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We present a first order formulation for the fourth order action of the new massive dual gravity in four

dimensions, from which the dual equivalence with the massive Curtright theory is established. This

proposal is easily generalized to arbitrary dimension. Also, we obtain the dual actions for massless and

massive Curtright fields in D dimensions.
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I. INTRODUCTION

Higher order derivative theories usually contain ghost
excitations, which make them nonunitary [1], although
other quantum properties can be improved [2]. This is
the case for gravities with curvature squared terms [3].
There are exceptions. For instance, some scalar fields
coupled to gravitation admit a higher order action descrip-
tion (Rþ R2 theory; see [4]). Also, the action for
‘‘Galileons’’ [5] contains higher derivatives; however, their
field equations are nonlinear second order differential
equations. This is analogous to the Lovelock gravity [6],
whose second order field equations arise from an action
that is higher order in curvature. In three dimensions, it is
possible to have higher order gravity theories without loss
of unitarity. The nondynamical Einstein-Hilbert action can
be augmented with a third order derivative Lorentz-Chern-
Simons term, the topologically massive gravity theory [7],
which describes the local propagation of one, ghost-free
and parity sensitive excitation: a massive graviton.
Furthermore, the dubbed new massive gravity in three
dimensions was formulated by Bergshoeff, Hohm, and
Townsend [8] four years ago. It consists, again, in the
nondynamical Einstein-Hilbert action supplemented with
a specific curvature squared term, which leads to a fourth
order field equation. At the linearized level, the new mas-
sive gravity is equivalent to the standard massive spin 2
Fierz-Pauli theory, which propagates 2 degrees of freedom
with the same mass and opposite helicities �2. In both
cases, the Einstein-Hilbert action has a wrong sign, which
is essential in order to have free ghost excitations. The new
massive gravity has a discontinuity in its degrees of free-
dom when the massless limit is considered. This limit leads
to the fourth order Schouten gravity, which describes a
massless, conformal invariant, ghost-free local excitation
[9]. Also, the general massive gravity [10], the most gen-
eral gravity theory in three dimensions, propagates two
massive gravitons of helicities �2 but with different
masses. Its gauge invariant linearized action was shown
to be dual equivalent [11] to the massive spin 2 Fierz-Pauli

with a term that breaks explicitly the local Lorentz
symmetry [12].
Remarkably enough, it is the observation made in

[13,14] that solving on shell algebraic and differential
constraints, it is possible to obtain in three dimensions
higher order field equations for higher spin. This procedure
was extended to four dimensions, but considering the
massive Curtright field [15], which is the dual field to the
massive spin 2 Fierz-Pauli theory in four dimensions
[16,17]. In consequence, a fourth order derivative action
for the massive Curtright field is obtained. A necessary
condition is that the field, which solves the constraints,
belongs to the same Lorentz representation as the original
field. This theory was called new massive dual gravity [18]
and would be a unitary theory, by construction. The
extension to arbitrary dimension has been achieved
recently [19,20].
The aim of this work is to present a first order formula-

tion for newmassive dual gravities. The plan of this work is
the following: in the next section, we introduce a first order
formulation for a massless, mixed symmetry �mn;p field,

valid for arbitrary dimensions. From this action, we obtain
the corresponding dual theory. In Sec. III, we perform the
dimensional reduction of the action presented in Sec. II,
keeping only first massive modes, to obtain the first order
formulation for the massive �mn;p field. In Sec. IV, we

propose the first order action for the new massive dual
gravity in four dimensions. Also, a second order action is
established. From these actions the dual equivalence
between the massive Curtright theory and the new massive
dual gravity is easily achieved. These lower order deriva-
tive actions must be appropriate in order to carry out the
quantization and check out the unitarity of the fourth order
derivative new massive dual gravity. The generalization to
any dimension D will be straightforward. Throughout this
work we use �mn mostly positive, and brackets indicate
antisymmetrization without any normalization factor,
e.g. V½mnp� ¼ Vmnp þ Vnpm þ Vpmn.

II. THE CURTRIGHT FIELD

For general mixed symmetry fields �M1M2���Mi;N , with

second order actions, Zinoviev has achieved first order
*alexangelb@hotmail.com
†adel@ula.ve

PHYSICAL REVIEW D 88, 025045 (2013)

1550-7998=2013=88(2)=025045(7) 025045-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.025045


actions [21]. For our purpose, we will start with the
following first order action for the massless field �MN;P ¼
��NM;P in D dimensions:

I ¼
Z

dDx

�
3

4
YMNP;QY

MNQ;P � 3

4

1

ðD� 3ÞY
MNYMN

� 1

2
YMNP;QFMNP;Q

�
; (1)

where YMNP;Q is an auxiliary field (YMN ¼ YMNP;P ) and
FMNP;Q is the field strength of the field �MN;P

FMNP;Q ¼ @M�NP;Q þ @N�PM;Q þ @P�MN;Q: (2)

This action differs from the Zinoviev action by a change of
variables:

YMNP;Q ¼ �Q;MNP � �½QM�NP�: (3)

We have invariance under the following gauge transforma-
tions:

��MN;P ¼ @MzNP � @NzMP; (4)

being the gauge parameters zMN an arbitrary general sec-
ond order tensor. Besides, we have invariance under local
‘‘Lorentz’’ transformations

��MN;P ¼ �MNP (5)

and

�YMNP;Q ¼ 1

3
@Q�½MNP� � @R�Q½M�NP�R; (6)

where the parameters�MNP are completely antisymmetric.
We decompose the �MN;P field as

�MN;P ¼ TMN;P þ CMN;P; (7)

where TMN;P ¼ �TNM;P is the Curtright field, which sat-
isfies the cyclic identity T½MN;P� � 0 and CMNP is com-

pletely antisymmetric. The Lorentz symmetry indicates
that the CMNP is a nondynamical field and the action will
be written only in terms of the Curtright field. Let us see
this. The equation of motion obtained after independent
variations of the auxiliary field YMNP;Q is

YQ½MN;P� � 1

D� 3
�Q½MYNP� ¼ FMNP;Q: (8)

This equation can be solved for YMNP;Q as

YMNP;Q ¼ 2

3
FMNP;Q þ 1

3
FQ½MN;P� � �Q½MFNP�: (9)

Substituting back into (1) we obtain the second order
action

I ¼
Z

dDX

�
� 1

6
FMNP;QF

MNP;Q � 1

4
FMNP;QF

MNQ;P

þ 3

4
FMNFMN

�
; (10)

where the field strength is now expressed only in terms of
the Curtright field TMN;P. Equivalently, after using the

property of cyclic identity satisfied by TMN;P and omitting

divergences, this last action can be rewritten as originally
proposed by Curtright:

I ¼ 3

2

Z
dDX

�
� 1

6
FMNP;QF

MNP;Q þ 1

2
FMNFMN

�
: (11)

On the other hand, we can consider the field equation
obtained making independent variations on �MN;P

@QY
QMN;P ¼ 0: (12)

Locally this equation can be solved in terms of a
�S1���SD�4;Q field as

YPMN;Q ¼ 1

2
�PMNRS1���SD�4@R�S1���SD�4;Q

� 1

2ðD� 3Þ �
PMNS1���SD�3FS1���SD�3;Q: (13)

We have defined FS1���SD�3;Q � @S1�S2���SD�3;Q þ cyclic

permutation. In five dimensions, we have YPMN;Q �
�PMNRS@R�S;Q, and plugging into (1), the linearized

Einstein action is obtained, illustrating the well known
duality relation between Curtright and the massless spin
2 fields in five dimensions [22]. In six dimensions the
Curtright field is self-dual, and in general D dimensions,
we have the following duality relationship:

TMN;P , �M1���MD�4;N: (14)

The dual action is

I ¼
Z

dDx

�
� ðD� 4Þ
2ðD� 3ÞF

M1���MD�3;NFM1���MD�3;N

� 1

2
FM1���MD�4N;PF

M1���MD�4P;N

þ 1

2ðD� 3ÞFM1���MD�4N;NF
M1���MD�4P;P

#: (15)

III. DIMENSIONAL REDUCTION

In this section we perform a dimensional reduction to the
action (1) from D to D-1 dimensions in order to provide
mass to the Curtright field. We will keep only the first
massive modes in a similar way as was accomplished for
spin 2 in [23]. For this goal, we make the following
definitions:

Ymnp;qðx;yÞ ¼
ffiffiffiffi
�

�

r
Ymnp;qðxÞ cos�y; (16)

Ymny;qðx;yÞ ¼
ffiffiffiffi
�

�

r
Ymn;pðxÞ sin�y; (17)

Ymnp;yðx;yÞ ¼
ffiffiffiffi
�

�

r
XmnpðxÞ sin�y; (18)
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Ymny;yðx;yÞ ¼
ffiffiffiffi
�

�

r
ZmnðxÞ cos�y (19)

and

�mn;pðx;yÞ ¼
ffiffiffiffi
�

�

r
�mn;pðxÞ cos�y; (20)

�my;nðx;yÞ ¼
ffiffiffiffi
�

�

r
�mnðxÞ sin�y; (21)

�mn;yðx;yÞ ¼
ffiffiffiffi
�

�

r
BmnðxÞ sin�y; (22)

�my;yðx;yÞ ¼
ffiffiffiffi
�

�

r
amðxÞ cos�y: (23)

The dependence with the extra compact dimension is
denoted by y, and low letters: m; n; p; . . . indicate coordi-
nates in the reduced spacetime. The fields Xmnp, Zmn,�mn,

and Bmn are completely antisymmetric, am is a vector,
and Ymnp;q and Ymn;p will play the role of auxiliary

fields. Substituting these definitions and performing the
integration on the compact coordinate, we obtain the
dimensionally reduced action y. The result is

I ¼
Z

dD�1x

�
3

4
Ymnp;qY

mnq;p � 3

4ðD� 3ÞYmnp;pY
mnq;q � 3

2
Ymnp;q@m�np;q � 3

2ðD� 3ÞY
mnp;pZmn þ 3

4

D� 4

D� 3
ZmnZmn

� 3

2
Zmnð@man � @nam þ�BmnÞ � 3

2
Ymn;pð@m�np � @n�mp ���mn;pÞ � 1

2
Xmnpð@mBnp þ @nBpm þ @pBmnÞ

�

þ 3

2
Ymn;pYmp;n � 3

2ðD� 3ÞY
mp;pYmq;q þ 3

2
XmnpYmp;n: (24)

This reduced action is invariant under the following gauge
transformations:

��mn;pðxÞ ¼ @mznpðxÞ � @nzmpðxÞ; (25)

�Bmn ¼ @mzny � @nzmy; (26)

��mn ¼ @mzyn þ�zmn (27)

and

�am ¼ @mzyy ��zmy; (28)

where we split up the gauge parameters as
zMN: ðzmn; zmy; zym; zyyÞ.

We can break these gauge symmetries choosing appro-
priately the zmn and zmy gauge parameters to fix the gauges

�mn ¼ 0 and am ¼ 0: (29)

The �mn and am are Stueckelberg fields. Furthermore,
the reduced action inherited Lorentz symmetries with
parameters �MNP: ð�mnp;�mny � �mnÞ, expressed in the

following transformations:

��mn;p ¼ �mnp; (30)

��mn ¼ ��mn ¼ ��Bmn; (31)

�am ¼ 0; (32)

�Ymnp;q ¼ @q�mnp � @r�q½m�np�r ���q½m�np�; (33)

�Ymn;p ¼ @p�mn þ �p½m@q�n�q; (34)

�Xmnp ¼ ���mnp (35)

and

�Zmn ¼ �@p�pmn: (36)

Similarly, we can break the Lorentz symmetry associated
with the �mn parameter by choosing

Bmn ¼ 0: (37)

At this stage, we can eliminate the Zmn field since it
appears as a quadratic multiplier. Its equation of motion
leads to determining its value,

Zmn ¼ 1

D� 4
Ymnp;p : (38)

With these gauges fixing and substituting this value of Zmn,
the reduced action boils down to

I ¼
Z

dDx

�
3

4
Ymnp;qY

mnq;p � 3

4ðD� 3ÞYmnp;pY
mnq;q

� 3

2
Ymnp;q@m�np;q þ 3

2
XmnpYnp;m þ 3

2
Ymn;pYmp;n

� 3

2ðD� 2ÞY
mp;pYmq;q þ 3�

2
Ymn;p�mn;p

�
: (39)

The local Lorentz symmetry associated with the parameter
�mnp can be used to fix gauge in two different ways. The

first alternative consists in choosing Xmnp ¼ 0, and the
other possibility allows us to eliminate the antisymmetric
part of �mn;p (i.e. �½mn;p� � 0). Both choices will lead to

the same result: the first order formulation for the massive
Curtright action. Fixing the gauge Xmnp ¼ 0, the field
equation for Ymn;p is
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Ymp;n � Ynp;m � 1

D� 2
ð�pnYm � �pmYnÞ ¼ ���mn;p;

(40)

which can be solved as

Ymn;p ¼ ��

2
½�mn;p þ�mp;n ��np;m�

��½�mp�n � �np�m�; (41)

and when this expression is plugged into (39), the result is
the following nongauge invariant action:

I ¼
Z

dDx

�
3

4
Ymnp;qY

mnq;p � 3

4ðD� 3ÞYmnp;pY
mnq;q

� 3

2
Ymnp;q@m�np;q � 3�2

8
ð�mn;p�mp;n

þ 2�mn;p�mp;n � 4�m�mÞ
�
: (42)

The first line in this dimensional reduced action (42) is the
first order action for the massless Curtright field. Now, if
we decompose the �mn;p in its irreducible parts: �mn;p ¼
Tmn;p þ Cmnp, with T½mn;p� � 0 and Cmnp completely anti-

symmetric, this part does not depend on Cmnp, while the

coefficients of the massive term, the second line in action
(42), are such that the constituents of�mn;p are decoupled.

Indeed

�mn;p�mn;p þ 2�mn;p�mp;n � 4�m�m

¼ 2Tmn;pT
mn;p � 4TmT

m � CmnpC
mnp: (43)

In consequence, Cmnp is a nondynamical field, and then by

eliminating Ymnp;q through its equation of motion, we

obtain the second order action for the massive Curtright
field,

I ¼ 3

2

Z
dDx

�
� 1

6
Fmnp;qF

mnp;q þ 1

2
FmnFmn

��2

2
ðTmn;pT

mn;p � 2TmT
mÞ
�
: (44)

The number of degrees of freedom of this theory is given
by 1

3 ðD� 1ÞðDþ 1ÞðD� 3Þ, while in the massless case

the Curtright field propagates 1
3DðD� 2ÞðD� 4Þ trans-

verse modes. The massless Curtright field inDþ 1 dimen-
sions has the same number of degrees of freedom as the
massive Curtright field in D dimensions.

If we have chosen the gauge Cmnp ¼ 0 (�mn;p ¼ Tmn;p),

then Xmnp is a multiplier, which tells us that Y½mn;p� ¼ 0.

After eliminating Ymn;p through the use of its equation of

motion, we again reach the action for the massive Curtright
field. From now on, we will refer only to the Curtright
Tmn;p.

From the first order action (42), we can obtain the dual
theory for the massive Curtright field if we eliminate the

�mn;p field through its equation of motion. In fact, we
obtain

�mn;p ¼ � 1

�2
@qðYqpm;n � Yqpn;mÞ

þ 1

�2ðD� 2Þ@qð�
pmYqn � �pnYqmÞ; (45)

and substituting into (42), the following action for Ymnp;q is
obtained:

2

3
�2I ¼

Z
dDx

�
@qY

qmn;p@rYrmp;n � 1

D� 2
@qY

qm@rY
rm

þ�2

2

�
Ymnp;qYmnq;p � 1

D� 3
YmnYmn

��
: (46)

Now, if we decompose Ymnp;q in its trace and traceless
parts

Ymnp;q ¼Wmnp;q þ 1

D� 2
ð�qmYnp þ�qnYpm þ�qpYmnÞ;

(47)

where Wmnp;q is the traceless part of Ymnp;q (Wmnp;
p ¼ 0),

the action is written as

2

3
�2I¼

Z
dDx

�
@qW

qmn;p@rWrmp;n

þ�2

2

�
Wmnp;qWmnq;p� 1

ðD�2ÞðD�3ÞY
mnYmn

��
;

(48)

which clearly shows that the trace of Ymnp;q is a non-
dynamical variable. Next, we introduce the dual ofWmnp;q,

Wmnp;q ¼ 1

ðD� 3Þ �
mnpr1���rD�3Tr1���rD�3q: (49)

Since Wmnp;q is traceless, then Tr1���rD�3;q satisfy the

cyclic identity: T½r1���rD�3;q� � 0 and introducing the field

strength Fr1r2���rD�2;q � @r1Tr2���rD�3;q þ cyclic permuta-

tions, the dual action for the massive Curtright field is

I ¼
Z

dDx

�
� 1

ðD� 2ÞF
r1���rD�3p;qFr1���rD�3p;q

� Fr1���rD�3p;pF
r1���rD�4q;q

��2ðTr1���rD�3;pT
r1���rD�3;p

� ðD� 3ÞTr1���rD�4p;pT
r1���rD�4p;pÞ

�
: (50)

Thus, we have established the duality relationship
between the massive Curtright field (Tmn;p) and a massive

mixed symmetry field Tm1���mD�3;p.

IV. THE FIRST ORDER ACTION

In four dimensions the massless Curtright does not
propagate any local excitations like the massless spin 2
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in three dimensions. Generally, a massless �m1;m2;mD�2;n

field in D dimensions does not have any degrees of free-
dom. In four dimensions, Zinoviev has written down a first
order action for the nondynamical Curtright field, akin to
the well-known first order action of linearized Einstein
action in three dimensions. This action is expressed in
terms of the Tmn;p field and an auxiliary field hmn neither

symmetric nor antisymmetric. This action is written out as

IC ¼
Z

d4x

�
� 1

4
ðhmnh

nm � h2Þ þ 1

2
�mnpqhmr@nTpq;r

�
:

(51)

In fact, the field equation obtained by varying the auxiliary
field hnm tells us

hnm ¼ �mpqr@pTqr;n: (52)

Note that h ¼ 0 on shell, but we will keep the h2 term in
the action because it will be necessary to have the dual off-
shell equivalence between massive spin 2 and Curtright
fields in four dimensions. When this value of hnm is
substituted into IC, the second order Curtright action is
obtained

IC ¼ 1

2

Z
d4xTmn;pG

mn;p; (53)

where

Gmn;p � 1

2
�mnsr�pquv@r@qTuv;s (54)

is the ‘‘generalized Einstein tensor’’ for the Curtright field
introduced in Ref. [18].

Now, we are ready to propose the first order action in
four dimensions for the fourth order ‘‘new massive
gravity.’’ This action involves three independent variables:
the Curtright field Tmn;p, a hmn field and an auxiliary field

Ymn;p. Both Tmn;p and Ymn;p satisfy cyclic identities. The

action is written as

I ¼
Z

d4x

�
� 1

4
ðhmnh

nm � h2Þ þ 1

2
�mnpqhmr@nTpq;r

þ Ymn;pYmp;n � 1

2
YmYm þ�Ymn;pTmn;p

�
: (55)

Making independent variations on the fields, we obtain

�I

�hnm
¼ 0 ) hmn ¼ �npqr@pTqr;m; (56)

�I

�Ymn;p

¼ 0

) Ymn;p ¼ ��

2
½Tmn;p þ Tmp;n � Tnp;m�

��½�mpTn � �npTm� (57)

and

�I

�Tmn;p

¼ 0 ) Ymn;p ¼ � 1

2�
�mnqr@qhrp: (58)

Equations (56) and (58) are first order in derivatives. As
usual, the auxiliary fields (hmn and Ymn;p) can be substi-

tuted, using Eqs. (56) and (57), in order to reach the second
order action (44) for the massive Curtright field Tmn;p.

Alternatively, we can express the Ymn;p field [Eq. (58)] in

terms of the second derivative of the Curtright field Tmn;p

using Eq. (56),

Ymn;p ¼ � 1

�
Gmn;p½T�: (59)

Since Ymn;p satisfies a cyclic identity, we can write

Ymn;pYmp;n � 1

2
YmYm ¼ 1

2
Ymn;pYmn;p � 1

2
YmYm: (60)

Plugging into the first order action (55), the values of
hmn and Ymn;p given by Eqs. (56) and (59), we obtain the

fourth order action of the new massive gravity in four
dimensions,

I ¼ 1

2

Z
d4x

�
�Tmn;pG

mn;p þ 1

�2
Gmn;pSmn;p

�
; (61)

where

Smn;p � Gmn;p � 1

2
ð�npGm � �mpGnÞ (62)

is a generalized ‘‘Schouten’’ tensor. Note the wrong sign of
the kinematical Curtright term; it has been flipped over.
In this way we have implemented a first order parent
action that establishes the equivalence between the second
order massive Curtright theory and the higher order action
of [18].
Alternatively, we can arrive to the fourth order action

from a second order action. After integrating out the hmn

auxiliary field, we introduce a new vmn;p auxiliary field, in

order to rewrite the second order action for the massive
Curtright field in the following way:

I ¼
Z

d4x

�
� 1

2
vmn;p�

mnsr�pquv@r@qvuv;s

þ Tmn;p�
mnsr�pquv@r@qvuv;s þ Ymn;pYmp;n � 1

2
YmYm

þ�Ymn;pTmn;p

�
: (63)

Now, the Tmn;p field is a linear multiplier, whose constraint

is solved by Ymn;p ¼ � 1
�Gmn;p½v�, which lead to the fourth

order action for vmn;p.

Moreover, we can establish the dual equivalence
between massive Curtright field and the massive spin 2
field, in four dimensions, from our parent first order action.
Indeed, using only (58), we obtain
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I¼
Z
d4x

�
� 1

16

�
Cmn;pC

mn;p� 1

16
Cmn;pC

mp;nþ 1

4
CmC

m

�

� 1

4
ðhmnh

nm�h2Þ
�
; (64)

where Cmn;p � @mhnp � @nhmp and Cm ¼ Cmn;n . This is

just the massive second order spin 2 Fierz-Pauli action.
The generalization to D dimensions is

I¼
Z
dDx

�
�1

4
ðhmnh

nm�h2Þ

þ1

2
�mns1���sD�2!mr@nTs1���sD�2;r

þYm1���mD�3n;pYm1���mD�3n;p�
1

D�2
Ym1���mD�3Ym1���mD�3

þ�Ym1���mD�2;pTm1���mD�2;p

�
; (65)

where Tm1;m2;...;mD�2;n is the dual massive field of the mas-

sive hmn field [17]. Ym1;m2;...;mD�2;n is an auxiliary field

(Ym1;m2;...;mD�3
¼ Ym1;m2;...;mD�3n;n). Both Tm1;m2;mD�2;n and

Ym1;m2;mD�2;n satisfy cyclic identities. Now, we have the

following equations:

hmn ¼ �npr1���rD�2@pTr1���rD�2;m (66)

and

Ym1���mD�2;n ¼ � 1

�
Gm1���mD�2;n; (67)

where

Gm1���mD�2;n ¼ 1

2
�m1���mD�2qp�nsr1���rD�2@q@sTr1���rD�2;p (68)

is the generalized Einstein tensor. Plugging (66) and (67)
into (65), the fourth order action [19,20] is obtained,

I ¼
Z

dDx

�
1

2
Tm1���mD�2;nG

m1���mD�2;n

þ 1

�2
Gm1���mD�2;nSm1���mD�2;n

�
; (69)

where

Sm1���mD�2;n ¼ Gm1���mD�2;n �
1

D� 2
�n½mD�2

Gm���mD�3�p;p

(70)

is the generalized Schouten tensor. Also, the first order
action (65) permits one to show the dual equivalence

hmn , Tm1���mD�2;n; (71)

which was established in [17] for the massive linearized
gravitation in arbitrary dimensions.

Finally, we consider the case for three dimensions.
We must expect to recover the fourth order new massive
gravity [8]. The first order action to consider is

I ¼
Z

d3x

�
� 1

2
ð!mn!

nm �!2Þ þ �mnpq!mr@nepq

þ 1

2
YmnYnm � 1

4
Y2 þ�Ymnemn

�
: (72)

We have denoted the auxiliary fields by !mn (for
convenience) and Ynm, which are general second order
tensor. The coefficients have been slightly changed in
concordance with the result of Ref. [23]. The following
equations of motion are obtained:

�I

�!nm

¼ 0 ) !mn � �nm!þ �pqn @peqn ¼ 0; (73)

�I

�Ymn

¼ 0 ) Ymn � 1

2
�mnY þ�e ¼ 0 (74)

and

�I

�emn

¼ 0 ) Ymn;p ¼ � 1

�
�pqm @p!qn: (75)

Equation (73) is solved as

!mn ¼ �pqn @peqm � 1

2
�mn�

pqr@peqr � Wmn½e�; (76)

while Eq. (74) determines Ymn,

Ymn ¼ ��ðemn � �mneÞ: (77)

Inserting Eqs. (76) and (77) into Eq. (72), the following
action is obtained:

I¼
Z
d3x

�
1

2
emq�

mnp@nWpq½e� ��2

2
ðemne

nm�e2Þ
�
; (78)

and after introducing the symmetric and antisymmetric
parts of emn (emn ¼ hmn þ �mnpv

q), we recognize (78) as

the action for the massive spin 2. The first term is the
linearized Einstein action (emq�

mnp@nWpq½e� ¼ hmnG
mn,

Gmn ¼ Rmn � 1
2�mnR is the linearized Einstein tensor)

expressed only in terms of the symmetric part hmn of
emn. The antisymmetric component vq appears decoupled
in the massive term. Alternatively, as in the formulation for
the Curtright field, we can express Ymn as

Ymn ¼ � 1

�
�pqm @pWqn ¼ � 1

�
Gmn½h�; (79)

and substituting (76) and (79) into the action, the new
massive gravity is reached,

IBHT ¼ 1

2

Z
d3x

�
�hmnG

mn þ 1

�2

�
RmnR

mn � 3

8
R2

��
:

(80)

Thus, we have implemented a first order formulation for
the fourth order new massive gravity in three dimensions.
On the other hand, the action expressed only in terms of
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!mn is the same form as for the emn. In three dimensions,
the massive spin 2 field is self-dual.

V. CONCLUSIONS

In this paper we have established a first order action for
the fourth order action of the new massive gravity in four
dimensions. To achieve this goal, two auxiliary fields were
introduced, besides the Curtright field. One of these
auxiliary fields comes from the dimensional reduction of
the first order action for the Curtright field, while the
other auxiliary field appears when we consider a first
order kinematical term for a general mixed symmetry
Ts1���sD�2;r [16],

I ¼
Z

dDx

�
� 1

4
ðhmnh

nm � h2Þ

þ 1

2
�mns1���sD�2!mr@nTs1���sD�2;r

�
: (81)

This action is ‘‘topological’’ in the sense that it does not
propagate any local degrees of freedom. Likewise,

a second order action was achieved. The extension to
arbitrary dimensions was straightforward formulated, in-
cludingD ¼ 3 new massive gravity. Furthermore, we have
established the dual actions for massless and massive
Curtright field in any dimensions,

Tmn;p , Tm1���mD�4;pð� ¼ 0Þ
Tmn;p , Tm1���mD�3;pð� � 0Þ: (82)

With these lower derivative actions, the canonical analysis
must be straightforward with the goal of confirming the
absence of ghost. This issue is the proposal of a future
work.
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