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In dipole-dipole scattering at large rapidity � ¼ ln ðs=s0Þ, the induced instanton on the string world

sheet carries entropy Sk ¼ 2ð�Pk � 1Þ�, with �Pk � 1 the Pomeron intercept for a dipole source of

N-ality k. We argue that this entropy is released promptly over a time tR � ðb?=�Þ3=ð4�0Þ, with �0=2 the

Pomeron slope and b? the impact parameter. This stringy entropy may explain the 3=2 jump in the total

charged multiplicities at about ten participants reported over a wide range of collider energies by

PHOBOS. We predict the charged multiplicities in pp, pA and central AA collisions at LHC.
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I. INTRODUCTION

The issue of how entropy is released in hadron-hadron
and nucleus-nucleus collisions is a fundamental problem in
the current heavy-ion program at collider energies. How
coherence, which is a hallmark of a fundamental collision,
turns to incoherence, which is at the origin of the concept
of entropy, is a theoretical question of central importance.
A possible understanding for the entropy deposition was
attempted at weak coupling through the concept of the
color glass approach in classical but perturbative QCD
[1–3] and at strong coupling through the concept of black
hole formation in holographic QCD [4–8].

The evidence of a strongly coupled plasma released at
collider energies, with large and prompt entropy deposition
and flow, suggests that a strong coupling approach is
needed for the mechanism of entropy decomposition.
In this way, the holographic approach with the release
of a black hole falling along the holographic direction
provides a plausible mechanism for entropy production.
However, this mechanism is detached from our under-
standing of fundamental pp collisions, which are, after
all, the seeds at the origin of the entropy production. This
paper is an attempt to provide such an understanding.

pp collisions at large rapidity are dominated by
Pomeron and Reggeon exchange [9,10]. In the kinematic
region

ffiffiffi
s

p � ffiffiffiffiffiffi�t
p

, Pomeron exchange dominates the
eikonalized scattering amplitude, which is modeled though
gluon ladders at weak coupling [11]. At large Nc and
strong coupling, the Pomeron exchange has a simple
holographic realization as noncritical closed-string ex-
change in the t channel inD¼5 [12]. For early approaches,
see Refs. [13,14]. For a description of the Pomeron as a
closed-string exchange in critical D ¼ 10 dimensions
using the Virasoro-Shapiro string amplitude, see Ref. [15].

At large rapidity �, this string exchange is characterized
by an effective Unruh temperature, which is set by the
impact parameter and the collision energy. This tempera-
ture emerges from a longitudinal acceleration of the string
caused by a global and longitudinal ‘‘electric field’’ on the
string world sheet. This global electric field encodes

twisted boundary conditions and gives rise to a stringy
instanton as the Pomeron in dipole-dipole scattering at
large rapidity. Below, we suggest that the Unruh tempera-
ture causes the string to partially vibrate and thus carry
entropy. The idea of relating the Hawking-Unruh radiation
of a black hole to radiative processes in a color-confining
theory such as QCD was explored in Ref. [16] using
different arguments.
In Secs. II and III, we recall the holographic dipole-

dipole scattering formulation through bosonic string
exchange [12] and the close connection to Gribov diffusion
in curved space [17]. In Sec. IV, we revisit the arguments
for the emergence of a stringy instanton presented in
dipole-dipole scattering. We then review the connection
between the Schwinger pair-production formalism and the
Unruh effect in Sec. V to obtain the entropy released in the
collision in Sec. VI. We derive the entropy associated
with the stringy instanton and tie it with the wee-dipole
multiplicity characteristic of the one-Pomeron exchange.
We further estimate the time it takes for this entropy to be
deposited in Sec. VII. In Secs. VIII and IX, we suggest that
this stringy entropy is at work in pp, pA and AA collisions
at collider energies and show that it can account for a
key jump in the total charged multiplicities versus the
number of participants as reported by the PHOBOS
Collaboration. The obtained charged multiplicities are
compared to the pp and AuAu data. We predict the multi-
plicities for pPb and PbPb at the LHC. Our conclusions
follow in Sec. X.

II. HOLOGRAPHIC DIPOLE-DIPOLE
SCATTERING

To make our discussion self-contained, we briefly
review the basic formulation for the elastic dipole-dipole
scattering amplitude through a Wilson loop correlator
[18–21] and its holographic translation [12]. Each dipole
is described by a Wilson loop, and we seek to express the
scattering amplitude in terms of the two-loop correlator.
The kinematics is captured by a fixed impact parameter
b?, conjugate to the transferred momentum q?, and the
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rapidity interval � related to the collisional energy. At high
energies, the T matrix factorizes [19,22,23]:

T 12!34ðs; tÞ ¼ 2is
Z

du1du2c 4ðu1Þc 3ðu1Þ
�T DDð�;b?; u1; u2Þc 2ðu2Þc 1ðu2Þ; (1)

where ui is related to the transverse size of the dipole
element described by the wave function c i. The dipole-
dipole scattering amplitude is given by

T DDð�;b?; u1; u2Þ
¼
Z

dD?b?eiq?�b?ð1� hWðC1ÞWðC2ÞiGÞ

�
Z

dD?b?eiq?�b?WW; (2)

where the integration is taken over the D? dimensional
impact parameter space separating the two dipoles. Wewill
use the normalization hWi ¼ 1 and focus only on the
connected part of the correlator. The subscript G in
Eq. (2) indicates that the expectation value of the Wilson
loop correlator is taken over gauge fields. This implies that
the gluonic flux tube does not brake by dynamic quark-
antiquark pair production. At high energies, Pomerons
(correlated gluon ladders) dominate over Reggeons (corre-
lated quark-antiquark exchange). The Wilson loops are
evaluated along the surfaces C1, C2 pictured in Fig. 1.
Note that in the eikonal approximation, the ultrarelativistic
dipole is a scalar, since it nearly moves on the light cone. In
Eq. (2) we have suppressed a dependence on the individual
momenta of the dipole constituents and assumed that the
total momentum of each dipole is equally distributed
between its constituents. The effective size of the dipole
is at a maximum when the momentum is unequally

distributed, and hence, we are restricting our analysis to
small dipoles.
Early calculations of the Wilson loop correlator in a

static setup are found in Refs. [24–26]. The correlator
between two circular loops is stable when the distance
separating the loops is of the order of the radius of the
individual loops. A Gross-Ooguri phase transition [25]
occurs when this distance is much larger than the radius;
in order to elongate the surface in bulk, supergravity inter-
actions in bulk between the two lumps are needed. In a non-
supersymmetric setup, the potential between two heavy
mesons is generated by the exchange of a ‘‘scalarball’’ [27].
In order to access the scattering amplitude, the boundary

conditions for the Wilson loops change from a static to a
dynamic setup. In Euclidean space, this amounts to chang-
ing the angle � to a nonzero value. This is illustrated in
Fig. 1. The role of the angle is played by the rapidity
interval after analytic continuation. This will generate a
tunneling contribution absent in the potential. This tunnel-
ing contribution will be at the origin of the entropy in the
elastic scattering amplitude, as we detail below. This is one
of the fundamental observations of this paper.
The problem of finding a minimal surface to the dynamic

setup in Fig. 1 has a long history. Early approaches [13]
attempting to solve for a string world sheet at constant time
slices yield a Reggeized amplitude at large s, but fail to
describe inelastic processes and give a negative Pomeron
intercept. In Ref. [14], a first-order perturbation in the bulk
AdS fields is taken into account. The intercept is purely
kinematical, i.e. equal to 1 for the case of the graviton, as

compared to the QCD expectation s4=��sNc ln ð2Þ.
When the dipoles are small compared to the impact

parameter and the rapidity interval is large, the surface
connecting the two dipoles is highly twisted and can be
approximated by the world sheet of a string with the
appropriate boundary conditions; see Fig. 2. In general,
the surface is exchanged in D? dimensions. Below, we
show that a detailed comparison with QCD BFKL expec-
tations and experimental data suggests D? ¼ 3 [17,28].
The curved holographic coordinate scales the momenta of
the dipoles [29]. Accordingly, the change in the curved
holographic coordinate, or z, from one end of the string to
the other is proportional to the momentum transfer
between the dipoles. Thus, in the Regge regime withffiffiffi
s

p � ffiffiffiffiffiffi�t
p ¼ q?, the string is exchanged in an approxi-

mately flat background for a confining metric. To describe
a scattering process in which a colorless object is
exchanged, the string is bosonic and closed. We will
neglect corrections to the tree-level approximation, as the
string coupling will be assumed to be small. However, we
will not limit ourselves to a classical string configuration
but will take into account (quantum) oscillations. A similar
idea was put forward more than three decades ago [30].
The problem is set up in Euclidean space and then

continued to Minkowski space. Due to the expected pole

FIG. 1. Dipole-dipole scattering in Euclidean space; see text.
Reprinted with permission from G. Basar et al., Phys. Rev. D 85,
105005 (2012). Copyright 2012, American Physical Society.
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structure of the amplitude, the analytic continuation is by
no means trivial. The reliance of the continuation has been
tested on the lattice [31,32]. After analytic continuation
from Euclidean to Minkowski space, the angle � is trans-
formed to the rapidity interval � � �max þ �min ¼ i�,
which is defined by

cos � ! cosh� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p ¼ s

s0
� 1; (3)

where the parameter s0 is related to the effective transverse
scattering mass as s0 ¼ m2

? ¼ m2 þ p2
?.

With D? ¼ 3, we will use AdS5 with an IR cutoff
realized through a hard wall at z0 as a confining back-
ground. Although the field theory corresponding to this
space is not exactly QCD, it captures some of its essential
features [33]. The Euclidean AdS5 space-time metric is

ds2 ¼ 1

z2
ððdx0Þ2 þ ðdx1Þ2 þ ðdx2?Þ þ ðdzÞ2Þ; (4)

where we have set the AdS radius to 1. The IR cutoff is at
some z0, i.e. 0 � z � z0. The dipoles of fixed size a, a

0 are
initially located at the boundary z � 0. Later, they will be
moved to the bulk to account for their varying sizes.

We will now recall the dipole-dipole correlator for small
momentum transfer where the background space-time is
taken to be flat as detailed in Ref. [12] for completeness.
In this approximation, the Wilson loop correlator reads

WW ¼ g2s
Z 1

0

dT

2T
KðTÞ: (5)

The closed string is parametrized by one parameter, the
modulus (‘‘circumference’’) T. The factor g2s in Eq. (5)
comes from the genus of the string configuration compared
to the disconnected configuration. The string propagator
reads

KðTÞ ¼
Z
T
d½x�e�S½x�þghosts: (6)

For closed, long strings where the interaction between the
strings is negligible, the effective string action is the
Polyakov action

S ¼ �T

2

Z T

0
d�

Z 1

0
d� ð _x� _x� þ x0�x0�Þ; (7)

with _x ¼ @�x and x0 ¼ @�x. The string tension is �T ¼
1=ð2��0Þ. The Regge slope�0 is related to the fundamental
string length by �0 ¼ l2s . We have made the following
gauge choice for the world-sheet metric: hab ¼ �a

b.

The string coordinate x�ð�; �Þ is closed,
x�ðT;�Þ ¼ x�ð0; �Þ; (8)

and attaches to the twisted dipole surfaces

cos ð�=2Þx1ð�; 0Þ þ sin ð�=2Þx0ð�; 0Þ ¼ 0; (9)

cos ð�=2Þx1ð�; 1Þ � sin ð�=2Þx0ð�; 1Þ ¼ 0: (10)

We already see that the freedom in moving the intersection
point of the string world-sheet with the dipole surfaces
of width a, a0 yields a factor aa0 in the correlator
[Eqs. (5) and (6)].
The world-sheet is twisted in the x0, x1 coordinates

x0

x1

 !
¼ cos�� � sin ��

sin �� cos��

 !
~x0

~x1

 !
; (11)

with �� ¼ �ð2�� 1Þ. This twist (rotation) in Euclidean
space corresponds to a Lorentz boost in the longitudinal
direction after analytic continuation.
We can now evaluate the Wilson loop correlator by

solving for the bosonic string world-sheet with Neumann
boundary conditions for ~x0 and Dirichlet boundary
conditions for ~x1. The Polyakov action is quadratic in
the untwisted coordinates, and the solutions can be
parametrized as

~x0ð�; �Þ ¼ Xþ1

m¼�1

Xþ1

n¼0

x0mne
2�im�=T cos ð�n�Þ; (12)

~x1ð�; �Þ ¼ Xþ1

m¼�1

Xþ1

n¼0

x1mne
2�im�=T sin ð�n�Þ: (13)

Note that the temporal component has a nonvanishing
ground state similar to a zero mode:

FIG. 2 (color online). Twisted surface connecting the Wilson
loops; see text. Reprinted with permission from G. Basar et al.,
Phys. Rev. D 85, 105005 (2012). Copyright 2012, American
Physical Society.
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~x0ZMð�; �Þ �
Xþ1

m¼�1
x0m0e

2�im�=T: (14)

The transverse, untwisted coordinates are periodic with
Dirichlet boundary conditions

x?ð�; �Þ ¼ �b?ð1� 2�Þ=2

þ Xþ1

m¼�1

Xþ1

n¼0

x?mne
2�im�=T sin ð�n�Þ: (15)

Since the action is quadratic, the propagator [Eq. (6)]
factorizes as

K ¼ K0L �K;L �K? �Kghost; (16)

with the individual contributions K0L, K;L from the
longitudinal zero/nonzero modes and K? as the contribu-
tion from the ? modes. Due to the gauge choice for the
string world-sheet metric, the propagator gets the ghost
contribution Kghost.

The contributions from the longitudinal modes read [12]

K0LðTÞ ¼ ð2 sinh ð�T=2ÞÞ�1 (17)

and

K;LðTÞ ¼
Y1
n¼1

Y
s¼	1

ð2 sinh ððnþ s�=�Þ�T=2ÞÞ�1: (18)

The transverse part of the propagator is given by

K? ¼ e��Tb
2
?T=2	�D?ðiT=2Þ; (19)

with the Dedekind eta function

	ð�Þ � q1=24
Y
n

ð1� qnÞ (20)

and q � e2�i�. The ghost contribution to the propagator is
given by

KghostðTÞ ¼
Y1
n¼1

4sinh 2ðn�T=2Þ: (21)

We can now analytically continue from Euclidean to
Minkowski space by letting � ! �i�. The loop-loop
correlator then reads

WW ¼ g2s
Z 1

0

dT

2T
KðTÞ (22)

¼ ig2saa
0

4�0
Z 1

0

dT

T

1

sinð�T=2Þ
�Y1

n¼1

Y
s¼	1

sinhðn�T=2Þ
sinhððn�þ is�ÞT=2Þ	

�D?ðiT=2Þ

�e�b2
?T=4��

0
: (23)

For � ! 1, we see that the longitudinal zero modes are
responsible for the poles along the real T axis. Picking up

the residues at the positive poles T ¼ 2�k=�, Eq. (23)
equates to

WW ¼ g2saa
0

4�0
Xkmax

k¼1

ð�1Þk
k

	�D?ði�k=�Þe�kb2
?=2�

0�: (24)

Using

	�D?ði�k=�Þ¼
�
�k

�

�
D?=2

eD?�=12k
Y1
n¼1

ð1�e�2�n=kÞ�D?

¼
�
�k

�

�
D?=2X1

n¼0

dðnÞe�2�n=k; (25)

we can rewrite the Wilson loop correlator as

WW ¼ g2saa
0

4�0
Xkmax

k¼1

X1
n¼0

ð�1Þk
k

�
�k

�

�
D?=2

� dðnÞe�kb2
?=2�

0�þD?=12k�2�n=k: (26)

For large n, the density of string state dðnÞ rises
exponentially [34]:

dðnÞ 
 e2�
ffiffiffiffiffiffiffiffiffiffiffi
D?n=6

p

nD?=4
: (27)

The correlator [Eq. (26)] is dominated by the lowest trans-
verse mode, n ¼ 0. The poles are at different winding k,
which is interpreted as the N-ality. For QCD with Nc ¼ 3,
the exchange is limited to k ¼ 1, 2 strings.

III. GRIBOV DIFFUSION IN CURVED SPACE

Gribov diffusion [35,36] is a way to reconcile the par-
tonic picture with the nonperturbative aspects of hadronic
interactions at high energies. The assumption is that had-
ronic interactions at strong coupling are the result of parton
emission. Each emission changes the rapidity of the emit-
ting parton, which results in a diffusive motion for the
partons in impact parameter space. The difference in rap-
idities at the initial and following points in space mimics
the diffusion in time. The spread in impact parameter space
results in a spread in momenta. The higher the energies, the
broader the diffusive regime, and lower momenta start to
become important. At large momentum, the hadron is
Lorentz contracted, and its effective volume grows with
ln ðsÞ [28], while the number of partons scales with the
momentum as s#; compare Eq. (40). At higher and higher
energies, the wave functions of the partons overlap, and the
probability to recombine balances the production. The
scattering objects become ‘‘black disks.’’ Gribov antici-
pated that this should result in a constant total cross section
for all hadronic interactions.
We will now recall that the string exchange picture

naturally leads to a diffusive process reminiscent of
Gribov diffusion in which the long string diffuses in rapid-
ity through the impact parameter space [17]. The diffusion
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constant is related to the ’t Hooft coupling 
, and the
curvature of the embedding space-time gives a correction
to the Pomeron intercept. We will then derive the
wee-dipole density and show that it compares to the
QCD BFKL expectations, albeit with a nonperturbative
intercept and diffusion constant.

Here we note the alternative nonperturbative derivation
of the Pomeron as a graviton exchange in ten dimensions
discussed in Ref. [15]. While our string exchange and the
graviton exchanges as models of the Pomeron are similar
in spirit, they are different in content. Indeed, in conformal
AdS, multigraviton exchanges are the dominant exchange
between small dipoles, while in confined AdS, gravitons
are massive on the confinement scale. The interaction
between small dipoles is dominated by the exchange of
correlated gluons (perhaps fishnets [37]) in the form of a
noncritical string exchange. In the conformal limit, both
approaches are similar, although with different Pomeron
parameters, as thoroughly discussed in Ref. [17].

The Wilson loop correlator [Eq. (26)], and hence the
scattering amplitude, is dominated by the tachyonic
n ¼ 0 contribution. We identify this n ¼ 0 mode with
the exchanged Pomeron. Specifically, we can rewrite
Eq. (24) as

WW � g2s
4

�
�

�T

�
D?=2 Xkmax

k¼1

ð�1Þk
k

aa0

�0 Kkð�;b?Þ: (28)

The emerging propagator at the poles,

Kkð�;b?Þ ¼
�

k

2��0�

�
D?=2

e�kb2
?=2��

0þD?�=12k; (29)

satisfies a diffusion equation in flat space,

ð@T? þ ðM2
0 �r2

?ÞÞKkðT?;M;b?Þ ¼ 0; (30)

after the identification of the proper time T? ¼ Dk� with
the diffusion constant Dk ¼ �0=2k. The tachyonic mass
follows from the harmonic string spectrum

M2
n ¼ 4

�0

�
n�D?

24

�
! �D?

6�0 : (31)

While the tachyon is a nuisance for the string potential
problem, which is overcome by dialing the string in critical
dimensions, it is an asset for the dipole scattering problem
in any dimension, as it translates to the Pomeron intercept.

Assuming that, for short proper times, T 
 1=� < 1, the
longitudinal pole structure of the diffusion kernel is
unchanged, the tachyonic string receives curvature correc-
tions for transverse modes. These are readily calculated by
letting [28]

aa0

�0 Kkð�;b?Þ ! zz0Nð�; z; z0;b?Þ: (32)

As a result, we identify N with the wee-dipole density.
In a curved background with a confining hard wall, this

wee-dipole density N can be obtained in closed form using
the initial condition [u ¼ � ln ðz=z0Þ],

Nð� ¼ 0; u; u0;b?Þ ¼ �ðu� u0Þ�ðb?Þ; (33)

and the infrared or wall boundary condition

@u¼0N ¼ 0 (34)

as detailed in Ref. [28]. The explicit solution is

NðT?; u; u0;b?Þ ¼ 1

z20
eu

0þu�?ð�; �Þ þ 1

z20
eu

0�u�?ð�; ��Þ

¼ 1

zz0
�?ð�; �Þ þ z

z0z20
�?ð�; ��Þ: (35)

Here �? is the diffusive kernel in curved holographic
space without a wall,�
@T? þ

�
M2

0�
1ffiffiffiffiffiffiffi
g?

p @�g
��
?

ffiffiffiffiffiffiffi
g?

p
@�

��
�?ðx?;x0?Þ¼0; (36)

with a delta-function initial condition. Explicitly,

�?ð�; �Þ ¼ ej0D�

ð4�D�Þ3=2
�e�

�2

4D�

sinh ð�Þ ; (37)

with the chordal distances

cosh� ¼ cosh ðu0 � uÞ þ 1

2
b2
?e

u0þu; (38)

cosh�� ¼ cosh ðu0 þ uÞ þ 1

2
b2
?e

u0�u: (39)

The physical interpretation ofN is that of the wee-dipole
of scale u at a transverse distance b?, sourced by a dipole
of scale u0 located at b0

? ¼ 0. The wee-dipole cloud is

captured by the string at strong coupling. In a way, this is
the ‘‘Weizsaecker-Williams’’ dipole cloud as captured by
the string sourced by a mother dipole. It normalizes to

Nwee ¼
Z

dudb?N ¼ e�TðM2
0
þD?�2Þ � ðs=s0Þ�P�1 (40)

with the 1=
ffiffiffiffi



p
corrected intercept

�P ¼ 1þD?
12

� ðD? � 1Þ2
8

ffiffiffiffi



p : (41)

For
b2
?

2zz0 � 1, the analytic form of this holographic

wee-dipole density in D? ¼ 3 exactly matches the BFKL
result [17]. Perturbative gluon ladders transmute to string
world-sheets at strong coupling, a point at the origin of the
QCD fishnet approach to large Wilson loops for the poten-
tial problem [37]. The ordered BFKL resummation of
perturbative QCD diagrams is encoded in the stringy
Schwinger mechanism discussed in Ref. [12], albeit in
hyperbolic space. Finally, and in terms of Eq. (32), the
leading (k ¼ 1) contribution to Eq. (5) in a curved AdS
background reads
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WW � � g2s
4
ð2��0Þ3=2zz0Nð�; z; z0;b?Þ: (42)

IV. STRINGY INSTANTON

We will now briefly explain the factor e�kb2
?=2��

0
in the

correlator [Eq. (26)], which drives the Regge behavior of
the scattering amplitude as detailed in Ref. [12]. The kth
contribution comes from the poles, and the pole structure
originates from the twist in the longitudinal modes.
The rapidity triggers an electric field acting on the end
points of the open string. In Euclidean space, this electric
field causes tunneling and, therefore, an instanton.
In Minkowski space, this instanton captures the pair-
creation process of the stringy Schwinger mechanism.
Pair creation means inelasticities and entropy.

The instanton is best described by using the T-dual
transformation of the string coordinates:

@�x
1 ¼ @�y

1; (43)

@�x
1 ¼ @�y

1; (44)

for which the Polyakov action [Eq. (7)] now reads

S ¼ �T

2

Z T

0
d�

Z 1

0
d�ðð@x0Þ2 þ ð@y1Þ2 þ ð@x?Þ2Þ

þ E

2

Z T

0
d�ðy1@�x0 � x0@�y

1Þj�¼0;1; (45)

with

E ¼ F01 ¼ �T tanh ð�=2Þ: (46)

In the T-dual form, the twisted boundary conditions trans-
mute to an electric field [Eq. (46)] along the y1 direction.
This electric field is purely kinematical and is at the origin
of the world-sheet instanton as we now detail.

The semiclassical extrema of Eq. (45) can be labeled
by k > 0. They follow from the saddle points of Eq. (45)
along T and the world-sheet coordinates. Explicitly, for
x? ¼ b?�,

x0 ¼ Rð�Þ cos ð2�k�=TÞ;
y1 ¼ Rð�Þ sin ð2�k�=TÞ;

(47)

with Rð�Þ ¼ ðb?=�Þ cosh ð�ð�� 1=2ÞÞ. The saddle point
of Eq. (45) along the T direction is algebraic, giving
T ¼ 2�k=�. A similar world-sheet instanton for D-brane
scattering was discussed in Ref. [38]. In the terms of
Eq. (47), the instanton contribution to the action
[Eq. (45)] is Sk ¼ kb2

?=2��
0, leading to the announced

factor of e�Sk in Eq. (26).

V. SCHWINGER-UNRUH CONNECTION

The instanton world-sheet solution [Eq. (47)] has a
simple kinematical interpretation. Indeed, since Eq. (46)

refers to a ‘‘magnetic field’’ along the transverse 01 direc-
tion, Eq. (47) describes a ‘‘cyclotron’’ motion of the string
instanton in the 01 plane with cyclotron frequency
!k ¼ 2�k=T. In Minkowski signature, the motion is
hyperbolic with local acceleration

að�Þ ¼ 1

Rð�Þ ¼
�

b?
1

cosh ð�ð�� 1=2ÞÞ : (48)

The acceleration is maximum at the center of the string,
� ¼ 1=2. Due to this local acceleration, the string feels a
�-dependent Unruh temperature

TUð�Þ ¼ að�Þ
2�

that is maximal at the center with TU ¼ �=2�b? � 1=.
This interpretation has a deeper physical meaning—note
that the line element associated with the instanton
[Eq. (47)] in Minkowski signature is

ds2 � �a2R2dð�b?Þ2 þ dR2 þ dx?2: (49)

Equation (49) refers to a Rindler line element with Rindler
time tð�Þ ¼ �b?. The Rindler acceleration a ¼ �=b?
implies a Rindler horizon R ¼ 1=2a at the position of
the instanton which is the tip of the light cone in our
dipole-dipole scattering setup.
The occurrence of the world-sheet instanton is analo-

gous to the formation of a dynamic black hole at the tip of
the light cone. Although this five-dimensional black hole
extends in the conformal direction, it is very different from
the standard black hole widely used in holographic equi-
librium. It is similar to the four-dimensional black hole
suggested in Ref. [39] using arguments based on saturation
and a reinterpretation of the standard Schwinger particle
pair-creation process [40]. To contrast our analysis with
that of Ref. [39], we will briefly review the arguments in
the latter. Starting from the Schwinger pair-production rate
in a longitudinal electric field in scalar QED, the Unruh
temperature is identified as

e��m2

eE � e��m
a � e

�m=2
TU ; (50)

with TU ¼ a=2� ¼ eE=2�m. In Ref. [39], this QED result
was exported to the QCD color glass through the
identification of eE=m ! QS, the QCD saturation scale.
This argument is different from ours in a number of ways:
1) Our induced electric field E � �T� is kinematical and
longitudinal as opposed to eE � Q2

S, which is dynamic and

transverse. 2) The scale is set by the string length (strong
coupling) and not the saturation length (weak coupling).
3) Our Unruh temperature follows from a stringy pair-
creation process, not a particle pair-creation process.
4) Our strings are holographic in hyperbolic space to
account for the conformal nature of QCD in the ultraviolet.
5) Our black hole forms at the tip of the light cone but
extends in the holographic or fifth direction.
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VI. ENTROPY

As we detailed in Sec. IV, the stringy instanton solution
[Eq. (47)] reduces the on-shell action [Eq. (45)] to

Sk � 1

2
�kb?; (51)

with the k-string tension �k ¼ k�T for N-ality k. For QCD
with three colors, only the N-alities k ¼ 1, 2 are allowed
[41]. For QCD at large Nc, all N-alities up to the integer
value of Nc=2 are allowed. Only the N-ality k ¼ 1 is
selected in the process of scattering dipoles in the
fundamental representation. We argue below that k ¼ 2
is released in dense AA collisions.

Equation (51) receives quantum contributions in the
form of world-sheet fluctuations (Luscher term), that trans-
lates to Gribov diffusion at strong coupling. For large �

and b?, the quantum [OðnÞ] and curvature [Oð1= ffiffiffiffi



p Þ]
corrections are readily implemented by the diffusive nature
of the propagator as reviewed in Sec. III. The dominant
quantum correction follows from the transverse diffusion

of the tachyonic mode (n ¼ 0) in AdSD? . To order 1=
ffiffiffiffi



p
,

we obtain

Sk � 1

2
�kb? � 2�b?



�
D?
12k

� ðD? � 1Þ2
8

ffiffiffiffi



p
�
: (52)

This Euclidean stringy action amounts to a free energy
Fk ¼ Sk=, where the temperature is the Unruh tempera-
ture 1= on the string. In the collision process this entropy
is deposited over a short time, as we detail below. It follows
that Eq. (52) carries an entropy

Sk � 2 @Fk

@
� �

�
D?
6k

� ðD? � 1Þ2
4
ffiffiffiffi



p
�
; (53)

or equivalently,

Sk � 2ð�Pk � 1Þ�: (54)

For k ¼ 1, the Pomeron intercept is ð�P1 � 1Þ � 0:15,
and the entropy per unit rapidity is about 1=3. Using the
optical theorem, the virtual wee-dipoles become on shell,
and their contribution to the entropy gives

Sk � lnN2
wee;k; (55)

where Nwee;k is the total number of wee-dipoles surround-

ing each of the incoming dipole pairs involved in the
collision

Nwee;k ¼
Z

dudb?Nk ¼ eð�Pk�1Þ�: (56)

This is to be contrasted with the fully thermal or incoherent
expectation of lnN and the fully Poissonian or coherent

expectation of ln
ffiffiffiffi
N

p
, with N the mean multiplicity

number.
Most of this entropy is the result of the tachyon excita-

tion on the string. Indeed, for a large impact parameter b?,

the Unruh temperature is smaller than the Hagedorn
temperature,

TU ¼ �

2�b?
< TH ¼

ffiffiffiffiffiffiffiffiffiffiffi
3�T

�D?

s
; (57)

which translates to b? > �=ð2�THÞ. As the impact
parameter is reduced, the Unruh temperature increases,
causing the string excitations to exponentiate, leading to
a Hagedorn transition. At the Hagedorn point, it may be
mapped on the Bekenstein-Hawkins (BH) temperature of a
microscopic black hole [42–45].

VII. FORMATION TIME

Over what time is the entropy [Eqs. (54) and (55)]
associated with the dipole-dipole collision released? To
answer this question, we note that the emergence of an
Unruh temperature on the string world sheet suggests that
semiclassically the metric is locally Rindler; see Eq. (49).
We now argue that the prompt release time tR can be set

to be the time when the diffusing string in transverse
AdSD? reaches the effective size of the Rindler horizon

R by analogy with the time it takes to a string to fall on a
black hole [43,46]. Indeed, the string diffusion in rapidity
causes the transverse string size to increase as

hx2?i ¼ ��0 � DRtð1Þ; (58)

with the diffusion constant in Rindler space, DR ¼
�0=ð2RÞ. Through the last equality, we reinterpret
Eq. (58) as a diffusion in Rindler space over a typical
Rindler time tð1Þ ¼ b?. The release entropy time tR is
then set by the condition R2 ¼ DRtR, or

tR ¼ 2
R3

�0 ¼ 2
ðb?=2�Þ3

�0 : (59)

For a QCD string with �0 ¼ 1=ð2 GeVÞ2 ¼ ð0:1 fmÞ2 and
a typical impact parameter b? 
 10

ffiffiffiffiffi
�0p
, this results in

tR 
 ð25 fmÞ=�3, which is short.

VIII. pp MULTIPLICITIES

pp collisions at large rapidity � can be viewed as
dipole-dipole scattering from each colliding proton [28].
The density of dipoles in the proton is set by the saturation

momentum QS �
ffiffiffi
2

p
=zS. In holographic QCD, this

follows from the transcendental equation [17]

zSffiffiffi
2

p QSð�;b?Þ ¼ g2s
2
ð2��0Þ3=2zSzpNð�; zS; zp;b?Þ ¼ 1;

(60)

with the effective string coupling gs and typical proton
virtuality 1=zp. Unlike in a partonic model, the colorless

wee-dipoles are the objects that saturate the transverse
density.
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In solving for QS in Eq. (60), all the holographic
parameters are set by the DIS data analysis in
Refs. [17,28]: 
¼23, D?¼3, gs¼1:5, zp¼1:8GeV�1,

z0 ¼ 2 GeV�1, s0 ¼ 10�2 GeV2. If App � 1 fm2 is the

typical proton area, then AppQ
2
S � 12 is the typical num-

ber of dipoles with Q2
S � 1=2 GeV2 the typical squared

saturation momentum. Thus, for pp collisions, the typical
entropy release per unit of rapidity is

Spp=� � ðAppQ
2
SÞ � ðS1=�Þ � 12� 1

3
¼ 4: (61)

In holography, the scaling of the entropy with the energy
follows from the scaling of the saturation momentum
[Eq. (60)] with rapidity. In the conformal limit and at large
�, the entropy asymptotes

Spp �
�
s

s0

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2

ffiffiffi



p ð�P�1Þ
p

�1

�. ffiffiffi



p
ln ðs=s0Þ; (62)

which is Spp � ðs=s0Þ0:228 ln ðs=s0Þ using the parameters

set by the DIS data. In Fig. 3, we show the pp charged
multiplicities [5]

Nch;pp ¼ Spp=7:5 (63)

at collider energies [47], with b? ¼ 1=3 fm. A recent
discussion of the entropy in the context of saturation
models was made in Ref. [48].

IX. pA, AA MULTIPLICITIES

We note that for pA collisions, ApA � A1=3App, so that

SpA=Spp � A1=3. In AA collisions, if the collision is mainly

between dipoles with N-ality k ¼ 1, a similar scaling with

the nucleus number A ¼ A1=3 � A2=3 is expected to take

place. Here A1=3 Lorentz contracted nucleons can be dis-

tributed in the A2=3 transverse nucleus size. However, when
the nucleons start to overlap, the k ¼ 2 N-ality can be
exchanged:

SAA

Spp

� A

0
@ X½Nc=2�

1

1

k

1
A: (64)

In QCD with Nc ¼ 3, the sum is 3=2. The contribution of
the k ¼ 2 N-ality is expected to take place when the

number of participants is about ten, so that 101=3 � 2
corresponds to two overlapping nucleons.
In Fig. 4, we show the total charged multiplicities

normalized to the averaged number of participants as a
function of the number of participants for a range of
collider energies [49]. For a fixed collider energy, we
note the characteristic 3=2 jump from pp to AA collisions
at a number of participants of around ten.
The charged multiplicity follows as Nch;AuAu ¼

3=2hAuiSpp=7:5, with the average participating gold

nucleon number hAui. Using the same numerical values
as for Nch;pp and hAui ¼ 175 for most central collisions

[50], Fig. 5 shows an agreement of our holographic result
with the experimental data at high energies, where the
inelasticities are large. At LHC energies, we expect
Nch;pp 
 54, Nch;pPb 
 320, Nch;PbPb 
 16800 at

ffiffiffi
s

p ¼
2:76 TeV and Nch;pp 
 82, Nch;pPb 
 470, Nch;PbPb 

23400 at

ffiffiffi
s

p ¼ 7 TeV using hAPbPbi ¼ 191 [51].

50 100 200 500 1000
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FIG. 3 (color online). Energy dependence of the charged
multiplicity for pp collisions; see text.
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FIG. 4. Scaling of the total charged multiplicities with the
number of participants [49]; see text.
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FIG. 5 (color online). Energy dependence of the charged
multiplicity for central AuAu collisions. See text.
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X. CONCLUSIONS

We have suggested that the Pomeron viewed as an ex-
change of an instanton on the string world sheet carries a free
energyFk=TU ¼ Sk, withSk the instanton action ofN-ality k
and TU the Unruh temperature. For a large impact parameter
b?, the Unruh temperature is low, and the entropy is mostly
carried by the lowest string excitation, which is tachyonic.
This stringy entropy is neither coherent nor thermal.

For smaller impact parameters, the Unruh temperature
may reach the Hagedorn temperature, transmuting the
stringy entropy to partonic entropy. The latter is likely
commensurate with the Bekenstein-Hawkins entropy, and
the onset of a microscopic black hole. Macroscopic black
holes [4–8] may be aggregates of these coalescing micro-
scopic black holes, as suggested initially in Ref. [4] and
more recently in Ref. [52].

We have argued that typical pp, pA and AA collisions at
current collider energies may probe this stringy entropy
with low Unruh temperature. At large rapidities, the
holographic entropy is in agreement with the data for the

energy scaling of the charged multiplicities. The 3=2 jump
in the charged multiplicities reported by the current
collider experiments with a number of participants of
ten or higher is explained by the exchange of N-ality
k ¼ 1, 2 strings. We expect similar jumps in the transport
parameters, e.g. viscosity and flow.
Although the measured total multiplicities reflect on the

final state hadronic produces, entropy conservation guar-
antees that our prompt and initial entropy estimates are
lower bounds. The general lore of energy and momentum
conservation, say through viscous hydrodynamics evolu-
tion, suggests only a moderate increase of the total entropy
by about 25% in going from initial to final states, making
our estimates plausible.
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