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We start with a four-dimensional (4D) system only with local nilpotent fermionic symmetry, and

show that massive N ¼ 1 supergravity is realized as a special case. Our field content in 4D is

ðe�m; c �;!�
rs; �Þ, where c � is a vector-spinor in the Majorana representation in four dimenisons,

while � is a compensator Majorana spinor, and !�
rs is the Lorentz connection in the first-order

formalism. Applying a similar method to ten dimensions, we start with the field content

ðe�m; c �;!�
rs; A���; B��; �; ’; �Þ with nilpotent fermionic symmetry, and show that the conventional

massive type-IIA supergravity comes out as a special case of our system. These explicit results indicate

that the most known massive supergravity theories are just special cases of more fundamental systems

with nilpotent fermionic symmetry. Our nilpotent fermionic charge N� satisfying fN�;N�g ¼ 0 resembles

the Becchi-Rouet-Stora-Tyutin charge QB in topological field theory with the ‘‘twisting of supersymme-

try.’’ If we interpret our charge N� as twisted supersymmetry, it becomes clear how our system evades

the Haag-Lopuszański-Sohnius theorem for the uniqueness of supergravity.
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I. INTRODUCTION

In our recent paper [1], we have demonstrated that some
supersymmetric integrable systems in lower dimensions
(D � 3) can be generated by a system in dimensions
D ¼ 2þ 2 only with local nilpotent fermionic symmetry.
In such a system, a vector-spinor plays the role of the gauge
field for local nilpotent fermionic symmetry.

In a subsequent paper [2], we have also presented a
self-dual Yang-Mills (SDYM) system with a vector-spinor
gauging local nilpotent symmetry generates in D¼2þ2
contains the usual supersymmetric SDYM system as spe-
cial exact solutions. Our mechanism is shown to work also
in dimensions D ¼ 8þ 0 and D ¼ 7þ 0 for generalized
self-dualities with reduced holonomies SOð7Þ and G2,
respectively. In other words, we have shown that super-
symmetric systems are realized as the subsystems of larger
systems only with local nilpotent fermionic symmetry.

In supergravity theory [3–6], it was shown long time ago
that the gravitino field equation satisfies the so-called con-
sistency condition [4], so that supergravity appears to be
the ‘‘unique’’ gauge theory for interacting vector-spinors.
To elucidate this, we consider a system of the field content
ðA�; c

i
�Þ in four dimensions (4D), where i ¼ 1, 2 for the

2 representation of SOð2Þ, and suppose there is a minimal
coupling between the SOð2Þ gauge field A� and the

Majorana vector-spinor c �
i in the 2 of SOð2Þ. Consider

the Lagrangian1

L1 � � 1

4
ðF��Þ2 � 1

2
ð �c �

i����D�c �
iÞ; (1.1)

where D�c �
i � @�c �

i þ g	ijA�c
j
�. The field equation

for c �
i is2


L1


 �c �
i
¼ �ð����D�c �

iÞ ¼: 0: (1.2)

Since the right side is zero, the divergence of the left side is
supposed to vanish. However, actual computation shows
the opposite:

D�

�

L1


 �c �
i

�
¼ � 1

2
g	ijð����c �

jÞF�� � 0 (1.3)

unless the field strength itself vanishes. This is also known
as ‘‘Velo-Zwanziger disease’’ [7].
In N ¼ 1 supergravity theory in 4D [3–6], this problem

does not arise. The 1st-order formalism of supergravity has
the field content ðe�m; c �;!�

rsÞ with the Lagrangian

L2 ¼ þ 1

4
eR� 1

2
ð �c ��

���D�c �Þ: (1.4)

Here D� is the Lorentz and gauge-covariant derivative:

D�c � � @�c � � ð1=4Þ!�
rsð�rsc �Þ, and R is the scalar

curvature constructed out of the Riemann tensor as
R � g��R�� � g��R���

� with R��
rs � 2@½�!��

rs �
2!½�

rt!��t
s. The c �-field equation is


L2


 �c �
i
¼ �����D�c � ¼: 0: (1.5)

Most importantly, its divergence is shown to vanish [3,4]

*hnishino@csulb.edu
†rajpoot@csulb.edu
1We use the signature ð�;þ;þ;þÞ in 4D.

2We use the symbol ¼: for a field equation, distinguished from
usual algebraic equality.

PHYSICAL REVIEW D 88, 025035 (2013)

1550-7998=2013=88(2)=025035(9) 025035-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.025035


D�

�

L2


 �c �

�
¼: þð�mc �Þ

�

L2


e�
m

�
¼: 0 (1.6)

upon the use of the vierbein field equation.
In the present paper, we show that supergravity theory,

such as N ¼ 1 supergravity theory [3–6] is not singled out
as the unique consistent theory for a vector-spinor in 4D.
We have an alternative consistent system for a vector-
spinor with local nilpotent fermionic symmetry. In other
words, a vector-spinor can be the gauge field not only for
local supersymmetry, but also for local nilpotent fermionic
symmetry. Moreover, the conventional N ¼ 1 supergravity
theory [3–6] is a special subsystem of a larger system only
with nilpotent fermionic symmetry.

The usage of a vector-spinor as the gauge field of local
nilpotent fermionic symmetry is not new. In fact, we have
shown in our paper in 2006 [8] that a vector-spinor can be
coupled consistently to a non-Abelian gauge field without
any problem of consistency. The new result in our present
paper is that the conventional N ¼ 1 supergravity comes
out of such a nilpotent system as a subsystem with super-
symmetry as stronger symmetry.

The technique we adopt is based on the compensator
mechanism. This is also similar to what we used in [8].
Namely, we need an extra compensator � in addition to the
vector-spinor under question.

Some readers may wonder, if gauging nilpotent fermi-
onic symmetries, especially with compensator fields really
makes sense. Such a question is motivated by the following
two observations: First, due to unitarity, nilpotent symme-
try will have only zero-norm states, so that they are asso-
ciated only with unphysical states. Therefore, our system
deals only with unphysical fields. Second, since compen-
sator fields are gauged away by local symmetry by defini-
tion, one can create any theory with compensator that has
‘‘fake’’ symmetry.

Even though these questions seem legitimate at first
glance, they are not actually well supported for the follow-
ing reasons. For the first point about unphysical zero-norm
states, we cite the nontrivial series of works on gauging
Becchi-Rouet-Stora-Tyutin (BRST) symmetry [9] which is
also nilpotent symmetry. Furthermore, in our aforemen-
tioned papers [1,2], we have shown that supersymmetric
integrable models in D ¼ 2þ 1 and D ¼ 1þ 1 are gen-
erated by our system in D ¼ 2þ 2 with nilpotent fermi-
onic symmetry. Obviously, interacting physical states in
D � 3 are associated with nilpotent fermionic symmetry in
D ¼ 2þ 2. Note that even supersymmetries in D � 3 are
generated from a non-supersymmetric system in D¼2þ2
only with nilpotent fermionic symmetry. For the second
point about triviality of compensators, we have to cite the
original works by Proca and Stueckelberg [10] which are
by no means trivial. It is true that our compensator � can be
gauged away by symmetry, and therefore � is unphysical.
However, the vector-spinor gauge field c � can not be

gauged away, because components other than the gradient
direction remain as physical components.
This paper is organized as follows. In the next

section, we explain the consistency of compensator
mechanism, starting with the case of non-Abelian Proca-
Stueckelberg-type compensator field,3 and show that there
is no problem with the divergence of the gauge field
equation. In Sec. III, we give the nilpotent symmetric
system in 4D with the field content ðe�m; c �; �Þ, where
the usual massive supergravity in 4D [11] comes out as a
special case of more general nilpotent symmetric system.
Applying a similar technique, we establish nilpotent-
symmetric system in ten dimensions (10D) with the field
content ðe�m; c �;!�

rs; A���; B��; �; ’; �Þ, and show that

the massive type-IIA supergravity [12] comes out as a
special case of nilpotent-symmetric system.

II. NON-ABELIAN GAUGE FIELD
WITH A COMPENSATOR

As a simple example for a compensator, we consider
non-Abelian gauge interactions. Our field content
is ðA�

I; ’IÞ, where I is for the adjoint representation, while
’I is the Proca-Stueckelberg-type compensator scalar field
[10] that is absorbed into the longitudinal component
of A�

I.

Our total action is I3 �
R
d4xL3, with the Lagrangian4

L 3 ¼ � 1

4
ðF��

IÞ2 � 1

2
ðP�

IÞ2; (2.1)

where

F��
I � þ2@½�A��

I þmfIJKA�
JA�

K;

P�
I � ½ðD�e

’Þe�’�I � þ½ð@�e’Þe�’�I þmA�
I:

(2.2)

Our action I3 has the non-Abelian gauge invariance

TI3 ¼ 0, where


TðA�; e
’Þ ¼ ðþD��;�m�e’Þ

) 
TðF��; P�Þ ¼ �½�; ðF��; P�Þ�:
(2.3)

These fields and the infinitesimal parameter � carry the
implicit anti-Hermitian generators TI, e.g., 
TA�

I ¼
D��

I.

For getting the ’-field equation, we need a lemma for a
general variation of P�

I:


P�
I ¼ D�½ð
e’Þe�’�I þ ½ð
e’Þe�’; P��I þm
A�

I:

(2.4)

3The original gauge field by Proca and Stueckelberg [10] was
only for Abelian group, but we sometimes call it a ‘‘Proca-
Stueckelberg-type compensator’’ in this paper.

4Although the formulation in this section is just the repetition
of the original paper [10], we repeat it here, due to its importance
for understanding our result from the next section.
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Now the field equations of A� and ’ are


L3


A�

¼ �D�F
��I �mP�I ¼: 0; (2.5a)


L3

½ð
e’Þe�’�I ¼ þD�P
�I ¼: 0: (2.5b)

As expected, the divergence of the A�-field equation

vanishes upon the use of the ’-field equation:

D�

�

L3


A�
I

�
¼ �mD�P

�I ¼ �m

L3

½ð
e’Þe�’�I ¼
:
0: (2.6)

This consistency is also associated with the invariance of
the action 
TI ¼ 0, because

0 ¼ þðD��
IÞ
�

L3


A�
I

�
þ ð�m�IÞ 
L3

½ð
e’Þe�’�I

¼r ��I

�
þD�

�

L3


A�
I

�
þm


L3

½ð
e’Þe�’�I
�
: (2.7)

Here the symbol ¼r is an equality valid up to a total
divergence. For any equality in (2.7), no field equation
has been used. In other words, (2.7) is an identity
implying (2.6).

As the transformation (2.3) shows, the field ’I is a
Proca-Stueckelberg compensator field [10], which should
be absorbed into the longitudinal component of A�

I by a

field redefinition

~A� � e�’A�e
’ þm�1e�’@�e

’ ¼ m�1e�’P�e
’: (2.8)

Needless to say, 
T
~A� ¼ �½�; ~A�� and 
T

~F�� ¼
�½�; ~F��� with

~F��
I � 2@½� ~A��

I þmfIJK ~A�
J ~A�

K: (2.9)

Under (2.8), the original Lagrangian (2.1) is recasted into

L 3 ¼ � 1

4
ð ~F��

IÞ2 � 1

2
m2ð ~A�

IÞ2: (2.10)

Now the field equation of ~A� is simply


L3


 ~A�
I ¼ � ~D�

~F��I �m2 ~A�I ¼: 0: (2.11)

Here the covariant derivative ~D� is with ~A�. At the free-

field level, (2.11) means nothing but a massive-vector
(Klein-Gordon) field equation

@2� ~A� ¼: þm2 ~A� þ ðinteractionsÞ: (2.12)

Equation (2.11) further implies that

~D�

�

L3


 ~A�
I

�
¼ �m2 ~D�

~A�I ¼: 0: (2.13)

Even though the middle side of (2.13) is not algebrai-
cally zero, there arises no problem. However, we can no
longer rely on the ’-field equation as in (2.6), because the
’-field is not in the new Lagrangian (2.10) any longer.
Instead, we can interpret (2.13) as the divergence of (2.11)

yielding the vanishing of ~D�
~A�I. This is also equivalent to

the e’-field equation in the original system in the frame

ðA�;’Þ. As a matter of fact, the condition ~D�
~A�I ¼: 0 is

needed for a massive vector ~A�
I, because one degree of

freedom (DOF) should be eliminated out of the original 4
DOF, so that only 4� 1 ¼ 3 DOF survive as a massive
vector field.
The reason why (1.3) had a problem, while (2.13) or

(2.5b) did not, is that the latter has many nontrivial solu-
tions, while the former does not. We will see similar
situation for a vector-spinor field as the gauge field of
nilpotent fermionic symmetry in the next section.

III. NILPOTENT FERMIONIC SYMMETRY FOR
AVECTOR-SPINOR IN CURVED 4D

In a fashion similar to the above massive non-Abelian
vector, we can build a system for a vector-spinor c � in

curved 4D with the field content ðe�m; c �;!�
rs; �Þ. Our

vector-spinor c � is in theMajorana spinor in 4D, playing a

role of the gauge field for nilpotent fermionic symmetry.
The � is a compensator field analogous to ’, and will be
absorbed into c �. The !�

rs is the Lorentz (spinor) con-

nection for the local SOð3; 1Þ Lorentz symmetry.
Our local nilpotent fermionic symmetry generator N�

satisfies the algebra with the translation generator Pm and
the Lorentz transformation generator Mmn:

fN�;N�g ¼ 0; ½Mmn;N�� ¼ � 1

2
ð�mnÞ��N�; (3.1a)

½Mmn;M
rs� ¼ þ4
½n

½rMm�
s�; ½Mmn; P

r� ¼ þ2
½n
rPm�; (3.1b)

and all other commutators, such as ½Pm;N�� are zero. This
set of algebra is the curved-space generalization of our

algebra in [2]. The only difference from the usual super-

symmetry algebra is that the first commutator in (3.1a)

vanishes. The generator N� acts on the fields as


Nðe�m; c �;!�
rs; �Þ ¼ ð0; D��; 0;�m�Þ; (3.2)

so that the field strengths are all invariant:


NðT��
m;R��; R��

rs; L�Þ ¼ ð0; 0; 0; 0Þ; (3.3)

if each field strength is defined by
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T��
m � þ2D½�e��

m; (3.4a)

R�� � þ2D½�c �� þ 1

4
m�1ð�mn�ÞR��

mn; (3.4b)

L� � þD��þmc �; (3.4c)

R��
rs � þ2@½�!��

rs þ 2!½�
rt!��t

s; (3.4d)

where D� is the usual Lorentz covariant derivative, e.g.,
D�� � @��þ ð1=4Þ!�

rsð�rs�Þ.
We now set up our total action as I � R

d4xL with

L ¼ þ 1

4
eR� 1

4
m�1eð �L��

���R��Þ

þ 1

2
m�1eð �L��

��L�Þ þ am2e; (3.5)

where a is an arbitrary real constant. Thanks to (3.3), the
invariance 
NI ¼ 0 is manifest.

Similar to (1.6) or (2.6), we have the consistency
equation for the divergence of the c �-field equation

D�

�

L

 �c �

�
¼ �m

�

L

 ��

�
¼: 0: (3.6)

The first equality is nothing but the 
N-invariance of our
action:

0 ¼ 
NL ¼ ð
N
�c �Þ

�

L

 �c �

�
þ ð
N ��Þ

�

L

 ��

�

¼r � ��D�

�

L

 �c �

�
�m ��

�

L

 ��

�

¼ � ��

�
D�

�

L

 �c �

�
þm

�

L

 ��

��
: (3.7)

The first two sides of (3.6) can be confirmed by the direct
computations:


L

 �c �

¼ � 1

2
eð���� �R��Þ þ 1

2
m�1eð����L�ÞT̂�

þ 1

4
em�1ð����L�ÞT̂��

� � 1

4
m�1eð����L�ÞT̂��

�;

(3.8a)


L

 ��

¼: þ
�
a� 3

2

�
eð��L�Þ; (3.8b)

where

�R�� � 2m�1D½�L�� þ ð�½�L��Þ; (3.9a)

T̂��
m � T��

m �m�2ð �L��
mL�Þ;

T� � T��
�; bT� � T̂��

�:
(3.9b)

The symbol ¼: in (3.8b) implies that we have also used
other field equations, such as

e�1

�

L


!�
mn

�
¼ þ 1

4
T̂mn

� þ 1

2
e½m

�T̂n� þ 1

8
m�1

�
���mn

�
���� �R�� �m�1ð����L�ÞT̂�

� 1

2
m�1ð����L�ÞT̂��

� þ 1

2
m�1ð����L�ÞT̂��

�

��
¼: 0; (3.10a)

e�1

�

L

em

�

�
¼ � 1

2

�
R�

m � 1

2
e�

mR

�
þ 1

4
m�1e�

mð �L��
���R��Þ � 1

4
m�1ð �L��

m��R��Þ

� 1

2
m�1ð �L��

�m�R��Þ � 1

2
m�1e�

mð �L��
��L�Þ þm�1ð �L��

m�L�Þ � am2e�
m ¼: 0: (3.10b)

In particular, the inside of the braces of (3.10a) vanish upon
the c �-field equation (3.8a). Eventually, (3.10a) yields the
torsion condition

T��
m ¼: þm�2ð �L��

mL�Þ () T̂��
m ¼: 0: (3.11)

As in the conventional supergravity [3–6], (3.11) is equiva-
lent to the usual expression of !�

mn in terms of the
anholonomy coefficients C��

m:

!mrs ¼: � 1

2
ðĈmrs � Ĉmsr � ĈrsmÞ;

Ĉ��
m � þ2@½�e��

m �m�2ð �L��
mL�Þ:

(3.12)

The only difference is that the fermionic-square term
in Ĉ��

m is a L2-term. However, they are eventually

equivalent to the conventional one, because of L� ¼ m ~c �

in (3.6).
As a technical detail, we mention that the Fierz identity

ð�½��j�L�Þð �L���
j��L�Þþð�½�jL�Þð �L��

j���L�Þ�0 (3.13)

has been used in (3.8). This is derived from the �-matrix
identities

ð�½��j�Þ�ð�jð��
j��Þj�
Þ þ ð�½�jÞ�ð�jð�j���Þj�
Þ � 0;

ð�½�jÞð��jð�j���Þj�
Þ � 0
(3.14)

with the indices �;�; . . . ¼ 1, 2, 3, 4 for the spinorial
indices of 4-component Majorana spinors.
The last three terms in (3.8a) vanish upon (3.11),

yielding the simplified ~c �-field equations
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���� �R�� ¼: 0; �� �R�� ¼: 0;

�½� �R��� ¼: 0; �R�� þ i�5
~�R�� ¼: 0;

(3.15)

where
~�Rmn � ð1=2Þ	mn

rs �Rrs. Equation (3.15) can be used
also for other field equations. Note that these c -field
equations are formally the same as those in N ¼ 1 super-
gravity [3–6]. Equation (3.10b) yields the simplified form
of the vierbein-field equation

R�� ¼: �m�1ð �L���
�R�

�Þ þm�1ð �L���
�L�Þ þ 2am2g��:

(3.16)

Using these field equations, we can confirm the
consistency (3.6):

D�

�

L

 �c �

�
¼: �

�
a�3

2

�
með��L�Þ¼�m

�

L

 ��

�
¼: 0: (3.17)

Since the divergence of the c �-field equation vanishes

upon the use of the �-field equation, there is no problem
with the consistency of the vector-spinor field equation.
Especially, the �-field equation starts with e�1ð
L=
 ��Þ¼
ða�3=2Þð��L�Þ¼ ða�3=2Þð 6D�þm��c �Þ¼: 0, which

is the kinetic term of �. This implies that there are
definitely nontrivial solution for �, as opposed to the
Velo-Zwanziger disease case (1.3). In other words, (3.17)
is different from (1.3), while similar to the non-Abelian
compensator case (2.6). This fact is also valid independent
of the value of the real constant a.

As in the Proca-Stueckelberg mechanism [10], the c �

can absorb the compensator � by

~c � � c � þm�1D�� ¼ m�1L�: (3.18)

In terms of ðe�m; ~c �;!�
mnÞ, the original Lagrangian (3.5)

is recasted into

L ¼ þ 1

4
eR� 1

4
eð �~c ��

��� ~R��Þ

þ 1

2
með �~c ��

�� ~c �Þ þ am2e; (3.19)

where ~R�� � 2D½� ~c ��. We can reconfirm the consistency

(3.17) in the frame ðe�m; ~c �;!�
mnÞ. Actually, the field

equations become simpler. First, (3.10) stays the same

(with L� replaced by m ~c �), while the vector-spinor field

equation is

e�1

�

L


 �~c �

�
¼ � 1

2
ð���� ~R��Þ þmð��� ~c �Þ

¼ � 1

2
ð���� �R��Þ ¼: 0: (3.20)

The explicit form of the divergence of the c �-field

equation is

D�

�

L


 ~c �

�
¼: �

�
a� 3

2

�
m2ð�� ~c �Þ (3.21)

again by the use of the Fierz identity (3.13), and other field
equations.
The most important feature is that even if a � 3=2, the

right-hand side (RHS) of (3.21) poses no problem for consis-
tency.The last side of (3.21) implies the�-trance free condition

�� ~c � ¼: 0 on the vector-spinor, just as the divergence-less

condition ~D�
~A� ¼: 0 (2.13) for the non-Abelian compensator

formalism.Toput it differently, theRHSof (3.21) is nothingbut
the reminiscent of the original �-field equation (3.8b) equiva-

lent to the �-traceless-ness condition �� ~c � ¼ 0.

In terms of DOF, ~c � has originally 4� 2 DOF, because

of 4 for the index � and 2 for a Majorana spinor. The

assignment 4 for the index � is due to the fact that a

massive vector-spinor has no gauge invariance with respect
to the index �. However, eventually, a vector-spinor should

have 3� 2 DOF, so that 1� 2 DOF should be eliminated
by an extra condition. Eq. (3.21) ¼: 0 is exactly such an
extra condition. There is also parallel structure between the
non-Abelian case (2.13) and (3.21) ¼: 0.
In the conventional massive N ¼ 1 supergravity theory

in 4D [11], this point has not been clear. It was concluded
in [11], as if the value a ¼ 3=2 for anti-de Sitter (AdS)
supergravity system were singled out for the consistency of
the c �-field equation, and therefore supergravity would be

the only consistent system for a massive vector-spinor.
However, the consideration of local nilpotent fermionic
symmetry above concludes that not only the value a ¼
3=2, but also any other values of a � 3=2 are allowed for
the consistency of the vector-spinor field equation. In other
words, the conventional N ¼ 1 supergravity theory
[5,6,11] is just a subsystem of a more larger consistent
system of local nilpotent fermionic symmetry in 4D.

IV. APPLICATION TO 10D CASE

We can repeat a similar formulation in 10D. The field
content in this case is ðe�m; c �;!�

rs; A���; B��; �; ’; �Þ,
where the first seven fields are the same as the massless
[13] or massive type-IIA supergravity [12] in the first-order
formalism for the Lorentz connection !�

rs, except for �

which stands for � in [12], while we use � as the compen-
sator for our nilpotent fermionic symmetry just as in 4D.
Needless to say, c �, � and � are Majorana spinors in 10D

as in type-IIA supergravity [12,13].
Our starting action is I10D � R

d10xL10D, where
5

5We use the space-time signature ð�;þ;þ; . . . ;þÞ used in
[12]. The difference in the overall sign in our Lagrangian
compared with [12] is that the latter has the overall negative
sign for the Lagrangian. This is obvious from the ’ or all
other bosonic field kinetic terms in [12]. We sometimes use
the symbol ½n� for n-totally antisymmetric tensor to avoid messy
indices. For example �½3�G½3� � ����G���.
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L10D ¼ þ 1

4
eR� 1

4
m�1eð �L��

���R��Þ � 1

2
eð ����D��Þ � 1

2
eðD�’Þ2 � 1

48
ee�’ðF½4�Þ2 � 1

12
ee�2’ðG½3�Þ2

� 1

4
m2ee�3’B2

�� þ 1ffiffiffi
2

p eð �L��
����Þ@�’þ 1

1152
	������!c’�

�
F����F��!c � 8mF����B��B!c

þ 96

5
m2B��B��B��B!c

�
B’� � 1

96
m�2ee�’=2

�
ð �L��½��½4����L�Þ � 1ffiffiffi

2
p mð �L��

½4����Þ þ 3

4
m2ð ���½4��Þ

�
F½4�

� 1

24
m�2ee’

�
ð �L��11�½��½3����L�Þ � ffiffiffi

2
p

mð �L��11�
½3����Þ

�
G½3�

þ 1

8
m�1ee�3’=

ffiffi
2

p �
ð �L��11�½�������L�Þ � 3ffiffiffi

2
p mð �L��11�

�����Þ þ 5

4
m2ð ���11�

���Þ
�
B��

� 1

8
m�1ee�5’=2m�2ð �L��

��L�Þ þ 5

8
ffiffiffi
2

p ee�5’=2ð �L��
��Þ þ 21

32
mee�5’=2ð ���Þ þ bm2ee�5’ þOðfm4Þ (4.1)

up to quartic-fermion terms Oðfm4Þ. The b is a real constant. As in 4D, we define

R�� � þ2D½�c �� þ 1

4
m�1ð�mn�ÞR��

mn; (4.2a)

L� � þD��þmc �: (4.2b)

Note that our action I10D has local nilpotent fermionic symmetry 
NI10D ¼ 0, where


Nðe�m; c �;!�
rs; A½3�; B½2�; �; ’; �Þ ¼ ð0; D��; 0; 0; 0; 0; 0;�m�Þ; (4.3a)


NðT��
m;R��; R��

rs; F½4�; G½3�; D��; @�’; L�Þ ¼ ð0; 0; 0; 0; 0; 0; 0; 0Þ: (4.3b)

The c � and �-field equations are

e�1

�

L10D


 �c �

�
¼ � 1

2
ð����R��Þ þ 1ffiffiffi

2
p ð�����ÞD�’� 1

48
m�1e�’=2ð�½��½4����L�ÞF½4�

þ 1

96
ffiffiffi
2

p e�’=2ð�½4����ÞF½4� � 1

12
m�1e’ð�11�½��½3����L�ÞG½3�

þ 1

12
ffiffiffi
2

p e’ð�11�
½3����ÞG½3� þ 1

4
e�3’=2ð�11�½��½2����L�ÞB½2� � 3

8
ffiffiffi
2

p me�3’=2ð�11�
�����ÞB��

� 1

4
me�5’=2ð���L�Þ þ 5

8
ffiffiffi
2

p me�5’=2ð���Þ þOðfm3Þ ¼: 0; (4.4a)

e�1

�

L10D


 ��

�
¼: �

�
bþ 1

8

�
e�5’=2

�
��L� �

ffiffiffi
5

p
2

m�

�
þOðfm3Þ ¼: 0: (4.4b)

We can compute the covariant divergence of (4.4a), and find that the consistency corresponding to (3.17) in the 4D case as

D�

�

L10D


 �c �

�
¼: þ

�
bþ 1

8

�
mee�5’

�
��L� �

ffiffiffi
5

p
2

m�

�
¼ þmee�5’=2

�

L10D


 ��

�
¼: 0: (4.5)

All the equalities here hold for arbitrary values of b.

As in the N ¼ 1 case in 4D, we can reconfirm this result in the new frame ðe�m; ~c �;!�
rs; A½3�; B½2�; �; ’Þ. The field

redefinition for this purpose is
~c � � c � þm�1D�� ðL� ¼ m ~c �Þ; (4.6)

thereby we can simplify our field equations by re-casting the Lagrangian (4.1) in the new frame as
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24
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2
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eð �~c ��11�

½3����Þ�G½3�þ1

8
mee�3’=

ffiffi
2
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�11�½������� ~c �Þ� 3ffiffiffi
2

p ð �~c ��11�
�����Þþ5

4
ð ���11�

���Þ
�
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�1

8
mee�5’=2ð �~c ��

�� ~c �Þþ 5

8
ffiffiffi
2

p mee�5’=2ð �~c ��
��Þþ21

32
mee�5’=2ð ���Þþbm2ee�5’þOðfm4Þ: (4.7)

The ~c �-field equation is simply (4.4a) with L� replaced

by m ~c �, so we do not give the explicit form here. It is

straightforward to show that the divergence of ~c �-field

equation is

D�

�

L10D


 ~c �

�
¼: þ

�
bþ 1

8

�
m2ee�5’

�
ð�� ~c �Þ � 5ffiffiffi

2
p �

�
:

(4.8)

Here this has been confirmed up to cubic terms, corre-
sponding to the skipped Oðfm4Þ-terms at the Lagrangian
level.

Compared with the previous 4D case, the �-field is also
involved linearly. However, this does not pose any prob-
lem, because this means that when b � �1=8, the �-trace

component of ~c � is mixed up with the �-field. Eventually,

the value b ¼ �1=8 for type-IIA massive supergravity in
10D [12]6 is not the only consistent theory, but any other
value of b is also allowed. In any case, the vanishing of the
right side of (4.8) implies the modified �-tracelessness of
~c �, which is nothing but the condition for a massive

vector-spinor in 10D. This is nothing peculiar to 10D
case, but parallel to the 4D case (3.21).

We stress again that even for b � �1=8, there is no
problem with the nonvanishing divergence (4.9), for the
same reason we have explained for the case of non-Abelian
Proca-Stueckelberg mechanism (Sec. II), and for the case
of nilpotent fermionic symmetry in 4D (Sec. III). In other
words, we have not only the conventional type-IIA theory,
but also our Lagrangian (4.1) with nilpotent fermionic
symmetry are the consistent theories for massive vector-
spinors in 10D. We conclude that the conventional type-
IIA massive supergravity [12] is a special case b ¼ �1=8
of the latter with general value of the constant b.

V. CONCLUDING REMARKS

In this paper, we have shown that a 4D system with the
field content ðe�m; c �; �;!�

rsÞ only with local nilpotent

fermionic symmetry, where c � is the gauge field for the

nilpotent fermionic generator N�, while � is the corre-
sponding compensator. Our Lagrangian contains a real
arbitrary constant a, which coincides with massive N¼1
supergravity in 4D, iff a ¼ 3=2. Our system has not
only consistent vector-spinor interactions, but also con-
tains conventional N ¼ 1 supergravity [3–5] as a special
case. The usual vector-spinor consistency condition
D�ð
L=
c �Þ ¼: 0 can be satisfied not only in the conven-

tional supergravity [3–6], but also our system of local
nilpotent fermionic symmetry, whose gauge field is
the vector-spinor c �. The consistency condition

D�ð
L=
c �Þ ¼: 0 for non-supergravity case (a � 3=2)

has been confirmed both in the original frame

ðe�m;c �;�;!�
rsÞ, as well as in the frame ðe�m; ~c �;!�

rsÞ
in which the commentator � is absorbed into ~c �.

In a similar fashion, we have applied this formulation to
10D case for the field content ðe�m; c �;!�

rs;

A���; B��; �; ’; �Þ. We have established our Lagrangian

(4.1) with local nilpotent fermionic symmetry, and with an
arbitrary real constant b, where b ¼ �1=8 corresponds to
type IIA massive supergravity [12]. We confirmed its con-
sistency by inspecting the divergence of the c �-field equa-

tion (4.4a) for the general constant b. Our theory contains
the conventional type-IIAmassive supergravity [12] only as
a special case as b ¼ �1=8. There is nothing wrong with
non-supergravity theory with nilpotent symmetry with
vector-spinor in 10D, similarly to our 4D system.
These are counterexamples against the common notion

that any supersymmetric system is generated only by a
more fundamental supersymmetric system, such as dimen-
sional reductions from higher dimensions. Our results also
imply that supergravity systems are not the only systems
that provide consistent interactions for vector-spinors, and
this seems true in any space-time dimensions [8]. The only
restriction for supergravity is D � 11, because for a su-
pergravity theory to be realized as a special case of
nilpotent symmetry, the restriction D � 11 is inevitable.
However, it is also true that we can construct a system with
local fermionic symmetry in any space-time dimensions
[8], so if we forget about supergravity, there is no limit for
space-time dimensions.

6Due to the overall negative sign already mentioned in the
Lagrangian in [12], our value b ¼ �1=8 corresponds to the
potential term þð1=8Þm2e�5’ in [12].
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The result in this paper is in a sense very natural, con-
sidering the series of results [1,2] about nilpotent symme-
try already generating so many supersymmetric systems.
The result in [1] already indicates that supersymmetry
itself is a subsystem of nilpotent symmetry, while the
results in [2] in D ¼ 2þ 2 and/or D ¼ 8þ 0 and D ¼
7þ 0 suggest the existence of fundamental system with
nilpotent symmetry generating conventional N ¼ 1 super-
gravity in D ¼ 3þ 1.

One important conclusion of our 4D theory is that not
only the value a ¼ 3=2 corresponding to supergravity is
consistent for the Lagrangian (3.5) or (3.19), but also any
other value gives consistent interactions between the
vector-spinor c � (not necessarily ‘‘gravitino’’) and the

vierbein e�
m. In other words, supergravity theory at a ¼

3=2 is just a special case of a more wider set of consistent
theories of vector-spinor in 4D. A similar conclusion can
be obtained for the values b � �1=8 for our 10D theory.

Among those values a � 3=2 in 4D or b � �1=8 in
10D, the case of the zero-cosmological constant with
a¼0 or b¼0 is also a special case for consistent vector-
spinor interactions with nilpotent fermionic symmetry.

Some readers may wonder about the uniqueness of
supergravity with consistent interactions following the
Haag-Lopuszański-Sohnius (HLS) theorem [14] which
seems to dictate that supergravity is the ‘‘unique’’ consis-
tent gauge theory of a vector-spinor in 4D. Also, our nilpo-
tent fermionic chargeN� satisfying fN�;N�g ¼ 0may turn

out to be just a conventional BRST charge QB [15] in
‘‘disguise.’’ Indeed, there are certain similarities, such as
the nilpotent feature of our chargeN�, or the resemblance to
the gauging of the conventional BRST symmetry [9].
Additionally, the nilpotent charges for topological field
theories [16,17] are a kind of BRST charges.

However, there are also essential differences: First, our
nilpotent charge N� carries the spinorial index �, while the
conventional BRST charge QB has a single component.

Second, our system is still a classical system without
Faddeev-Popov [18] or other quantum ghosts. Third, in
general topological field theories [16,19], their actions or
Lagrangians are independent of metrics, while our
Lagrangians do contain vielbeins, and therefore they do
depend on metrics. This is also related to the feature that
our system has interactions among physical fields, while
topological field theories [16] or their BRST charges
are associated with non-physical fields such as ghosts.
However, this apparent contradiction is known to be
compromised by the ‘‘twisting of supersymmetry’’ [19].
From these considerations, two important points are

crystalized: First, due to an essential difference between
our fermionic charge N� and the ‘‘conventional’’ BRST
QB [15,17], special caution is needed for the interpreting
the former as a generalized BRST charge. Second, the
superficial contradiction between our system and HLS
theorem [14] can be resolved by the twisting of supersym-
metry [19]. In other words, our nilpotent fermionic symme-
try is a generalized BRST symmetry, also interpreted as
twisted supersymmetry [19], evading the conventional HLS
theorem [14].
Our results constitute counterexamples against the

common notion that any supersymmetric system should
come out only from a supersymmetric system, such as
higher dimensional supersymmetry via compactifications.
It is also against the general wisdom that supergravity
[3–6] and supersymmetry are the only systems that in-
volve vector-spinors with consistent interactions [14].
Our results seem to indicate that our local nilpotent
symmetry (as a generalized BRST symmetry or twisted
supersymmetry) is the master symmetry superseding
local supersymmetry.
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