends on the detail of the lattice
regularization. If we add more massless adjoint fermions,
the center symmetry is unbroken irrespectively of the detail
of the lattice action [18]. Furthermore, somehow surpris-
ingly at first glance, the center symmetry does not break
spontaneously even with very heavy adjoint fermions,
whose mass is as heavy as the ultraviolet cutoff scale
[8,21]; therefore one can study the pure Yang-Mills theory
by using the EK equivalence.4

2. The orbifold equivalence

Another large-Nc equivalence, which turned out to be
deeply related to the EK equivalence, was discovered by
Lovelace [5]. He considered the SOð2NcÞ, USpð2NcÞ and
SUðNcÞ Yang-Mills theories and found that the Wilson
loops take the same expectation values in all three theories.
This equivalence was rediscovered and generalized in the
study of the string theory [6], and a deeper understanding
in terms of the field theory was obtained [30,31]. Today it
is called the orbifold equivalence.

4Another way to avoid the center symmetry breakdown is the
double trace deformation [22,23]. Other variants, quenched [17]
and twisted [24] EK models, turned out to fail actually [25–28].
A further modification of the twisted EK model may preserve the
center symmetry (see [29]).
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The general statement is as follows. Let us start with the
‘‘parent’’ theory, which is SOð2NcÞ or USpð2NcÞ in the
case of [5]. We identify a discrete symmetry of the parent
theory, which is a Z2 subgroup of the gauge symmetry in
this example. Then we perform the ‘‘orbifold projection’’
by keeping only the degrees of freedom that are invariant
under the discrete symmetry, so that the ‘‘daughter’’ theory
(SUðNcÞ) is obtained. If the projection satisfies a certain
condition, the correlation functions of the operators in the
parent theory which are invariant under the projection
symmetry (the Z2 subgroup) and the correlation functions
of the corresponding operators in the daughter theory take
the same values, up to a calculable combinatoric factor.
In particular, the expectation values of the chiral conden-
sate take the same value in the SOð2NcÞ, USpð2NcÞ and
SUðNcÞ theories with the fundamental fermions. The EK
equivalence can also be understood as a special example of
the orbifold equivalence [18]. Other valuable applications
include the large-Nc QCD at finite density [9,32–34],
confinement in pure Yang-Mills theory [35,36], and inter-
esting properties of nonsupersymmetric daughters from
supersymmetric parents [37–39].

III. THE CHIRAL RANDOM MATRIX
THEORY (�RMT)

In this section we provide a brief review of the �RMT.
For more details, see, e.g., [40,41].

We consider the � regime of QCD, where the space-time
volume V ¼ L4 is taken such that L is much smaller than
the pion Compton wavelength and is much larger than
1=�QCD [42],

1

�QCD

� L � 1

m�

: (9)

In the � regime, the only relevant degrees of freedom are
zero momentum modes of pions. Then the system has a
universality, that is, the dynamics is determined by the
symmetry breaking pattern and the microscopic details of
the theory do not matter. Therefore QCD can be replaced
by the �RMT, which is a random matrix model with
the same symmetry breaking pattern; in particular, the
spectrum of the Dirac operator can be calculated from
the �RMT. Note that the same argument holds for other
QCD-like theories as long as chiral symmetry is broken
spontaneously.

The partition function of the �RMT is given by

Z ¼
Z

d�
YNf

f¼1

detDfe
�N	

2 G
2 tr�y�; (10)

where� is a N � ðN þ �Þmatrix andG is a normalization
parameter.N corresponds to the size of the system (roughly
speaking the space-time volume), and � is the topological
charge. Correspondingly to the thermodynamic limit of
QCD, N is sent to infinity. In this limit, however, the

fermion mass mf must be scaled so that mfN, which is

(roughly speaking) identified with mfV, is fixed.

Note that we can define the ’t Hooft large-N limit (not
the large-Nc limit) for the �RMT, in whichmf is fixed. The

limit one has to take for the comparison to QCD (mfN

fixed) is not this ’t Hooft limit. This difference is crucial
when we compare the large-Nc gauge theories and �RMT,
as we will see in Sec. IV. In addition, it is important to
notice that N is identified by the total degrees of freedom
associated with the low-energy dynamics and the individ-
ual degrees of freedom, such as the volume and the number
of colors, does not appear in the �RMT explicitly.
The ensemble and the Dirac operator D are chosen so

that the Dirac operator has the same symmetries as the
counterparts in QCD and QCD-like theories. Depending
on the universality classes, there are three �RMTs, which
are distinguished by the Dyson index 	 ¼ 1, 	 ¼ 2, and
	 ¼ 4 [43].
(i) 	 ¼ 2 (e.g., QCD and SUðNcÞ (Nc � 3) with the

fundamental fermions),

Df ¼
mf1 �

��y mf1

 !
; (11)

where � is an N � ðN þ �Þ complex matrix and mf

(f ¼ 1; 2; . . . ; Nf) are the fermion masses.

(ii) 	 ¼ 1 (e.g., SUð2Þ and USpð2NcÞ with the funda-
mental fermions),

Df ¼ mf1 �

��T mf1

 !
; (12)

where � is an N � ðN þ �Þ real matrix.
(iii) 	 ¼ 4 (e.g., SUðNcÞ with the adjoint fermions and

SOð2NcÞ with the fundamental fermions),

Df ¼ mf1 �

��y mf1

 !
; (13)

where � is a 2N � 2ðN þ �Þ quaternion real
matrix, which can be written by using four N �
ðN þ �Þ real matrices 
0, 
1, 
2, and 
3 as

� ¼ 
0 þ i
3 i
1 þ
2

i
1 �
2 
0 � i
3:

 !
: (14)

Because of its simplicity, the �RMT can be solved
analytically. It has been applied not just to the test of
S�SB in the lattice simulations, but also to other important
problems such as the QCD at a finite baryon chemical
potential [44,45] and the phase structure of the Wilson
Dirac operator [46–48].

IV. LARGE-Nc VERSUS �RMT

In this section, we establish the way to use the �RMT
techniques in large-Nc gauge theories. For concreteness,

MASANORI HANADA, JONG-WAN LEE, AND NORIKAZU YAMADA PHYSICAL REVIEW D 88, 025046 (2013)

025046-4



we consider the SUðNcÞ lattice theory with volume V and
fermion mass m. Here the volume V is arbitrary, although
we concentrate on a small fixed volume in Sec. V.

A. Differences of the limits

In order to compare the large-Nc gauge theory and
�RMT, we must understand the differences of the limits,
which are required for the standard 1=Nc counting and the
universality, respectively

(i) When one compares the �RMT with the gauge
theory, the matrix size N of the �RMT is identified
with the degrees of freedom in the gauge theory
which are important for the low-energy dynamics,
N � VN�

c , where the constant � depends on the
representation of the fermion in general. (As we
will see, � ¼ 1 for the massless probe adjoint fer-
mion of the 24-lattice model. Note that it is different
from the usual counting in the ’t Hooft limit, � ¼ 2.)
In order for the universality to hold, mN �mVN�

c

must be fixed as we take the large-Nc limit. Let us
call it the �RMT limit. This limit is compatible with
the condition for the " regime in Eq. (9).

(ii) For the standard 1=Nc counting, the ordinary
’t Hooft large-Nc limit, in which m and V are fixed,
must be taken. In this limit the large-Nc equivalen-
ces (e.g., the EK equivalence) hold.

The �RMT limit is different from the ’t Hooft limit
and the standard ’t Hooft 1=Nc counting does not hold
in this limit. In order to see this, let us consider the
k-point connected correlation function in the �RMT
(see, e.g., [43]),

hð �c c Þk=Niconn;RMT ¼
�
1

N

X2N
i¼1

�
1

�i þm

�
k
�
RMT

; (15)

where �i are eigenvalues of the Dirac operator. In the
’t Hooft counting, hð �c c Þk=Niconn;RMT is of order N0. It is

true when m is of order one: 1=ð�i þmÞk is of order one
and the summation over 2N order-one quantities is of order
N. However, whenm scales as 1=N, the smallest of �i þm
is also of order 1=N, and hence the correlation function
becomes of orderNk�1. This divergence is analogous to the
infrared divergence in SUð3Þ QCD in the " regime. (Note
that �c c in �RMT corresponds to

R
d4x �c c in QCD.) In

large-Nc field theories, this corresponds to the divergence
with a certain power of Nc, which is different from the
’t Hooft counting. This peculiar behavior can also be
understood in terms of the large-Nc gauge theory; because
the coefficients cg;b in (4) are functions of m and V, they

can have nontrivial Nc dependences in the �RMT limit,
where m and V are scaled with Nc.

Because of this difference, the large-Nc equivalences do
not hold in the�RMT limit.As an example, let us consider the
chiral condensate in SUðNcÞ, SOð2NcÞ andUSpð2NcÞ theo-
ries. In the planar limit, because of the orbifold equivalence
(Sec. IIA2), they are the same as a function of m [9,32].

On the other hand, in the �RMT limit they can be calculated
by using the�RMTs as a function ofmN, and they do behave
differently [49,50]. Itmeans the orbifold equivalence does not
hold there. (Note that it is the case even in the quenched
theory, which we numerically study in this paper.)

B. The comparison

First let us recall how one can realize S�SB in numerical
simulations of QCD in the " regime. The criterion for
S�SB is whether the Dirac spectrum agrees with the
�RMT prediction. Once they are found to agree, the value
of the chiral condensate is determined. Notice that the
value of the chiral condensate obtained in the " regime is
the same as the one obtained by taking the chiral limit after
the large-volume (or thermodynamic) limit. It means that,
whatever the order of the limiting procedures is, we can
determine the chiral condensate.
The same logic should hold for large Nc gauge theories.

But this time, the role of the volume in the �RMT limit can
be played by Nc. Namely, the �RMT limit is achieved by
taking the large Nc limit with mVN�

c fixed. Then, the
criterion for S�SB is again the agreement of the Dirac
spectrum in the �RMT (Fig. 2).
In Fig. 3 we show how one can combine the �RMT

and the EK equivalence to see S�SB. We compare the

FIG. 2. The agreement between the �RMT and the large-Nc

gauge theory in the �RMT limit assures S�SB in the ’t Hooft
limit and/or the large-volume limit.

The RMT

the 24 lattice

agreement in the RMT limit

Nonzero chiral condensate 
on the 24 lattice

at m 0 after Nc 

Nonzero chiral condensate 
on large-volume lattice
at m 0 after Nc 

The Eguchi-Kawai 
equivalence

FIG. 3. The agreement between the �RMT and the 24-lattice
model in the �RMT limit implies S�SB or equivalently nonzero
chiral condensate in the ’t Hooft limit. Then, one can use the EK
equivalence to conclude S�SB in the large-volume theory.
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spectrum of the Dirac operator of the probe fermion with
the mass m� N��

c in the V ¼ 24 lattice and that in the
�RMT; the agreement between them implies the break-
down of chiral symmetry (nonzero chiral condensate) in
the ’t Hooft limit. Using the EK equivalence, therefore, we
conclude that chiral symmetry is spontaneously broken in
the large-volume lattice gauge theories. The constant � is
determined by the effective degrees of freedom in the low
mode region. As we will see, in the 24-lattice model with
the massless probe adjoint fermion, small eigenvalues
scales as 1=Nc. Therefore we take � ¼ 1.5 We also found
a nice agreement of the low-lying Dirac spectrum, which
we interpret as the presence of S�SB.

Here let us discuss the Nc scaling of the chiral
condensate for later use. In the large-volume theory, the
chiral condensate � of the adjoint fermion is related
with the spectral density �ð�Þ by the Banks-Casher
relation [51],

�¼ jh �c c ij ¼ ��ð0Þ; with �ð�Þ ¼
�
1

V

X
n

�ð�� �nÞ
�
;

(16)

where �n is the Dirac eigenvalues. The spectral density at
� ¼ 0 is proportional to the inverse of spacing of the near-
zero Dirac eigenvalues, �� ¼ �iþ1 � �i. �� is expected
to scale like �1=N, where N is the number of degrees of
freedom important for the low-energy dynamics. Since the
definition of �ð�Þ in (16) is already normalized by V, �
thus defined scales asNc increases. In the ’t Hooft limit, the
degrees of freedom of both gauge and fermion parts are

OðN2
cÞ and as a consequence � ¼ N2

c
~� in the ’t Hooft

limit, where anOðN0Þ quantity ~� is defined by the properly
normalized operator as

~�¼ 1

N2
c

jhtrð �c c Þij¼�~�ð0Þ; with

~�ð�Þ¼
�

1

VN2
c

X
n

�ð���nÞ
�
: (17)

In the �RMT limit, however, we have to carefully count
the number of degrees of freedom associated with the low-
energy dynamics which may be different from that in the
’t Hooft limit; in general the properly normalized spectral
density would be related to the spacing of small Dirac
eigenvalues by ~�ð0Þ ¼ 1=ðVN���Þ, where the � men-
tioned above is determined from how the low-lying
eigenvalues scale with Nc.

Strictly speaking, there is a subtlety in the �RMT limit
of the 24-lattice model: because the space-time volume of
this lattice is very small, the usual derivation of the �RMT

from QCD via the chiral perturbation theory may not be
applicable.6 In order to circumvent this subtlety, one can
take another path (Fig. 4) as follows. First let us consider a
sufficiently large volume, where the usual derivation of the
�RMT is valid when chiral symmetry is spontaneously
broken. Then, the distribution of the Dirac eigenvalues
should agree with that from the �RMT after properly

normalizing the eigenvalues by �ðVN�Þ~�. Therefore, as
long as V is large enough to justify the chiral perturbation,
V dependence does not appear manifestly. Now let us
shrink the volume further. If we consider the pure Yang-
Mills without the (heavy) adjoint fermion, there is a phase
transition (the breakdown of the center symmetry), beyond
which one cannot expect the same expression for the
distribution of the Dirac eigenvalues. However in the
present case, because there is no phase transition thanks
to the heavy adjoint fermion, it is expected that the same
expression for the eigenvalue distribution holds at very

small volume as a function of �ðVN�
c Þ~�, where the value

of � could be different from that in the large-volume
theory. (In order to confirm this argument, a quantitative

study of ~� on a large lattice is required, which we leave for
future work.) Then, the agreement between the �RMT and
the 24-lattice model in the RMT limit translates into the
agreement between the �RMT and the large-volume lattice
provided unbroken centery symmetry. At large volume and
in the ’t Hooft limit, one can conclude S�SB in the
ordinary manner. By further using the EK equivalence,
S�SB of the 24-lattice model in the ’t Hooft limit can
also be concluded.

FIG. 4. Another interpretation. The agreement between the
�RMT and the 24-lattice model in the �RMT limit translates
into the agreement the �RMT and the large-volume lattice
thanks to the absence of the phase transition (the center sym-
metry breakdown). One can conclude S�SB of the large-volume
theory from the agreement between �RMT and the 24-lattice
model in the �RMT limit.

5In [15] the same scaling has been already found for theNf ¼ 1
theory with a very small mass (which is essentially massless). In
that paper, however, the authors regard that the deviation from the
’t Hooft counting � ¼ 2 suggests the absence of S�SB.

6One might think the standard mapping rule between the
planar sector of the small-volume (i.e., EK model) and the
large-volume theory can be used. However nonplanar diagrams
can contribute in the �RMT limit.
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V. NUMERICAL SIMULATION OF
THE 24-LATTICE MODEL AND

COMPARISON TO �RMT

In this section, we apply the strategy explained in
Sec. IV to the 24-lattice model and detect S�SB. After
introducing the lattice action and simulation details in
Sec. VA, in Sec. VB we confirm that the center symmetry,
which is crucial for the use of the EK equivalence, can be
kept unbroken by adding heavy adjoint fermions. Then, in
Sec. VC we calculate the Dirac spectrum and compare
with the �RMT prediction.

For an earlier work along the same direction, see [14].
See also [52,53] for recent numerical simulations of a
single-site model.

A. Lattice action and simulation details

We take the standard the Wilson plaquette gauge action
Eq. (5),

Sg¼2N2
cb
X
n

X
�<�

�
1� 1

Nc

ReTrP��ðnÞ
�
; n224: (18)

In order to preserve the center symmetry, we add two
flavors of heavy adjoint fermions, for which we choose
the plain Wilson fermion,

Sf ¼ X2
j¼1

X
n

�c n;j

 
c n;j � 

X4
�

h
ð1� ��ÞUadj

n;�c nþ�;j

þ ð1þ ��ÞUy;adj
n��;�c n��;j

i!
; (19)

where b and  represent the inverse of the ’t Hooft
coupling, b ¼ 1=ðg2YMNcÞ, and the hopping parameter,
 ¼ ð2m0aþ 8Þ�1 (where m0 is the bare fermion mass),
respectively. The plaquette P�� is defined by Eq. (6). For

the fermionic action, the link variables in the adjoint
representation are defined by

Uadj
a;b ¼

1

2
Tr½Ta

FUTb
FU

y�; (20)

where Ta
F are SUðNcÞ generators in the fundamental rep-

resentation. This action is invariant under SUðNcÞ local
gauge transformation,

Un;� ! �nUn;��
y
nþ�; �n 2 SUðNcÞ; (21)

as well as ðZNc
Þ4 global center transformation Eq. (8).

Throughout this work, we impose periodic boundary con-
ditions in all directions for both link variables and fermion
fields.

Our lattice simulations consist of the following two
parts: (1) quenched calculations ( ¼ 0), where m0a is
infinite, as a nontrivial check of our numerical code by
confirming the breaking of center symmetry at weak cou-
pling and (2) simulations with two heavy adjoint fermions

( ¼ 0:09), where the center symmetry is unbroken even at
weak coupling while the low-energy dynamics are essen-
tially the same as those of pure SUðNcÞ gauge theory since
m0 is of order of the inverse lattice spacing.
Simulation parameters are summarized in Table I.

We performed simulations at b ¼ 0:57 (weak coupling)
for up to Nc ¼ 16, which is relatively smaller than that in
previous single-site model simulations [8,21,52]. As we
will see in Sec. VB 2, however, we could obtain good
large-Nc limits since we have additional suppression of
the finite volume effects thanks to the larger volume of a 24

lattice. For Nc ¼ 8 and  ¼ 0, we also performed simula-
tions at b ¼ 0:3 and 0.4 corresponding to the strong and
intermediate couplings, respectively. In addition, we per-
formed simulations at b ¼ 0:2 (strong coupling) for  ¼
0:09 and Nc ¼ 6, 8. We used the hybrid Monte Carlo
(HMC) algorithm for all lattice simulations with the plain
leap-frog integrator, where the step size is tuned such that
the acceptance ratio is in the range of 70%–80%. The
simulation codes were developed from the one used in
[54] with appropriate modification to SUðNcÞ adjoint
fermions with arbitrary large Nc. After 200 trajectories
for thermalization, Nconf ¼ 138–600 configurations are
accumulated for each ensemble, where every two adjacent
configurations are separated by 10 trajectories. Statistical
errors are calculated by using the standard bootstrapping
technique.

B. ðZNc
Þ4 center symmetry

As explained in Sec. II A 1, the nontrivial condition for
the large-Nc EK equivalence is that the ðZNc

Þ4 center

symmetry of the reduced volume theory must be unbroken.
The presence of the center symmetry is established by

TABLE I. Simulation parameters.

 b Nc Nconf  b Nc Nconf

0 0.3 8 500 0.09 0.2 6 465

0.4 8 500 8 458

0.5 2 200 0.5 2 150

3 200 3 150

4 600 4 150

5 500 5 500

6 200 6 500

8 500 8 500

10 500 10 300

11 300 11 400

15 200 12 250

16 400 15 138

16 500

7Based on the numerical work for a single-site EK model with
two adjoint fermions in [52,53], b ¼ 0:5 is believed to be at
weak coupling regime and thus have a continuum limit.

LARGE-Nc GAUGE THEORYAND CHIRAL RANDOM . . . PHYSICAL REVIEW D 88, 025046 (2013)

025046-7



checking the following: (1) the Polyakov loop radially
scatters in the vicinity of origin in the complex plane,
(2) the magnitude of the Polyakov loop approaches zero
as Nc increases, and (3) the average plaquette value mea-
sured in the reduced model agrees with that in the large-
volume lattice gauge theory. In this section, we present our
findings for pure SUðNcÞ gauge theory and the theory with
two heavy adjoint fermions.

1. Pure SUðNcÞ gauge theory
In Fig. 5, we show scatter plots8 of the Polyakov loops

defined by

P�¼1ðy; z; wÞ ¼ 1

Nc

TrU�¼1;0;y;z;wU�¼1;1;y;z;w; (22)

and similarly for� ¼ 2, 3, and 4, where b ¼ 0:5 andNc ¼
4, 8, 16 from left to right. In this weak coupling regime, the
plots clearly show the center symmetry breaking as the
Polyakov loops are localized at the elements of the center
of SUðNcÞ, 2in��=Nc, where n� ¼ 0; 1; . . . ; Nc � 1. For a

given number of configurations, the number of clusters
decreases to one as the number of colors Nc increases

from 5 to 16; this means the tunneling transitions between
different center-symmetry-broken vacua will eventually
disappear at Nc ! 1.
For Nc ¼ 8, we performed two more simulations with

smaller values of b. The results of the Polyakov loops are
shown in Fig. 6. At b ¼ 0:3, the Polyakov loops develop a
cluster around the origin, while at b ¼ 0:4 they spread out
and are localized at the center-symmetry-broken vacua,
such as b ¼ 0:5. Therefore, we conclude that the center
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FIG. 5 (color online). Scatter plots of the Polyakov loops for quenched simulations with b ¼ 0:5. The number of colors are Nc ¼ 4,
8, and 16 from left to right.
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FIG. 6 (color online). Scatter plots of the Polyakov loops for quenched simulations with Nc ¼ 8. The values of the couplings are
b ¼ 0:3 and 0.4 from left to right.
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FIG. 7 (color online). Average plaquette values for quenched
simulations with b ¼ 0:5. The red solid line represents the
uncorrelated fit of the data to the function, c0 þ c1=N

2
c , and

we obtained c0 ¼ 0:72733ð12Þ and c1 ¼ 0:3325ð46Þ, where the
chi-square/d.o.f is 0.67.

8For all scatter plots, we used about a hundred ensembles and
chose one of the direction � out of four directions. We found
similar scatter plots for three other directions.
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symmetry is restored in the strong coupling regime. The
boundary between the strong and weak coupling regimes is
located somewhere between b ¼ 0:3 and b ¼ 0:4, which is
consistent with the results in [55].

In Fig. 7, we plotted average plaquette values for Nc up
to 16. The measured plaquette values turn out to scale as
1=N2

c and thus we perform a fit to the data using a constant
plus quadratic function ofN�1

c (red solid line in the figure).
We obtained 0.72733(12) in the large Nc limit, which is
larger than 0.7182, the value from large-volume lattice
gauge theory [8]. Therefore we reproduced the well-known
fact that the large-Nc volume reduction for pure Yang-
Mills theory fails at weak coupling due to absence of the
center symmetry.

2. SUðNcÞ gauge theory with two heavy adjoint fermions

Now let us add two heavy adjoint fermions in order to
keep the center symmetry unbroken even at weak coupling.

At b ¼ 0:5, we performed a set of simulations for various
values of Nc with fixed value of  ¼ 0:09 as shown in
Table I. In Fig. 8, we show scatter plots of the Polyakov
loops forNc ¼ 4, 8, and 16. The clustering of the Polyakov
loops around the origin for Nc ¼ 8 and 16 clearly shows
that the center symmetry is intact, which is in contrast to
the case without adjoint fermions.
In Fig. 9, we show the average plaquette values versus

N�2
c and the magnitudes of the Polyakov loops versusN�1

c .
For the plaquette values, we examined two different fits,
one fitting the data of 4 � Nc � 16 to c0 þ c1=Nc þ
c2=N

2
c (blue solid line) and the other fitting those of 2 �

Nc � 16 to c0 þ c1=N
2
c þ c2=N

4
c (red solid line). For the

Polyakov loops, we fit the data of 5 � Nc � 16 to c0 þ
c1=Nc to obtain the large Nc limit. The fit results are
summarized in Table II.
As discussed in [21,52] in great details, the leading cor-

rection to plaquette in the large-Nc limit for a single-site
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FIG. 8 (color online). Scatter plots of the Polyakov loops at b ¼ 0:5 with two heavy adjoint fermions. The number of colors are
Nc ¼ 4, 8, and 16 from left to right.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.72

0.74

0.76

0.78

0.80

0.82

Nc
2

P
la

qu
et

te

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Nc
1

P

FIG. 9 (color online). (Left) Average plaquette values and (Right) average values of the magnitudes of the Polyakov loops along with
fit results in Table II.

TABLE II. Fit results for the Polyakov loop and plaquette values.

Data set Fit function c0 c1 c2 �2=d:o:f

Plaquette Nc ¼ ½4; 16� c0 þ c1=Nc þ c2=N
2
c 0.72053(71) 0.003(13) 0.383(50) 0.47

Nc ¼ ½2; 16� c0 þ c1=N
2
c þ c2=N

4
c 0.72067(14) 0.405(12) �0:283ð61Þ 0.49

Polyakov loop Nc ¼ ½5; 16� c0 þ c1=Nc 0.0026(12) 0.819(15) 0.89
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lattice model is Oð1=NcÞ, instead of Oð1=N2
cÞ (in the usual

’t Hooft counting), due to the contributions of diagonal zero
modes. If we apply this argument to our non-single site
reduced model, the 1=Nc correction term is suppressed by
1=V. Indeed, we obtained a consistent result where the one-
sixteenth of the coefficient of 1=Nc calculated in [21]9 is
within the uncertainty of our results shown in Table II (first
row). The extracted plaquette value also agrees with that
obtained in a single-site model [21], but it is systematically
larger than that from the large-volume lattice calculation
for pure Yang-Mills. This tiny difference comes from the
presence of heavy fermions. The magnitude of the Polyakov
loop goes to zero as Nc increases; it scales as 1=Nc in the
asymptotic region. Therefore, we conclude that the center
symmetry is unbroken for a given lattice parameters and
thus the EK volume equivalence is applicable.

C. Comparison to �RMT

As discussed in Sec. IV, to detect S�SB we compare the
low-lying Dirac eigenmodes of the 24-lattice model with
those of �RMT in the limit of Nc ! 1 with mVN�

c fixed.
The simplest way to achieve the�RMT limit without losing
the generality might be taking m ¼ 0 and Nc ! 1.10 For
this purpose, we calculate the low-lying spectrum of the
overlap-Dirac operator D for a massless fermion in the
adjoint representation. The operator D is defined by

D ¼ M

2
41þ �5

Hwð�MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hwð�MÞHwð�MÞy

q
3
5; (23)

where Hwð�MÞ is the Hermitian Wilson-Dirac operator,
and the parameter M is taken to be 1.6 in the most cases.

The overlap-Dirac eigenvalues ~�k lie on a circle in the
complex plane [56,57]. To compare the Dirac spectrum
with the �RMT, we consider the projection of the eigen-
values to the imaginary axis,

�k ¼ Im½~�k�
1� Re½~�k�=m0

: (24)

Note that the Dirac eigenvalues for adjoint fermions are
appearing as conjugate pairs with twofold degeneracy
and we take the distinct eigenvalues on the upper-half
plane for our numerical results. Unless otherwise noted,
the numerical results in this section are restricted to the case
of b ¼ 0:5 (weak coupling).

1. Chiral symmetry breaking

As seen in Sec. VB, the adjoint fermion plays a role of
the center symmetry preserver in the 24-lattice model.
Since the EK volume equivalence is valid for the same
lattice parameters such as the bare coupling and the fer-
mion mass, the equivalent large-volume theory also has
the fermion mass of order Oð1=aÞ and approximates the
quenched theory. As a comparison, therefore, we consider
the �RMT for the quenched theory. We restrict the �RMT
predictions to the case of zero topological charge.
Accordingly, the configurations yielding exact zero mode
(s) are omitted from the analysis.
The adjoint QCD with any number of flavors belongs

to the universal class of the chiral Gaussian sympletic
ensemble (ChGSE). However, we also consider two
other universal classes, chiral Gaussian orthogonal en-
semble (ChGOE) and chiral Gaussian unitary ensemble
(ChGUE), in order to make the comparison manifest.
The distributions of the lowest eigenvalue are

PðzÞ ¼

8>>>><
>>>>:

2þz
4 e�ðz=2Þ�ðz2=8Þ for ChGOE

z
2 e

�z2=4 for ChGUEffiffiffi
�
2

p
zð3=2ÞI3=2ðzÞe�z2=2 for ChGSE

; (25)

and the spectral densities [50] are

�ðzÞ ¼

8>>>><
>>>>:

z
2 ½J20ðzÞ þ J21ðzÞ� þ 1

2 J0ðzÞ
h
1� R

z
0 dtJ0ðtÞ

i
for ChGOE

z
2 ½J20ðzÞ þ J21ðzÞ� for ChGUE

z½J20ð2zÞ þ J21ð2zÞ� � 1
2 J0ð2zÞ

R
2z
0 dtJ0ðtÞ for ChGSE

: (26)

Histograms of the lowest twelve Dirac eigenvalues for
Nc ¼ 8, 16 at b ¼ 0:5 and  ¼ 0:09 are shown in Fig. 10.
For the lowest eigenvalue, we found that its distribution is

well described by the �RMT for the ChGSE (solid blue
curve) after introducing a rescaled eigenvalue z by z ¼
�V� to fit the data, where V ¼ 24 and � is a free parame-
ter. As a comparison, we show the distribution of the lowest
eigenvalue predicted by the �RMT for the ChGUE (solid
red curve) and ChGOE (solid black curve) using the same
parameter z for the ChGSE. In addition, we plot the
spectral densities for the ChGSE (dashed blue curve),
which are in good agreement with a few lowest eigenval-
ues. According to Fig. 3, this result would be a strong
evidence that chiral symmetry of quenched large Nc gauge
theory is spontaneously broken.

9The value of the coefficient is 0:22	 0:01, which was not
presented in the original paper.
10Although this limit looks like the ’t Hooft limit (m is fixed),
actually one should not regard it as such because the infrared
(IR) regulator is assumed in the usual ’t Hooft counting; for the
usual ’t Hooft counting one must introduce nonzero fixed m as
an IR regulator, take the large-Nc limit, and then send the mass
to zero.
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In Fig. 11, we compare �h�ki=h�1i for Nc ¼ 16
(our largest value of Nc) with the �RMT prediction,
where the braket h� � �i represents the ensemble average.
The low-lying Dirac eigenvalues perfectly agree with the
�RMT prediction, which adds a further evidence for
S�SB. We have also studied the strong coupling region,
b ¼ 0:2, and similarly found a good agreement with

the �RMT prediction (see Fig. 15). However, note that
this point is actually stronger coupling than the bulk phase
transition; this phase is not related to the continuum limit
a priori.

2. Nc scaling and gap of the Dirac eigenvalues

In Sec. IV, we argued that the �RMT limit of the
24-lattice model is analogous to that of ordinary QCD by
replacing mV with mVN�

c , where the exponent � can be
determined so that N�

c is the number of degrees of freedom
important at low energy, which is proportional to the
inverse of the eigenvalue density around the origin. Then,
because the low-lying eigenvalues scale as 1=Nc as we will
see below, we obtain � ¼ 1.
In the left panel of Fig. 12, we plot the spacing between

the adjacent low-lying Dirac eigenvalues multiplied by Nc

for Nc ¼ 8, 12 and 16. We see a nice agreement of the data
points at up to k ¼ 2 for Nc ¼ 8 and at up to k ¼ 4 for
Nc ¼ 12, where the spacings are expected to show a
plateau for k � 2. This result implies that the near-zero
eigenvalues, which are expected to reproduce the �RMT
prediction well, scale as 1=Nc. (The same scaling had been
reported in [15], by using the single-site model with a very
light dynamical overlap adjoint fermion.) The right figure

FIG. 10 (color online). Low-lying Dirac spectrum for Nc ¼ 8 (left) and Nc ¼ 16 (right). The Dirac eigenvalues are rescaled by
matching the ensemble average of the lowest eigenvalue with the expectation value of the lowest eigenvalue in the �RMT for the
ChGSE. The solid and dotted lines represent the �RMT predictions of the distributions of the lowest eigenvalue and the spectral
density, respectively. The colored histograms are for individual eigenvalues, while the black histograms are for all eigenvalues.
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FIG. 11 (color online). Spacing between the adjacent Dirac
eigenvalues normalized by the lowest eigenvalue h�1i for Nc ¼
16, where �h�ki ¼ h�ki � h�k�1i and h�0i ¼ 0. The red dashed
lines represent the �RMT prediction for the 	 ¼ 4 universal
class.
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FIG. 12 (color online). (Left) Spacing between the adjacent Dirac eigenvalues multiplied by Nc for Nc ¼ 8, 12 and 16. (Right)
Spacing between the first and second Dirac eigenvalues multiplied by Nc for Nc ¼ 4, 6, 8, 12, and 16.

LARGE-Nc GAUGE THEORYAND CHIRAL RANDOM . . . PHYSICAL REVIEW D 88, 025046 (2013)

025046-11



of Fig. 12 shows �h�2imultiplied byNc for various Nc; for
given statistics, they agree with each other for Nc � 8. We
find that the eigenvalue spacing deviates from the �RMT
prediction as we increase k or decrease Nc; the distribution
has a long tail in the direction of the large eigenvalue. This
behavior can be understood as follows. As we will see
below, the gap appears between the (Nc � 1)th and Ncth
eigenvalues, where the spectral density is zero. The repul-
sion between eigenvalues becomes weaker as we approach
the gap, and thus the distribution develops a long tail to the
gap. Therefore, the eigenvalue spacing near the gap be-
comes larger than expected. Note also that the 1=Nc cor-
rection takes a rather complicated form due to the peculiar
distribution; for ��2, though at Nc ¼ 4, 6, 8 the corerction
looks 1=Nc, at Nc � 8 this behavior disappears and the
value stays almost constant. For ��3 we observe a similar
1=Nc-like behavior atNc ¼ 8, 12 and 16, but we expect the
value is saturated at Nc ’ 16.

To describe this gap clearly, we plot the lowest twelve
overlap-Dirac eigenvalues, which lie on a circle in the
complex plain, in units of radian for Nc ¼ 6, 8, and 12 in
Fig. 13. The eigenvalue abruptly jumps at k ¼ 5, 7, and 11
for Nc ¼ 6, 8, and 12, respectively (A similar gap had also
been found in the Nf ¼ 1 theory [15]). For k < Nc, the

eigenvalue spacing roughly scales as 1=Nc or equivalently
the density scales as Nc. The gap persists in the large-Nc

limit: the Nc-th eigenvalues are reasonably well fit by the
function 0:3þ 4:6N�1

c . The schematic diagram of the
overlap-Dirac eigenvalues on a circle in the complex plain
is shown in Fig. 14. The Nc dependence of the eigenvalue
density is expected to change from Nc to N2

c as k changes
from k < Nc to k � Nc.

A possible explanation of the 1=Nc scaling of Dirac
eigenvalues and the appearance of a gap relies on the
perturbative analysis around the diagonal Wilson lines for
a weakly coupled gauge fields. In the perturbation theory,
the spectrum of the theory is governed by the background of
the Wilson lines and thus the low-lying Dirac spectrum
should be closely related to the zero modes [21]. For the
fermions in the adjoint representation the number of zero
modes of the Wilson lines is (Nc � 1), which is the
effective number of degrees of freedom, while the number

of total degrees of freedom is N2
c . According to our argu-

ment in Sec. IV, therefore, the low-lying Dirac eigenvalues
should scale as 1=Nc, being consistent with our numerical
results. We emphasize that this analysis is only true for
weakly coupled large N gauge theory in a compact space.
When Nf ¼ 1, the position of this gap has been studied

for several values of the coupling constant [15], which
turned out to be almost independent of the coupling con-
stant in the lattice unit. Therefore, in the physical unit, the
scale corresponding to the location of the gap diverges as
the lattice cutoff increases. This result looks natural,
because a new physical scale appears otherwise.
It is also satisfactory from the universality point of view:

SUðNcÞ theory with Nf adjoint fermions and SOð2NcÞ
theory with Nf fundamental fermions are equivalent in

the �RMT limit, because they are described by the same
�RMT. However they are completely different in the
’t Hooft large-Nc limit; whereas the former has OðN2

cÞ
fermion degrees of freedom, the latter has only OðNcÞ. In
order for them to become identical in the �RMT limit, the
fermionic degrees of freedom must match somehow. But
now we know the mechanism: only OðNcÞ degrees of
freedom survive in the low-energy limit of the adjoint
theory, because N2

c � Nc eigenvalues become infinitely
large. (In the case of the fundamental fermions in the probe
limit, there is no gap [7]).
At strong coupling phase, the perturbative treatment

around the diagonal background Wilson lines is no longer
reliable: the zero modes can be lifted by gauge fluctuation
and the off-diagonal components would be the same order
of magnitude of the diagonal components. In contrast to
the case of weak coupling, therefore, we expect that the
gap is absent and the eigenvalue spacing is of order
Oð1=N2

cÞ. In the left panel of Fig. 15, we plot the eigen-
value spacing multiplied by N2

c for Nc ¼ 6 (red circle) and
Nc ¼ 8 (blue square) and at b ¼ 0:2. The data show a nice
plateau and agree with each other, implying that the

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

1.2

k

ar
g

Nc 12

Nc 8

Nc 6

FIG. 13 (color online). Low-lying overlap-Dirac eigenvalues
in units of radian for Nc ¼ 6, 8, 12.

FIG. 14 (color online). (Right) Schematic diagram of the
eigenvalue density of the overlap-Dirac operator on a circle in
the complex plane.
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eigenvalue scales as 1=N2
c without any gap in the strong

coupling regime, as expected. In the same manner, it is
expected that the Dirac eigenvalues scale as 1=N2

c , and the
gap does not exist even at weak coupling if the volume is
sufficiently large: as the volume increases the momentum
gap between the lowest and the first excited state, which
differ by (2�=L), decreases and at some point the zero
modes are lifted by gauge fluctuation.

VI. CONCLUSION AND DISCUSSION

In this paper we considered how to apply the �RMT
techniques to large-Nc gauge theories. After giving general
considerations, we provided a numerical demonstration by
using the 24-lattice model as an example. The most im-
portant lesson is that the ’t Hooft large-Nc limit and the
�RMT limit (the microscopic limit) are not compatible in
general: the former is the large-Nc limit with the fermion
massm and the space-time volume V fixed, while the latter
requires mVN�

c to be fixed, where � is a positive constant
which may depend on the theory. The value of � is a unity
in the example we studied in Sec. V, which is different from
the usual ’t Hooft counting.

An important consequence of the difference between
two limits is that several properties in the ’t Hooft
large-Nc limit (e.g., the equivalence between SUðNcÞ,
SOð2NcÞ, and USpð2NcÞ gauge theories) do not hold in
the �RMT limit. This fact must be appreciated when one
applies the large-Nc and/or �RMT approaches to QCD
and related theories; although these two approaches pro-
vide valuable ‘‘exact’’ results, they are valid in different

parameter regions and hence one has to carefully choose a
more suitable method depending on the physics he or she
studies. In spite of the difference of two limits, one can still
detect S�SB of large-Nc gauge theories as we have dem-
onstrated in Sec. V.
Rather curiously, we observed a nice agreement between

the �RMT and 24-lattice model even when the center
symmetry in the latter is broken spontaneously. Of course
we cannot relate this fact to S�SB in the large-volume
theory, because neither the EK equivalence nor the analytic
continuation can be used. This is presumably because the
space-time dimension is not important for the universality
argument; only the pattern of S�SB matters.
As a next step, we are studying whether the SUðNcÞ

gauge theory with dynamical adjoint fermions goes through
S�SB or not, with an application to technicolor models in
mind. We hope to report the results in the near future.
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