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We consider in this work the electromagnetic current for a system composed of two charged bosons

and show that it has a structure of many bodies even in the impulse approximation, when described in

the light-front time xþ. In terms of the two-body component for the bound state, the current contains

two-body operators. We consider the photon interacting with two bosons and the process of pair creation

connected to this interaction, interpreting it as a zero mode contribution to the current and discuss the

consequences of this pair creation to the components of currents in the light front.
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I. INTRODUCTION

In the traditional approach to restore covariance of the
electromagnetic current in the light front [1], an ad hoc
prescription of dislocating the pole is employed [2].
However, this procedure of ‘‘pole dislocation’’ has no physi-
cal grounds, and arriving at the correct result is just fortu-
itous. On the other hand, as we integrate in the light-front
‘‘energy’’ variable k�, considering carefully all the possible
domains of the allowed longitudinal momentum component
kþ, we arrive at the conclusion that the light-front Fock
space of positive quantum solutions is incomplete and that,
as a consequence, the nontriviality of the light-front vacuum
turns out to be a mandatory feature in the new scenario.

In a recent articleBakkeret al. [3] studied how thebehavior
of the contour integration in the k� complex plane could
influence the results of integrations in the light front. They
showed that in the diagrams with loops such as self-energy
and triangular ones, the integration on the arc in the contour of
the k� complex plane is nonvanishing and the inclusion of
this arc contribution is fundamental to restore the covariant
results obtained through well-established techniques. Our
work fundamentally differs from theirs in the physical pro-
cesses studied, though in essence and ultimately we also look
for the covariance of the end result. Since the physical process
we analyze is different fromwhat they study,we do not obtain
the same kinds of subtle and tricky arc contributions in order
to recover covariance of the results from the light-front
calculations because these arc contributions are absent as
we deal with ‘‘ladder’’-type diagrams. In our process and
approach, as we evaluate all the relevant ranges of integra-
tion for kþ variables, we get the correct terms equivalent to
the results of computations obtained via covariant
Minkowski calculations. Since this is our present case, it is
well worth noting that in our ‘‘ladder’’ diagram calculation,
happily, no subtle or difficult points like those tricky arc
contributions arise. And, the covariance of the electromag-
netic current can be recovered just by careful consideration
of those many different domains of kþ integration that are

allowed and defined from the nontrivial results stemming
from the light-front energy (k�) integration.
As stated above, it is not difficult to see why in our case

the arc contributions do not appear; this is due to the fact
that ladder-type diagrams involve more momentum power
in the denominator of the integrands coming from the
presence of more virtual particle propagators than in the
case of self-energy or triangle diagrams considered by
Bakker et al.Moreover, in our work we demonstrate that
in this curious ladder diagram in a background field in
which we consider the contribution of an external photon
over two noninteracting bosons, we have seen that the pair
creation contribution is needed to restore covariance of the
current J�. However, if more interacting photons are
present, this does not occur; that is, there is no pair con-
tribution to restore covariance of the current J�. It is also
interesting to note that in the case of two bosons exchang-
ing a virtual boson in a background field with one photon,
there is no pair correction either. However, for two pho-
tons, we need the correction coming from the pair creation.
In the method we use, we always consider the ranges of
integration in kþ; there are ranges for which the integration
does not vanish, as in the case of Eq. (13).
This means that restoration of covariance in our

case does not come from ‘‘hidden’’ nonvanishing arc
contributions that have been forgotten in the calculation,
but, rather, it comes from considering all the allowed
ranges of integration in the longitudinal momentum com-
ponent, in which some peculiar situation entails the con-
clusion that pair contributions are necessary or suppressed
in the process considered. In this sense, our methodology
of calculation entails a more physically grounded approach
than the earlier forced ‘‘pole dislocation’’ prescription for
which one finds no physical basis except for giving the
desired and expected end results.
In order to demonstrate this we calculate in a specific

example the matrix element for the electromagnetic current
in Breit’s reference frame for qþ ! 0 and ~q? � 0. To this
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end we use a constant vertex for the bound state of two
bosons in the light front. Such a calculation agrees with the
results obtained through the computation of the triangular
diagram for the electromagnetic current of a composite
boson whose vertex is constant [2].

Sawicki [4] has shown that in Breit’s reference frame, the
Jþ ¼ J0 þ J3 component of the electromagnetic current for
the bound state of two bosons, obtained from the triangular
Feynman diagram after integration in the k� component of
the loop momentum, has no pair production contribution
from the photon. As a consequence, the electromagnetic
form factor, calculated in the light front, starting from Jþ,
is identical to the one obtained in the covariant calculation.
By covariant calculation of an amplitude we mean the
computation of a momentum loop integrated directly with-
out transformation into a light-front momentum.

The problem that appears when integrating in the
light-front coordinates in momentum loops was studied
by Chang and Yan [5] and more recently discussed in
Refs. [2,6–8]. In the Chang and Yan works, although they
pointed out the difficulty in the k� integration for certain
amplitudes and suggested a possible solution to the prob-
lem, in our view two distinct aspects are mingled together,
which are the renormalization question and the problem of
integration in the light-front coordinates. Our emphasis
here is on the covariance restoration for the electromagnetic
current through a careful integration in the k� of the loop
momentum in finite diagrams. We know that for the Jþ
component of the electromagnetic current for a particle of
spin 1, there are terms that correspond to pair production in
the light-front formalism for qþ ¼ 0 [2,8]. In the case of
the vector meson �, the rotational invariance of the current
Jþ is broken when we use the light-front formalism, unless
pair production diagrams are duly considered [9,10].

In Refs. [4,11–13] the electromagnetic current in the
light front for a composite system is obtained from the
triangular diagram (impulse approximation) when it is
integrated in the internal loop momentum component k� ¼
k0 � k3. This integration in k� by Cauchy’s theorem uses
the pole of the spectator particle in the process of photon
absorption for qþ ¼ 0. Using the current Jþ the process of
pair creation by the photon is, in principle, eliminated
[4,11]. In general, covariance is preserved under kinematic
transformations, but the current loses this physical property
under a more general transformation, such as rotations and
parity transformations. We show how the pair production is
necessary for the complete calculation of the current’s J�
component in the Drell-Yan reference frame (qþ ¼ 0).

The paper is organized as follows: Section II introduces
the propagator in a background field with interacting bosons.
In Sec. III we consider the relevant operator components for
the electromagnetic current. We study the possible contri-
butions to the order g2 that might contribute to the zero
modes in Sec. IVand conclude in Sec. V. In Appendix Awe
consider the case of a free propagator in the light front,

which serves as a notational convention used throughout this
work, while in Appendix B we consider, in some detail, the
pole structure in the light-front energy variables and the
integrations in their corresponding complex planes.

II. PROPAGATOR IN A BACKGROUND FIELD
WITH INTERACTING BOSONS

In a recent article [14] we considered, in the zeroth order
of perturbative coupling, the calculation of the electromag-
netic current in the light-front coordinates for scalar bosons
in the electromagnetic background field. The calculation
was considered only in the region 0< kþ2 < kþi < kþ4 <

kþf and its combinations. The same result is found in the

article by Marinho, Frederico and Sauer [15], using a
different technique.
The Lagrangian density for interacting scalar and

electromagnetic fields is given by

£ ¼ D��1D
���

1 �m2��
1�1 �m2��

2�2

þ g��
1�1�þ g��

2�2�

¼ @��1@
���

1 �m2��
1�1 �m2��

2�2

� ieA�ð�1@��
�
1 ���

1@��1Þ
þ g��

1�1�þ g��
2�2�þ e2A�A��1�

�
1: (1)

In the calculation of the propagator for a particle in a
background field we use the interaction Lagrangian of a
scalar field and an electromagnetic field. The Lagrangian
(1) immediately shows that there are two types of vertices.
The first term corresponds to a vertex containing a photon
and two scalar particles. The second vertex contains two
photons and two scalar particles.
In this framework we construct the electromagnetic

current operator for the system composed of two free
bosons in the light front. The technique we use to deduce
such operators is to define the global propagators in the
light front when an electromagnetic background field acts
on one of the particles. Although we are in fact calculating
the global propagator for two bosons in an electromagnetic
background field, we extrapolate the language using terms
such as ‘‘current operator’’ and ‘‘current’’ to designate
such operations. We show that for the J� case the two
free boson propagators in a background field have a con-
tribution from the process of the photon’s pair production,
which is crucial to restore the current’s covariance.
The normalized generating functional is given by

Z½J� ¼
R
D� exp ½iS þ i

R
dxJ��R

D�eiS
; (2)

where S ¼ R
£dx is the relevant action. In the Appendix

we have the expression Z0½J� for the free particle and the
corresponding propagator (A7). So, we can find the propa-
gators, or Green’s functions, in an electromagnetic field.
Equation (2) indicates the propagation of two bosons S1

and S2 from xþ ¼ 0 to xþ > 0 interacting with an external
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electromagnetic field A�ðxþÞ at �xþ3 and with the exchange

of two intermediate bosons � between �xþ1 and �xþ2 . The
propagator S3ð �xþ3 � �xþ1 Þ, which is the propagation of a

boson after the emission of the boson � at �xþ1 , later
interacts with the external field at �xþ3 . The propagator S5
is the boson propagation after the interaction with the
external field. The propagator S4 is the boson propagation
after the absorption of the intermediate � boson. Therefore
the correction to the free propagator of two bosons in the
light front with a background field in the ladder diagram is

SðxþÞ ¼ ð�ieÞðigÞ2
Z

d �xþ1 d �x
þ
2 d �x

þ
3 dq

�A�ðq�Þe�i
2q

� �xþ
3

� S1ð �xþ1 ÞS2ð �xþ2 ÞS4ðxþ � �xþ2 ÞS�ð �xþ2 � �xþ1 Þ
�

�
S3

@S5
@ �x

�
3

� @S3
@ �x

�
3

S5

�
; (3)

where A�ðq�Þ is the Fourier transform and � indicates the
components �, þ, ? .

The diagram in Fig. 1 shows the perturbative correction
to the propagator with a source up to the order of Oðg2Þ,
i.e., with an intermediate boson exchange. This intermedi-
ate boson � propagates between the time intervals �xþ2 �
�xþ1 , and the source term q couples to the field at the point
�xþ3 . The indices 1, 2, 3, 4, and 5 label the initial momenta k1
and k2, the internal momentum k3, and the final momenta
k4 and k5, respectively.

The part of the interaction Lagrangian that contains the
vector-scalar-scalar vertex can be redefined as

£Interaction ¼ �ieA�ð�1@��
�
1 ���

1@��1Þ ¼ J�A
�: (4)

So, we observe that the operator component J� is ob-
tained from the operator O� which we identified with the
help of Eqs. (3) and (4) such that

O�¼ð�ieÞðigÞ2
Z
d �xþ1 d �xþ2 d �xþ3 e

�i
2q

� �xþ
3 S1ð �xþ1 ÞS2ð �xþ2 ÞS4ðxþ� �xþ2 ÞS�ð �xþ2 � �xþ1 Þ

�
S3

@S5
@ �x

�
3

�@S3
@ �x

�
3

S5

�
; (5)

where the Greek index � indicates the light-front components þ, �, or ? .
Therefore, using the definition for the propagator and making explicit the integration and the k�, kþ and k? components,

we have the following:

S1ðxþÞ ¼ i

2ð2�Þ4
Z dk�1 dk

þ
1 d

2k1?
kþ1

e�ik�
1
�xþ
1 e�ikþ

1
�x�
1 ei

~k1?� ~x1?h
k�1 � k2

1?þm2

2kþ
1

þ i"
2kþ

1

i ;

S2ðxþÞ ¼ i

2ð2�Þ4
Z dk�2 dk

þ
2 d

2k2?
kþ2

e�ik�
2
�xþ
2 e�ikþ

2
�x�
2 ei

~k2?� ~x2?h
k�2 � k2

2?þm2

2kþ
2

þ i"
2kþ

2

i ;

S3ðxþÞ ¼ i

2ð2�Þ4
Z dk�3 dk

þ
3 d

2k3?
kþ3

e�ik�
3
ð �xþ

3
� �xþ

1
Þe�ikþ

3
ð �x�

3
� �x�

1
Þei ~k3?�ð ~x3� ~x1Þ?h

k�3 � k2
3?þm2

2kþ
3

þ i"
2kþ

3

i ;

S4ðxþÞ ¼ i

2ð2�Þ4
Z dk�4 dk

þ
4 d

2k4?
kþ4

e�ik�
4
ðxþ� �xþ

2
Þe�ikþ

4
ðx�� �x�

2
Þei ~k4?�ð ~x� ~x2Þ?h

k�4 � k2
4?þm2

2kþ
4

þ i"
2kþ

4

i ;

S5ðxþÞ ¼ i

2ð2�Þ4
Z dk�5 dk

þ
5 d

2k5?
kþ5

e�ik�
5
ðxþ� �xþ

3
Þe�ikþ

5
ðx�� �x�

3
Þei ~k5?�ð ~x� ~x3Þ?h

k�5 � k2
5?þm2

2kþ
5

þ i"
2kþ

5

i ;

S�ðxþÞ ¼ i

2ð2�Þ4
Z dk��dkþ�d2k�?

kþ�
e�ik�� ð �xþ2 � �xþ1 Þe�ikþ� ð �x�2 � �x�1 Þei ~k�?�ð ~x2� ~x1Þ?h

k�� � k2
�?þm2

2kþ�
þ i"

2kþ�

i :

(6)

FIG. 1. The Oðg2Þ correction to the propagator with a source
and an intermediate scalar boson created at �xþ1 and absorbed at

�xþ2 . The external photon interacts at the light-front time �xþ3 . Initial
and final light-front times xþ ¼ 0 and xþ > 0 are located on the
left and right, respectively. These in general—and henceforth—
are omitted in the diagrams. However, this ordering is important to
bear in mind for all time-ordered diagrams that we consider.
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For the bosons identified by the labels 3 and 5, we also need the derivatives with respect to �x
�
3 as follows:

(i) With respect to component �xþ3 :
@S5
@ �xþ3

¼ � 1

2ð2�Þ4
Z dk�5 dk

þ
5 d

2k5?
kþ5

k�5 e
�ik�

5
ðxþ� �xþ3 Þe�ikþ

5
ðx�� �x�3 Þei ~k5?�ð ~x�~�x3Þ?h

k�5 � k2
5?þm2

2kþ
5

þ i"
2kþ

5

i ;

@S3
@ �xþ3

¼ 1

2ð2�Þ4
Z dk�3 dkþ3 d2k3?

kþ3

k�3 e
�ik�3 ð �xþ3 � �xþ1 Þe�ikþ3 ð �x�3 � �x�1 Þei ~k3?�ð~�x3�~�x1Þ?h

k�3 � k2
3?þm2

2kþ3
þ i"

2kþ3

i :

(7)

(ii) With respect to component �x�3 :

@S5
@ �x�3

¼ � 1

2ð2�Þ4
Z dk�5 dk

þ
5 d

2k5?
kþ5

kþ5 e
�ik�

5
ðxþ� �xþ

3
Þe�ikþ

5
ðx�� �x�

3
Þei ~k5?�ð ~x�~�x3Þ?h

k�5 � k2
5?þm2

2kþ
5

þ i"
2kþ

5

i ;

@S3
@ �x�3

¼ 1

2ð2�Þ4
Z dk�3 dk

þ
3 d

2k3?
kþ3

kþ3 e
�ik�

3
ð �xþ

3
� �xþ

1
Þe�ikþ

3
ð �x�

3
� �x�

1
Þei ~k3?�ð~�x3�~�x1Þ?h

k�3 � k2
3?þm2

2kþ
3

þ i"
2kþ

3

i :

(8)

(iii) With respect to component �x3?:

@S5
@ �x3?

¼ 1

2ð2�Þ4
Z dk�5 dk

þ
5 d

2k5?
kþ5

k5?e�ik�
5
ðxþ� �xþ

3
Þe�ikþ

5
ðx�� �x�

3
Þei ~k5?�ð ~x�~�x3Þ?h

k�5 � k2
5?þm2

2kþ
5

þ i"
2kþ

5

i ;

@S3
@ �x3?

¼ � 1

2ð2�Þ4
Z dk�3 dkþ3 d2k3?

kþ3

k3?e�ik�
3
ð �xþ

3
� �xþ

1
Þe�ikþ

3
ð �x�

3
� �x�

1
Þei ~k3?�ð~�x3�~�x1Þ?h

k�3 � k2
3?þm2

2kþ3
þ i"

2kþ3

i :

(9)

Substituting Eq. (6) and the relevant derivatives above in Eq. (3) and performing the integrations over d �xþ1 d �xþ2 d �xþ3 , we can
evaluate the Fourier transform ~Sðk�f Þ ¼

R
dxþeik

�
f
xþSðxþÞ with the help of the following momentum conservation

relations:

ki ¼ k1 þ k2; kf ¼ k4 þ k5; kf ¼ ki þ q; k3 ¼ ki � k4;

q ¼ k5 � k3; k� ¼ k4 � k2; k� ¼ k1 � k3;
(10)

where ki is the total initial momentum and kf the total final momentum. These momentum conservation equations can be
checked, for example, using Fig. 1.

The final propagator can therefore be written as a function of only two momenta, and in this case we choose ‘‘spectator’’
particles with respect to the current, those labeled as 2 and 4:

~Sðk�f Þ ¼ � ieðigÞ2
26ð2�Þ2

Z
dq�A�ðq�Þ

8<
:
Z dk�2 dk

�
4 ðk�f þ k

�
i � 2k

�
4 Þ

ðki � k2Þþkþ2 ðki � k4Þþkþ4 ðkf � k4Þþðk4 � k2Þþ

� 1h
k�2 � k�i þ ðki � k2Þon � i�

2ðki�k2Þþ
ih
k�2 � k2 on þ i�

2kþ
2

i 1h
k�4 � k�i þ ðki � k4Þon � i�

2ðki�k4Þþ
ih
k�4 � k4 on þ i�

2kþ
4

i

� 1h
k�2 � k�4 þ ðk4 � k2Þon � i�

2ðk4�k2Þþ
ih
k�4 � k�f þ ðkf � k4Þon � i�

2ðkf�k4Þþ
i
9=
;; (11)

where
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k2 on ¼
k22? þm2

2kþ2
; ðki � k2Þon ¼

ðki � k2Þ2? þm2

2ðkþi � kþ2 Þ
; ðki � k4Þon ¼

ðki � k4Þ2? þm2

2ðkþi � kþ4 Þ
;

k4 on ¼
k24? þm2

2kþ4
; ðkf � k4Þon ¼

ðkf � k4Þ2? þm2

2ðkþi � kþ4 Þ
; ðk4 � k2Þon ¼

ðk4 � k2Þ2? þm2
�

2ðkþ4 � kþ2 Þ
:

(12)

The propagator Eq. (11) in the momentum space repre-
sentation will be solved using the Cauchy integral formula.
Each of the single poles may be located at either the lower
half or the upper half of the complex k� plane, depending
on the values of kþ2 , k

þ
4 , k

þ
i and kþf . Altogether there are 24

different possibilities or regions (numbered from 1 to 24)
where the propagator may exist (see Table I).

Integrating first in k�2 we find three poles:

1Þ k�2 ¼ k�i � ðki � k2Þon þ i"

2ðki � k2Þþ

2Þ k�2 ¼ k2on �
i"

2kþ2

3Þ k�2 ¼ k�4 � ðk4 � k2Þon þ i"

2ðk4 � k2Þþ :

(13)

Depending on the region chosen from Table I, these
poles will locate themselves either in the lower half or
the upper half of the complex k� plane. Analyzing the
possibilities one by one, we see that, upon integrating first
in k�2 , eight of such regions give vanishing contributions
(all poles are located on the same half of the complex k�
plane), leaving us with 16 regions yet to be analyzed.
Table II summarizes the relevant results for the k�2 pole
locations.

As can be seen from this table, poles 1, 2 and 3 of
Eq. (13) are all located in the lower half of the complex

k�2 plane for the eight regions 5, 6, 19, 20, 21, 22, 23 and 24
(cf. Table II) so that all eight regions yield a vanishing
contribution to the k�2 integration.
The next step is the integration in k�4 , but here things get

complicated because, although the number of regions de-
creased to 16, now there are many more poles. To make this
transparent we will consider conveniently defined parts.
The following poles arise within the corresponding 16
possible regions for integration in k�4 :
(i) For the eight regions 1, 3, 7, 9, 10, 13, 15 and 16

there are four poles:

1Þ k�4 ¼ k�i � ðki � k4Þon þ i"

2ðki � k4Þþ

2Þ k�4 ¼ k4on �
i"

2kþ4

3Þ k�4 ¼ k�f � ðkf � k4Þon þ i"

2ðkf � k4Þþ

4Þ k�4 ¼ k2on þ ðk4 � k2Þon � i"

2ðk4 � k2Þþ :

(14)

Table III summarizes the relevant results for the k�4
pole locations. From this table, it is clear that regions
13, 15 and 16 yield vanishing contributions to the k�4
integration.

(ii) For the four regions 2, 8, 11 and 12 there are four
more poles:

TABLE I. The 24 possible domains or regions defined by the longitudinal momentum intervals
where the propagator Eq. (11) may, in principle, exist.

1) 0< kþ2 < kþ4 < kþi < kþf 9) 0< kþ2 < kþf < kþ4 < kþi 17) 0< kþi < kþf < kþ2 < kþ4
2) 0< kþ4 < kþ2 < kþi < kþf 10) 0< kþf < kþ2 < kþ4 < kþi 18) 0< kþf < kþi < kþ2 < kþ4
3) 0< kþ2 < kþi < kþ4 < kþf 11) 0< kþ4 < kþf < kþ2 < kþi 19) 0< kþ4 < kþi < kþf < kþ2
4) 0< kþi < kþ2 < kþ4 < kþf 12) 0< kþf < kþ4 < kþ2 < kþi 20) 0< kþi < kþ4 < kþf < kþ2
5) 0< kþ4 < kþi < kþ2 < kþf 13) 0< kþ2 < kþi < kþf < kþ4 21) 0< kþ4 < kþf < kþi < kþ2
6) 0< kþi < kþ4 < kþ2 < kþf 14) 0< kþi < kþ2 < kþf < kþ4 22) 0< kþf < kþ4 < kþi < kþ2
7) 0< kþ2 < kþ4 < kþf < kþi 15) 0< kþ2 < kþf < kþi < kþ4 23) 0< kþi < kþf < kþ4 < kþ2
8) 0< kþ4 < kþ2 < kþf < kþi 16) 0< kþf < kþ2 < kþi < kþ4 24) 0< kþf < kþi < kþ4 < kþ2

TABLE II. Location of poles 1, 2 and 3 of Eq. (13) in the complex k�2 plane.

Upper half of k�2 plane Lower half of k�2 plane Regions

Pole 3 Poles 1 and 2 4, 14, 17 and 18

Pole 1 Poles 2 and 3 2, 8, 11 and 12

Poles 1 and 3 Pole 2 1, 3, 7, 9, 10, 13, 15 and 16

No pole Poles 1, 2 and 3 5, 6, 19, 20, 21, 22, 23 and 24
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5Þ k�4 ¼ k�i � ðki � k4Þon þ i"

2ðki � k4Þþ

6Þ k�4 ¼ k4on �
i"

2kþ4

7Þ k�4 ¼ k�f � ðkf � k4Þon þ i"

2ðkf � k4Þþ
8Þ k�4 ¼ k�i � ðki � k2Þon þ ðk4 � k2Þon

� i"

2ðk4 � k2Þþ :

(15)

Table IV summarizes the relevant results for the k�4
pole locations. Here all the pertinent regions yield
nonvanishing contributions to the k�4 integration.

(iii) For the last four regions, 4, 14, 17 and 18, there are
five more poles:

9Þk�4 ¼k�i �ðki�k2Þonþðk4�k2Þonþ i"

2ðki�k2Þþ

10Þk�4 ¼k2onþðk4�k2Þon� i"

2kþ2

11Þk�4 ¼k�i �ðki�k4Þonþ i"

2ðki�k4Þþ

12Þk�4 ¼k4on�
i"

2kþ4

13Þk�4 ¼k�f �ðkf�k4Þonþ i"

2ðkf�k4Þþ :

(16)

Table V summarizes the relevant results for the k�4
pole locations. From this table, it is clear that

regions 14, 17 and 18 are such that k�4 integration
is zero since the upper half-plane is analytic and the
residues there are zero.

More details of these steps are given in the Appendix.
Tables III through V indicate that the ten nonvanishing
contributions arise from regions 1, 2, 3, 4, 7, 8, 9, 10, 11
and 12. The nonvanishing contributions are represented in
Figs. 2–7 according to their specific set of regions.

TABLE III. Location of poles 1, 2, 3 and 4 of Eq. (14) in the
complex k�4 plane.

Upper half of k�4 plane Lower half of k�4 plane Regions

Poles 1 and 3 Poles 2 and 4 1 and 7

Pole 3 Poles 1, 2 and 4 3

Pole 1 Poles 2, 3 and 4 9 and 10

No pole Poles 1, 2, 3 and 4 13, 15 and 16

TABLE V. Location of poles 9, 10, 11, 12 and 13 of Eq. (16) in
the complex k�4 plane.

Upper half of k�4 plane Lower half of k�4 plane Regions

Pole 13 Poles 9, 10, 11 and 12 4

No pole Poles 9, 10, 11, 12 and 13 14, 17 and 18

TABLE IV. Location of poles 5, 6, 7 and 8 of Eq. (15) in the
complex k�4 plane.

Upper half of k�4 plane Lower half of k�4 plane Regions

Poles 5, 7 and 8 Pole 6 2, 8 and 11

Pole 5 and 8 Poles 6 and 7 12

FIG. 3. Light-front time-ordered diagram related to region 4 of
the longitudinalmomentuminterval possibilities as given inTable I.

FIG. 2. Light-front time-ordered diagram related to regions 2,
8 and 11 of the longitudinal momentum interval possibilities as
given in Table I.

FIG. 4. Light-front time-ordered diagram related to regions 9
and 10 of the longitudinal momentum interval possibilities as
given in Table I.

FIG. 5. Light-front time-ordereddiagramrelated to region3of the
longitudinal momentum interval possibilities as given in Table I.
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We begin our discussion with an illustrative example,
where the pair term appears. To this end we use the
‘‘Z-graph,’’ that is, region 3 in Fig. 5, for which the
various longitudinal momenta kþ are defined within
the range of possibilities 0< kþ2 < kþi < kþ4 < kþf (see

Table I). In this example we show that the current’s J�

component does not have a contribution from the pair
production in the Drell-Yan reference frame [16], that is,
in the limit qþ ¼ q� ¼ 0. For all the other nine signifi-
cant regions, the calculations follow suit; thus we limit
ourselves to considering detailed steps only for the re-
gion pertinent to Fig. 5 as an illustrative case for all of
them.
Then, for region 3 of Fig. 5, we look for the components

of the current operator J�, which, as we mentioned before,
will be obtained from the operator O� represented by the
square brackets in Eq. (3), so

O�
3 ¼ � ieðigÞ2

26ð2�Þ2
Z dk�2 dk�4 ðk�f þ k�i � 2k�4 Þ

ðki � k2Þþkþ2 ðki � k4Þþkþ4 ðkf � k4Þþðk4 � k2Þþ

� 1h
k�2 � k�i þ ðki � k2Þon � i�

2ðki�k2Þþ
ih
k�2 � k2 on þ i�

2kþ
2

i 1h
k�4 � k�i þ ðki � k4Þon � i�

2ðki�k4Þþ
ih
k�4 � k4 on þ i�

2kþ
4

i

� 1h
k�2 � k�4 þ ðk4 � k2Þon � i�

2ðk4�k2Þþ
ih
k�4 � k�f þ ðkf � k4Þon � i�

2ðkf�k4Þþ
i ; (17)

where k
�
i and k

�
f are the initial and final four-momentum of

the system and m is the mass of the boson. The integration
in Eq. (17), using the Cauchy integral formula over k�2 and
k�4 , has ten nonvanishing contributions for the residue
calculation, but for our example, we concentrate on a
specific region, that is, the range of momenta satisfying
0< kþ2 < kþi < kþ4 < kþf , which corresponds to the
Z-graph or what we call region 3. Thus we are ready to

work out the distinct components of the operator, which we
detail in the next section.

III. OPERATOR COMPONENTS O�;þ;?

After performing the relevant integrals via
Cauchy’s residue theorem in Eq. (17), we have for
the � component

O�
3 ¼ ieðigÞ2

26
�ðkþi � kþ2 Þ�ðkþ2 Þ�ðkþ4 � kþi Þ�ðkþ4 Þ�ðkþf � kþ4 Þ�ðkþ4 � kþ2 Þ

ðki � k2Þþkþ2 ðki � k4Þþkþ4 ðkf � k4Þþðk4 � k2Þþ

h
k�f � k�i � ðkf�k4Þ2?þm2

ðkf�k4Þ
i

h
k�i � ðki�k2Þ2?þm2

2ðkþi �kþ
2
Þ � k2

2?þm2

2kþ
2

i

� 1h
k�f � k2

2?þm2

2kþ
2

� ðkf�k4Þ2?þm2

2ðkþ
f
�kþ

4
Þ � ðk4�k2Þ2?þm2

�

2ðkþ
4
�kþ

2
Þ
i 1h

k�f � k�i þ ðki�k4Þ2?þm2

2ðkþi �kþ
4
Þ � ðkf�k4Þ2?þm2

2ðkþ
f
�kþ

4
Þ
ih
k�f � k2

4?þm2

2kþ
4

� ðkf�k4Þ2?þm2

2ðkþ
f
�kþ

4
Þ
i :

(18)

The physical process represented by Eq. (18) is the pair creation due to the interacting photon. The denominator

FIG. 6. Light-front time-ordered diagram related to regions 1
and 7 of the longitudinal momentum interval possibilities as
given in Table I. Note that here we have two possibilities: In the
first diagram the background field is associated with the propa-
gator of three bodies (particle 3, intermediate sigma boson and
particle 2). In the second diagram we have the association with
two bodies (particles 3 and 4). These diagrams are representative
of the detailed calculation in the Appendix resulting in
Eq. (B10).

FIG. 7. Light-front time-ordered diagrams related to region 12
of the longitudinal momentum interval possibilities as given in
Table I. Observe that in the diagram on the left, q� < 0, which
means we have an antiparticle for the photon.
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�
k�f � k�i þ ðki � k4Þ2? þm2

2ðkþi � kþ4 Þ
� ðkf � k4Þ2? þm2

2ðkþf � kþ4 Þ
��1

corresponds to the propagation in the intermediate state of a pair particle-antiparticle, composed of the initial bound state,
the particle and the antiparticle produced by the photon. The denominators

�
k�i � ðki � k2Þ2? þm2

2ðkþi � kþ2 Þ
� k22? þm2

2kþ2

��1
;

�
k�f � k22? þm2

2kþ2
� ðkf � k4Þ2? þm2

2ðkþf � kþ4 Þ
� ðk4 � k2Þ2? þm2

�

2ðkþ4 � kþ2 Þ
��1

;

and �
k�f � k24? þm2

2kþ4
� ðkf � k4Þ2? þm2

2ðkþf � kþ4 Þ
��1

are the intermediate states of two and three particles that propagate forward in time xþ.
In a similar way, we obtain for the components Oþ

3 and O?
3

O�
3 ¼ � ieðigÞ2

26
�ðkþi � kþ2 Þ�ðkþ2 Þ�ðkþ4 � kþi Þ�ðkþ4 Þ�ðkþf � kþ4 Þ�ðkþ4 � kþ2 Þ

ðkþi � kþ2 Þkþ2 ðkþi � kþ4 Þkþ4 ðkþf � kþ4 Þðkþ4 � kþ2 Þ
½k�f þ k�i � 2k�4 �h

k�i � ðki�k2Þ2?þm2

2ðkþi �kþ
2
Þ � k2

2?þm2

2kþ
2

i

� 1h
k�f � k2

2?þm2

2kþ2
� ðkf�k4Þ2?þm2

2ðkþ
f
�kþ4 Þ � ðk4�k2Þ2?þm2

�

2ðkþ4 �kþ2 Þ
i 1h

k�f � k�i þ ðki�k4Þ2?þm2

2ðkþi �kþ4 Þ � ðkf�k4Þ2?þm2

2ðkþ
f
�kþ4 Þ

ih
k�f � k2

4?þm2

2kþ4
� ðkf�k4Þ2?þm2

2ðkþ
f
�kþ4 Þ

i ;

(19)

where we have introduced the notation � ¼ þ,? . The difference between the operatorsO�
3 andO�

3 is in the numerators
of Eqs. (18) and (19), which have components þ and ? instead of �.

IV. ZERO MODE CONTRIBUTION AT Oðg2Þ
To calculate the electromagnetic current generated by the diverse configurations, we must have the matrix elements

J�;þ;? ¼ h�jO�;þ;?j�i, where � is the constant vertex and O�;þ;? are the current operator components, which we
can obtain directly from the sum of the final results in each region. Introducing the unit resolution into the matrix element
we have

h�jO�;þ;?j�i ¼
Z

dkþj d2kj?h�jkþj ; ~kj?ihkþj ; ~kj?jO�;þ;? Z
dk0þj d2k0j?jk0þj ; ~k0j?ihk0þj ; ~k0j?j�i

¼ �
Z

dkþj d2kj?dk
0þ
j d2k0j?hkþj ; ~kj?jO�;þ;?jk0þj ; ~k0j?i�

¼ �2
Z

dkþj d2kj?dk0þj d2k0j?	ðkþj � k0þj � qþÞ	ð ~kj? � ~k0j? � ~q?Þhkþj ; ~kj?jO�;þ;?jk0þj ; ~k0j?i

¼ �2
Z

dkþ2 d
2k2?dkþ4 d

2k4?O�;þ;?: (20)

Thus, for the example of Fig. 5 the electromagnetic current J�;þ;?
3 , pertinent to region 3 with momentum range

0< kþ2 < kþi < kþ4 < kþf , is obtained by introducing in the integrand above the current operator componentsO�
3 given in

Eq. (18) and O�
3 given in Eq. (19).

Our next step is to perform the remaining momentum integration over kþ2 and kþ4 and take the limit qþ ! 0. To calculate
the momentum integrations we make two changes of variables that will facilitate our job of integrating them,

x ¼ kþi � kþ2
qþ

y ¼ kþf � kþ4
qþ

: (21)

SUZUKI, SALES, AND SORIANO PHYSICAL REVIEW D 88, 025036 (2013)

025036-8



On the other hand, taking advantage of the momentum conservation relations in Eq. (10) we get

kþ1 ¼ xqþ kþ3 ¼ ðy� 1Þqþ kþ5 ¼ yqþ kþ� ¼ ðx� yþ 1Þqþ: (22)

Now it is just a matter of putting things together. We begin by taking the � component.
(i) Current J�3 Substituting Eqs. (21) and (22) into Eq. (20) we get

J�3 ¼ h�jO�
3 j�i ¼ �2

Z
dkþ2 d

2k2?dk
þ
4 d

2k4?O
� ¼ �2

Z
d2k2?d

2k4?

�
ðqþÞ2

Z
dxdyO�

3

�
; (23)

where the operator contribution O�
3 takes the following form:

O�
3 ¼ ieðigÞ2

26
�ðkþi � kþ2 Þ�ðkþ2 Þ�ðkþ4 � kþi Þ�ðkþ4 Þ�ðkþf � kþ4 Þ�ðkþ4 � kþ2 Þ
xqþðkþi � xqþÞðy� 1Þqþðkþf � yqþÞyqþðx� yþ 1Þqþ

h
k�f � k�i � ðkf�k4Þ2?þm2

yqþ

i
h
k�i � ðki�k2Þ2?þm2

2xqþ � k2
2?þm2

2ðkþi �xqþÞ
i

� 1h
k�f � k2

2?þm2

2ðkþi �xqþÞ �
ðkf�k4Þ2?þm2

2yqþ � ðk4�k2Þ2?þm2
�

2ðx�yþ1Þqþ
i 1h

k�f � k�i þ ðki�k4Þ2?þm2

2ðy�1Þqþ � ðkf�k4Þ2?þm2

2yqþ

i

� 1h
k�f � k24?þm2

2ðkþ
f
�yqþÞ �

ðkf�k4Þ2?þm2

2yqþ

i ; (24)

which can be written in a more convenient form, factoring out all the relevant factors of qþ to make more evident how this
particular operator component depends on qþ:

O�
3 ¼ ieðigÞ2

26

�
1

qþ

� �ðkþi � kþ2 Þ�ðkþ2 Þ�ðkþ4 � kþi Þ�ðkþ4 Þ�ðkþf � kþ4 Þ�ðkþ4 � kþ2 Þ
xðkþi � xqþÞðy� 1Þðkþf � yqþÞyðx� yþ 1Þ

h
ðk�f � k�i Þqþ � ðkf�k4Þ2?þm2

y

i
h
k�i qþ � ðki�k2Þ2?þm2

2x � k2
2?þm2

2ðkþi �xqþÞq
þ
i

� 1h
k�f q

þ � k2
2?þm2

2ðkþi �xqþÞq
þ � ðkf�k4Þ2?þm2

2y � ðk4�k2Þ2?þm2
�

2ðx�yþ1Þ
i

� 1h
ðk�f � k�i Þqþ þ ðki�k4Þ2?þm2

2ðy�1Þ � ðkf�k4Þ2?þm2

2y

ih
k�f q

þ � k2
4?þm2

2ðkþ
f
�yqþÞ q

þ � ðkf�k4Þ2?þm2

2y

i : (25)

We observe that substitution of Eq. (25) into Eq. (23) implies that the matrix element for J�3 is now proportional to qþ.
Then, in the Drell-Yan reference frame [16], qþ ¼ q� ! 0, the current component J�3 vanishes.

(ii) Current Jþ3
In a similar way the component Jþ3 can be worked out and it yields

Jþ3 ¼ h�jOþ
3 j�i ¼ �2

Z
dkþ2 d

2k2?dk
þ
4 d

2k4?O
þ ¼ �2

Z
d2k2?d

2k4?

�
ðqþÞ2

Z
dxdyOþ

3

�
; (26)

where the operator factor Oþ
3 is now

Oþ
3 ¼ iðigÞ2

26
�ðkþi � kþ2 Þ�ðkþ2 Þ�ðkþ4 � kþi Þ�ðkþ4 Þ�ðkþf � kþ4 Þ�ðkþ4 � kþ2 Þ

xðkþi � xqþÞðy� 1Þðkþf � yqþÞyðx� yþ 1Þ
qþð2y� 1Þh

k�i qþ � ðki�k2Þ2?þm2

2x � k22?þm2

2ðkþi �xqþÞ q
þ
i

� 1h
k�f q

þ � k2
2?þm2

2ðkþi �xqþÞq
þ � ðkf�k4Þ2?þm2

2y � ðk4�k2Þ2?þm2
�

2ðx�yþ1Þ
i

� 1h
ðk�f � k�i Þqþ þ ðki�k4Þ2?þm2

2ðy�1Þ � ðkf�k4Þ2?þm2

2y

ih
k�f q

þ � k2
4?þm2

2ðkþ
f
�yqþÞ q

þ � ðkf�k4Þ2?þm2

2y

i ; (27)
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where we have used Eqs. (21) and (22) and found that ½kþf þ kþi � 2kþ4 � ¼ qþð2y� 1Þ. We observe that in the substitution
of Eq. (27) into Eq. (26) the current component Jþ3 is proportional to ðqþÞ3. Then, in the Drell-Yan frame of reference, the
current Jþ also vanishes.

(iii) Current J?3
In the same manner, for J?3 we have

J?3 ¼ h�jO?
3 j�i ¼ �2

Z
dkþ2 d2k2?dk

þ
4 d

2k4?O
? ¼ �2

Z
d2k2?d

2k4?

�
ðqþÞ2

Z
dxdyO?

3

�
; (28)

where the operator factor O?
3 has the following form:

O?
3 ¼ iðigÞ2

26
�ðkþi � kþ2 Þ�ðkþ2 Þ�ðkþ4 � kþi Þ�ðkþ4 Þ�ðkþf � kþ4 Þ�ðkþ4 � kþ2 Þ

xðkþi � xqþÞðy� 1Þðkþf � yqþÞyðx� yþ 1Þ
½k?f þ k?i � 2k?4 �h

k�i qþ � ðki�k2Þ2?þm2

2x � k2
2?þm2

2ðkþi �xqþÞ q
þ
i

� 1h
k�f q

þ � k22?þm2

2ðkþi �xqþÞ q
þ � ðkf�k4Þ2?þm2

2y � ðk4�k2Þ2?þm2
�

2ðx�yþ1Þ
i 1h

ðk�f � k�i Þqþ þ ðki�k4Þ2?þm2

2ðy�1Þ � ðkf�k4Þ2?þm2

2y

i

� 1h
k�f q

þ � k2
4?þm2

2ðkþ
f
�yqþÞ q

þ � ðkf�k4Þ2?þm2

2y

i : (29)

We observe now that in the substitution of Eq. (29) into Eq. (28) the current component J?3 is proportional to ðqþÞ2.
Therefore, in the Drell-Yan reference frame, the current component J?3 also vanishes.

In this manner we have shown that for the current components J�3 , Jþ3 and J?3 , only the contribution for the residue

corresponding to the composite system survives in the integration over k� via Cauchy’s formula method. However, these
components do not contribute to the pair production in the limit qþ ! 0.

Having achieved this result, we want to generalize to J� for this specific example, counting the terms that bear qþ, that
is, performing a power counting on the factors qþ for a quick analysis of the result in the frame qþ ! 0:

Momentum integration
Z

dkþ2 dk
þ
4 ) ðqþÞ2

Z
dxdy

1

ðki � k2Þþkþ2 ðki � k4Þþkþ4 ðkf � k4Þþðk4 � k2Þþ ) 1

ðqþÞ4

Legs of the type
1

½aþ b
cqþ þ d

eqþ þ � � ��4 ) ðqþÞ4

Numerator of the type ðaþ k2 onÞ or ðaþ k4 onÞ ) ðqþÞ0 ¼ 1

Numerator of the type ðaþ kjonÞ with j � 2 or 4 ) 1

qþ
; (30)

where a represents the momenta ki, kf, kf � ki, etc. and b, d, etc. are k2 on, k4 on or kjon. Note that as we multiply all these
factors together there will always remain at least a ðqþÞ1, which, in the limit for qþ ! 0, makes the current in all regions
vanish. What we conclude here is that the introduction of a virtual boson, in comparison to the configuration considered in
[14], does not alter the current because the factors in the second and third lines of Eq. (30) cancel each other. The important
factor is the photon vertex, since it increases the power in the numerator; only with correct factors of 1

qþ can we cancel the
factor coming from the change of variables.

In a general manner we can count the terms in qþ for n intermediate bosons and with one external source; that is, for n
bosons and one photon, we have
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Momentum integration
Z Ynþ1

j¼1

dkþ2j ) ðqþÞnþ1
Z Ynþ1

j¼1

dxj

Yn
j¼0

1

ðkþi � kþ2jþ2Þkþ2jþ2

Yn
j¼1

1

ðkþ2jþ2 � kþ2jÞðkþf � kþ2jþ2Þ
) 1

ðqþÞ2nþ2

Legs of the type
1

½aþ b
cqþ þ d

eqþ þ � � �� ) ðqþÞ2nþ2

Numerator of the type ðaþ k2 onÞ or ðaþ k4 onÞ ) ðqþÞ0 ¼ 1

Numerator of the type ðaþ kjonÞ with j � 2; 4; . . . ; 2nþ 2 ) 1

qþ
:

Again we perceive that, as we multiply these factors, a term that is proportional to ðqþÞn will always remain, and in the
limitqþ ! 0, thismakes the current for all regions vanish. Therefore, addingmore intermediate bosonsmakes no difference
since the powers in qþ that are given by the second and third lines of formulas written above will always cancel each other.

Now, finally, if we have m external sources for n interacting bosons, we obtain

Momentum integration
Z Ynþ1

j¼1

dkþ2j ) ðqþÞnþ1
Z Ynþ1

j¼1

dxj

1

ðkþi � kþ2 Þ . . . ðkþ2nþ2 � kþ2nÞðkþf � kþ2nþ2Þðkþf � kþ2jþ2Þ
) 1

ðqþÞ2nþmþ2

Legs of the type
1

½aþ b
cqþ þ d

eqþ þ � � �� ) ðqþÞ2nþmþ2

Numerator of the type ðaþ k2 onÞ or ðaþ k4 onÞ ) ðqþÞ0 ¼ 1

Numerator of the type ðaþ kjonÞ with j � 2; 4; . . . ; 2nþ 2 ) 1

ðqþÞm : (31)

In this manner it is only possible to observe the contribu-
tions of antiparticles when we put more energy into the
system of two interacting bosons. We can check this in the
case shown previously: In the second order of the coupling
constant for a virtual boson, this results in no observation
of antiparticle contributions for qþ ! 0 in a background
field. However, in the expression Eq. (31) we have a case of
two external sources (m ¼ 2) and one interacting inter-
mediate boson (n ¼ 1) in which we obtain a cancellation

of the factors ðqþÞnþ1

ðqþÞm ¼ 1. As a consequence, in this case we
will have a nonvanishing contribution from the diagrams of
antiparticles. Therefore, as we increase the number of
photons (more energy put into the system) on the n bosons,
we will encounter nonvanishing contributions from pair
production diagrams in the limit qþ ! 0.
We have plotted in Figs. 8–10 the pair production con-

tribution in the components of the electromagnetic current
in the light front for the propagation of two scalar bosons

FIG. 8 (color online). J� Current component in the light front. FIG. 9 (color online). Jþ Current component in the light front.
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with one scalar boson exchange. Over this system there is a
background field up to two photons (labeled external
sources). We can see that for one external photon there is
no pair contribution for any of the components of the
current. With two photons, there is a pair contribution in
the J� component of the current. The other components,
ðJþ; J?Þ, have no contribution in any order up to order 2 in
the background field.

V. CONCLUSION

We have demonstrated that the propagator of two bosons
in a background field has a nonvanishing contribution
coming from the pair creation by the photon. In particular,
in an example of a bound state with a constant vertex, we
demonstrated that the J� current component in Breit’s
reference frame (qþ ¼ 0) has a nonzero contribution
from the process of pair creation by the photon. This
conclusion is reached as long as we first have qþ different
from zero, integrating in k� and then taking the limit
qþ ! 0. The integration in k� and the limit qþ ! 0
does not commute in general.

In the process of these calculations it has been pointed
out that the emergence of a nonvanishing contribution from
pair production by the interacting photon is naturally
achieved by extending the region of allowed quantum
solutions in the light front, that is, extending the Fock
space of positive quanta to include relevant solutions
from the Fock space of negative quanta. This also means
that the myth of a light-front trivial vacuum must be
forever abandoned.

We have demonstrated that the inclusion of the pair
production term in the light-front formalism is of capital
importance for the validity of rotational symmetry for the
electromagnetic current of a bound state of two bosons in
the model of a constant vertex [2]. In the case of components

Jþ and ~J? we concluded that the pair creation term does not
contribute in the limit qþ ! 0. For the J� component,

however, we have shown that we must take into account
the pair production so that rotational symmetry is satisfied
in the limit qþ ! 0. This result has been known for a while
in the light-frontmilieu, but with our new approach we have
shown that the result which has been reached before via
ad hoc mathematical techniques can be achieved on the
basis of physical grounds.
We also show that the method of ‘‘dislocating the integra-

tion pole’’ is nothing more than a particular case of our
approach, so that such an ad hoc prescription can be better
understood as we deal with the whole Fock space. With this
we can also prepare to deal with cases involving interactions.
In this work we performed the calculations for correc-

tions to the propagator in a background field up to second
order in the coupling. We obtained more diagrams than
those considered in a recent article [15], just those in which
antiparticles appear. The Z-graph appears naturally in our
approach. Yet, in Breit’s reference frame these diagrams do
not contribute to the current in order g2.
For orders in gn, perhaps it may be possible to devise a

recipe for how to correctly introduce the orders in qþ so
that the results in some regions survive, as in [14] in Breit’s
frame.
We also point out that there is a relation between the

number of interacting bosons n and the number of external
photon fields m for which the pair creation contribution
is nonvanishing in the J� current, and this is given by
m � 1þ n.
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APPENDIX A: CURRENT FOR TWO
FREE BOSONS

To describe the electromagnetic current for a system
composed of two free bosons, we study the process in
which two bosons of the same mass m propagate forward
in time, and in a given instant in the light front �xþ one of
them interacts with an electromagnetic field. In the follow-
ing we calculate the components of two noninteracting
boson currents in an external electromagnetic field, with
total momenta before and after the absorption of the photon
being Kþ

i > 0 and Kþ > 0, respectively.
The Lagrangian density that involves the scalar field and

electromagnetic field in the interaction is given by

£ ¼ D��D��� �m2���: (A1)

The derivative between the scalar field and the electro-
magnetic field is contained in the covariant derivative
D��.

FIG. 10 (color online). J? Current component in the light
front.
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In the calculation of the propagator for a particle in a
background field we use the interaction Lagrangian of a
scalar field and an electromagnetic field. As we have al-
ready mentioned, the interaction between the scalar and
electromagnetic fields is contained in the first term of (A1),
so that the interaction Lagrangian is

£I ¼ ieA�ð�@��
� ���@��Þ þ e2A�A����: (A2)

The Lagrangian (A2) shows immediately that there are
two types of vertices. The first term corresponds to a vertex
containing a photon and two scalar particles. The second
vertex contains two photons and two scalar particles.

Using the concept of a generating functional Z½J�, or a
vacuum-vacuum transition amplitude in the presence of an
external source JðxÞ, we write

Z½J�¼
Z
D�ei

R
d4x½£ð�ÞþJðxÞþi"

2��/ h0;1j0;�1iJ; (A3)

where £ ¼ £0 þ £I and

£0 ¼ @��@��� �m2���:

The Green functions are the expectation values of the
time-ordered product of field operators in vacuum and can
be written in terms of functional derivatives of the generat-
ing functional Z0½J�. That is,

Gðx1; . . . ; xnÞ ¼ h0jTð�ðx1Þ . . .�ðxnÞÞj0i; (A4)

which are the n-point Green functions of the theory, where

h0jTð�ðx1Þ . . .�ðxnÞÞj0i ¼ 1

in
	nZ0½J�

	Jðx1Þ . . .	JðxnÞ
��������J¼0

:

(A5)

Green functions for field theories are extremely impor-
tant because they are intimately related to the matrix
elements of the scattering matrix S from which we can
calculate quantities measured directly in the experiments
such as scattering processes where the cross section for a
given reaction is measured, decay of a particle into two or
more where we can measure the mean life of particles
involved, etc.

The propagator is associated with the Green function
equation as

Gðt� t0Þ ¼ �iSðt� t0Þ: (A6)

The Green function or the propagator describes
completely the evolution for the quantum system. In
this present case we are using the propagator for
‘‘future times.’’ We could also have defined the propagator
‘‘backwards’’ in time.

The propagation of a free particle with spin zero in four-
dimensional space-time is represented by the covariant
Feynman propagator

Sðx�Þ ¼
Z d4k

ð2�Þ4
ie�ik�x�

k2 �m2 þ i"
; (A7)

where the coordinate x0 represents the time and k0 the
energy. We are going to calculate this propagation in the
light front, that is, for times xþ.
We show the projection of the propagator for a boson in

time associated with the light front [17–20], rewriting the
coordinates in terms of the time coordinate xþ and the
position coordinates (x� and ~x?). With these, the momenta

are given by k�, kþ and ~k?, and therefore we have

SðxþÞ ¼ 1

2

Z dk�1
ð2�Þ

ie
�i
2 k

�
1 x

þ

kþ1
�
k�1 � k2

1?þm2

kþ1
þ i"

kþ1

	 : (A8)

The Jacobian of the transformation k0, ~k ! k�, kþ, ~k?
is equal to 1

2 , and kþ, k? are momentum operators.

Evaluating the Fourier transform, we obtain

~Sðk�Þ ¼
Z

dxþei
2k

�xþSðxþÞ; (A9)

where we have used

	

�
k� � k�1

2

�
¼ 1

2�

Z
dxþei

2ðk��k�
1
Þxþ (A10)

and the property of Dirac’s delta ‘‘function’’

	ðaxÞ ¼ 1

a
	ðxÞ; (A11)

and we get

~Sðk�Þ ¼ i

kþ
�
k� � k2?þm2

kþ þ i"
kþ

	 ; (A12)

which describes the propagation of a particle forward in time
and of an antiparticle backwards in time. This can be ob-
served by the denominator which hints that for xþ > 0 and
kþ > 0 we have the particle propagating forward in the light
front time. On the other hand, for xþ < 0 and kþ < 0 we
have an antiparticle propagating backwards in time.

APPENDIX B: POLE STRUCTURE
AND INTEGRATIONS IN THE
k�2 AND k�4 COMPLEX PLANE

The propagator in the momentum representation is given
by Eq. (11), and the integrations over the k�2 and k�4
components are done according to the 24 different regions
of the longitudinal momenta in Table I.
As mentioned in the main text, we start by performing the

k�2 integration first, for which there are three relevant poles.
According to Table II eight regions, numbered 5, 6, 19, 20,
21, 22, 23, and 24, yield a vanishing result for this integra-
tion. For the nonvanishing integrations, we conveniently
choose the circuit that encloses only one pole, going around
either the upper hemisphere or the lower hemisphere of the
complex k�2 plane. Then we get the following results.
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(i) For regions 1, 3, 7, 9, 10, 13, 15 and 16:

~Sðk�f Þ ¼
�iðigÞ2ð�2�iÞ

26ð2�Þ2
Z dq�Aðq�Þdk�4 ðk�f þ k�i � 2k�4 Þ

ðki � k2Þþkþ2 ðki � k4Þþkþ4 ðkf � k4Þþðk4 � k2Þþ
1

½k�i � k2on � ðki � k2Þon�
� 1h

k�4 � k�i þ ðki � k4Þon � i"
2ðki�k4Þþ

ih
k�4 � k4on þ i"

2kþ
4

i 1h
k�4 � k2on � ðk4 � k2Þon þ i"

2ðk4�k2Þþ
i

� 1h
k�4 � k�f þ ðkf � k4Þon � i"

2ðkf�k4Þþ
i : (B1)

(ii) For regions 2, 8, 11 and 12:

~Sðk�f Þ¼�ig2ð2�iÞ
26ð2�Þ2

Z dq�Aðq�Þdk�4 ðk�f þk�i �2k�4 Þ
ðki�k2Þþkþ2 ðki�k4Þþkþ4 ðkf�k4Þþðk4�k2Þþ

1

½k�i �ðki�k2Þon�k2on�
� 1h

k�4 �k�i þðki�k4Þon� i�
ðki�k4Þþ

ih
k�4 �k4onþ i�

kþ4

i 1h
k�4 �k�i þðki�k2Þon�ðk4�k2Þonþ i�

ðk4�k2Þþ
i

� 1h
k�4 �k�f þðkf�k4Þon� i�

ðkf�k4Þþ
i: (B2)

(iii) For regions 4, 14, 17 and 18:

~Sðk�f Þ ¼
iðigÞ2ð2�iÞ
26ð2�Þ2

Z dq�Aðq�Þdk�4 ðk�f þ k�i � 2k�4 Þ
ðki � k2Þþkþ2 ðki � k4Þþkþ4 ðkf � k4Þþðk4 � k2Þþ

� 1h
k�4 � k�i þ ðki � k2Þon � ðk4 � k2Þon � i"

2ðki�k2Þþ
i 1h

k�4 � k2on � ðk4 � k2Þon þ i"
2kþ2

i

� 1h
k�4 � k�i þ ðki � k4Þon � i"

2ðki�k4Þþ
ih
k�4 � k4on þ i"

2kþ
4

i 1h
k�4 � k�f þ ðkf � k4Þon � i"

2ðkf�k4Þþ
i : (B3)

1. Integration in k�4
The next step is to perform the k�4 interaction, for which we have thirteen different poles and six more vanishing

integrations, corresponding to the regions numbered 13, 15, 16, 14, 17, and 18 (see Table V); therefore, from the original 24
possibilities, there remain now only 10. Later on we shall consider the case of regions in which it is not possible to choose a
circuit that encloses only a single pole (regions 1, 7 and 12). For all the other regions in which we can conveniently choose
a circuit of interaction that encloses only a single pole, the integration is quite straightforward to perform.

(i) Regions 2, 8 and 11: The result is

~Sðk�f Þ¼
�iðigÞ2

26

Z dq�Aðq�Þðk�f þk�i �2k4onÞ
ðki�k2Þþkþ2 ðki�k4Þþkþ4 ðkf�k4Þþðk4�k2Þþ

1

½k�i �ðki�k2Þon�k2on�½k�i �ðki�k4Þon�k4on�
� 1

½k�i �ðki�k2Þon�k4onþðk4�k2Þon�
1

½k�f �k4on�ðkf�k4Þon�: (B4)
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(ii) Region 4: The result is

~Sðk�f Þ ¼
�iðigÞ2

26

Z dq�Aðq�Þ½k�f � k�i � 2ðkf � k4Þon�
ðki � k2Þþkþ2 ðki � k4Þþkþ4 ðkf � k4Þþðk4 � k2Þþ

� 1

½k�f � k�i þ ðki � k2Þon � ðkf � k4Þon � ðk4 � k2Þon�

� 1

½k�f � k2on � ðkf � k4Þon � ðk4 � k2Þon�½k�f � k4on � ðkf � k4Þon�

� 1

½k�f � k�i þ ðki � k4Þon � ðkf � k4Þon� : (B5)

(iii) Regions 9 and 10: Here the result is

~Sðk�f Þ¼
iðigÞ2
26

Z dq�Aðq�Þ½k�i �k�f �2ðki�k4Þon�
ðki�k2Þþkþ2 ðki�k4Þþkþ4 ðkf�k4Þþðk4�k2Þþ

1

½k�i �ðki�k2Þon�k2on�½k�i �ðki�k4Þon�k4on�
� 1

½k�i �k2on�ðki�k4Þon�ðk4�k2Þon�
1

½k�i �k�f �ðki�k4Þonþðkf�k4Þon�: (B6)

(iv) Region 3: The result is

~Sðk�f Þ ¼
iðigÞ2
26

Z dq�Aðq�Þ½k�f � k�i � 2ðkf � k4Þon�
ðki � k2Þþkþ2 ðki � k4Þþkþ4 ðkf � k4Þþðk4 � k2Þþ

� 1

½k�i � ðki � k2Þon � k2on�½k�f � k2on � ðkf � k4Þon � ðk4 � k2Þon�

� 1

½k�f � k�i þ ðki � k4Þon � ðkf � k4Þon�½k�f � k4on � ðkf � k4Þon� : (B7)

For the cases of circuits that enclose two poles, the integration may become simpler or more complex depending on
which contour we choose. These cases turn out to be manageable only after separating the poles using the helpful trick of
disentangling them by using the partial fractioning of the denominators, that is, using the identity

1

ðx� AÞðx� BÞðx� CÞðx�DÞ ¼
1

ðA� BÞðx� CÞðx�DÞ �
�

1

ðx� AÞ �
1

ðx� BÞ
�
: (B8)

The key point is to choose the poles conveniently in order to do this. Let us see how this can be done.
(i) For regions 1 and 7: Here we choose A as pole 3 and B as pole 2 and use partial fractioning. Then we get

~Sðk�f Þ¼�iðigÞ2ð�2�iÞ
26ð2�Þ2

Z dq�Aðq�Þdk�4 ðk�f þk�i �2k�4 Þ
ðki�k2Þþkþ2 ðki�k4Þþkþ4 ðkf�k4Þþðk4�k2Þþ

� 1

½k�i �k2on�ðki�k2Þon�½k�f �k4on�ðkf�k4Þon�
1h

k�4 �k�i þðki�k4Þon� i�
2ðki�k4Þþ

i

� 1h
k�4 �k2on�ðk4�k2Þonþ i�

2ðk4�k2Þþ
i
8<
: 1h

k�4 �k�f þðkf�k4Þon� i�
2ðkf�k4Þþ

i� 1h
k�4 �k4onþ i�

2kþ
4

i
9=
;: (B9)

We may localize the following poles from one side,
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1: k�4 ¼ k�i � ðki � k4Þon þ i�

2ðki � k4Þþ

2: k�4 ¼ k2on þ ðk4 � k2Þon � i�

2ðk4 � k2Þþ

3: k�4 ¼ k�f � ðkf � k4Þon þ i�

2ðkf � k4Þþ ;

and from the other side,

1: k�4 ¼ k�i � ðki � k4Þon þ i�

2ðki � k4Þþ

2: k�4 ¼ k2on þ ðk4 � k2Þon � i�

2ðk4 � k2Þþ

3: k�4 ¼ k4on �
i�

2kþ4
:

It is not difficult to see that the choice of poles 1 and 2 leads us to the same result.

~Sðk�f Þ ¼
iðigÞ2
26

Z dq�Aðq�Þ
ðki � k2Þþkþ2 ðki � k4Þþkþ4 ðkf � k4Þþðk4 � k2Þþ

� 1

½k�i � k2on � ðki � k2Þon�½k�f � k4on � ðkf � k4Þon� �
1

½k�i � k2on � ðki � k4Þon � ðk4 � k2Þon�

�
8<
:

½k�f þ k�i � 2k2on � 2ðk4 � k2Þon�
½k�f � k2on � ðkf � k4Þon � ðk4 � k2Þon� þ

½k�f � k�i þ 2ðki � k4Þon�
½k�i � ðki � k4Þon � k4on�

9=
;: (B10)

This is the final result for the calculation.
(ii) Region 12: Again, it is not possible to obtain a direct result from poles 1 and 4 or 2 and 3. Using partial fractioning

by setting A ¼ 3 and B ¼ 4 we get

~Sðk�f Þ ¼
�iðigÞ2ð2�iÞ

26ð2�Þ2
Z dq�Aðq�Þdk�4 ðk�f þ k�i � 2k�4 Þ

ðki � k2Þþkþ2 ðki � k4Þþkþ4 ðkf � k4Þþðk4 � k2Þþ

� 1

½k�i � ðki � k2Þon � k2on�½k�i � k�f � ðki � k2Þon þ ðkf � k4Þon þ ðk4 � k2Þon�

� 1

½k�4 � k�i þ ðki � k4Þon � i�
2ðki�k4Þþ�½k�4 � k4on þ i�

2kþ
4
�
�

1

½k�4 � k�f þ ðkf � k4Þon � i�
2ðkf�k4Þþ�

� 1

½k�4 � k�i þ ðki � k2Þon � ðk4 � k2Þon þ i�
2ðk4�k2Þþ�

�
(B11)

and the poles are localized at

1: k�4 ¼ k�i � ðki � k4Þon þ i�

2ðki � k4Þþ

2: k�4 ¼ k4on �
i�

2kþ4

3: k�4 ¼ k�f � ðkf � k4Þon þ i�

2ðkf � k4Þþ

and
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1: k�4 ¼ k�i � ðki � k4Þon þ i�

2ðki � k4Þþ

2: k�4 ¼ k4on �
i�

2kþ4

3: k�4 ¼ k�i � ðki � k2Þon þ ðk4 � k2Þon � i�

2ðk4 � k2Þþ :

Finally, the choice of poles 1 and 2 yields the following result:

~Sðk�f Þ ¼
�iðigÞ2

26

Z dq�Aðq�Þ
ðki � k2Þþkþ2 ðki � k4Þþkþ4 ðkf � k4Þþðk4 � k2Þþ

� 1

½k�i � ðki � k2Þon � k2on�½k�i � ðki � k4Þon � k4on�
� 1

½k�i � k�f � ðki � k2Þon þ ðkf � k4Þon þ ðk4 � k2Þon�

�
� k�i � k�f � 2ðki � k4Þon
½k�i � k�f � ðki � k4Þon þ ðkf � k4Þon� �

k�f þ k�i � 2k4on
½k�i � ðki � k2Þon � k4on þ ðk4 � k2Þon�

�
: (B12)
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