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Using gauge invariant quark Green’s functions, defined with path-ordered gluon field phase factors

along polygonal lines, and functional relations among them, two compatible bound state equations of the

Dirac type are established for quark-antiquark systems, each relative to the quark or to the antiquark of the

system. The kernels of the bound state equations are defined through a series of Wilson loop averages

along closed polygonal contours and their functional derivatives on them. A sufficient criterion for

spontaneous chiral symmetry breaking is derived, relating the Goldstone boson wave function in the zero

total momentum limit with the scalar part of the gauge invariant quark two-point Green’s function.
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I. INTRODUCTION

Gauge invariant quark Green’s functions (GIQGF) [1,2],
together with Wilson loops [3–9], represent the natural
tools for the investigation of the properties of observable
quantities in QCD [10–16]. Approaches using these ingre-
dients meet, however, difficulties arising mainly from the
nonlocal structure of the GIQGFs. For this reason, calcu-
lations of physical quantities like scattering amplitudes,
bound state energies, form factors, have usually been car-
ried out up to now with the more familiar formalism of
ordinary, gauge variant, Green’s functions using particular
gauges. Nevertheless, a gauge invariant formalism would
bring several advantages that are worth considering. First,
one expects to find in the quantities under consideration
an infrared safe behavior, free of artificial singularities
and divergences. This is also true for the spectral functions
underlying the gauge invariant Green’s functions. Second,
Wilson loops, when saturated for instance by minimal
surfaces, allow for a systematic study of the confining
properties of the theory. Third, the resolution of bound
state problems provides the knowledge of gauge invariant
bound state wave functions which are particularly useful
for the calculation of matrix elements of operators involv-
ing path-ordered phase factors.

In this respect, to optimize the methods of investigation
based on GIQGFs, an approach was undertaken by the
present author with the aim of obtaining integrodifferential
equations that the latter would satisfy, in a parallel way as
for the Dyson-Schwinger equations in the case of ordinary
Green’s functions [17–20]. This was possible in the case
of two-point GIQGFs (2PGIQGF) defined with a path-
ordered gluon field phase factor along polygonal lines
between the quark fields [21]. The 2PGIQGFs can then
be classified according to the number of segments their
phase factor line contains. Functional relations are then
obtained among these 2PGIQFs, which, together with the
equations of motion relative to the quark fields, lead to an

integrodifferential equation satisfied by the 2PGIQGF
defined with one straight line segment for the phase factor.
The kernel of this equation involves, with increasing com-
plexity, a series of Wilson loop averages along polygonal
contours and their functional derivatives.
As a first step for the resolution of the above equation and

the determination of the most important piece of the kernel,
the case of two-dimensional QCD in the large-Nc limit [22]
was considered. The equation could then be solved exactly
and analytically, displaying the main features of the spectral
properties of the quark fields [23]: The quarks contribute to
the 2PGIQGF like physical particles with positive energies,
respecting the causality property; the singularities of the
GIQGF are located on the positive real axis of the momen-
tum squared variable (timelike region) and are represented
by an infinite series of branch cuts. Lehmann’s positivity
conditions of the spectral functions [24] are also satisfied.
Although results obtained in two-dimensional theories can-
not straightforwardly be transposed into four dimensions,
they underline here the following two features: (i) the equa-
tion obtained for the 2PGIQGF is neither empty, nor unre-
solvable. With plausible assumptions about the properties of
Wilson loops, it might also be analyzed in four dimensions.
In particular, the only part of the kernel that survives in two
dimensions is precisely the simplest Wilson loop, corre-
sponding to a triangular contour. (ii) The resolution of the
equation has provided new results, not known previously
from more conventional approaches.
The aim of the present paper is to enlarge the scope of

investigations of the GIQGFs by also including in it the
four-point GIQGFs (4PGIQGF), which allows us to study
the bound state problem of quark-antiquark systems with a
gauge invariant formalism. This is done by using again the
functional relationships between GIQGFs with different
numbers of segments on their polygonal lines. One then
ends up with two bound state equations of the Dirac type,
each relative to the quark or to the antiquark of the system.
The two equations are compatible among themselves due
to the validity of the Bianchi identities satisfied by the
gluon fields. The kernels of these equations involve, as in*sazdjian@ipno.in2p3.fr
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the 2PGIQGF case, series of Wilson loop averages along
polygonal contours and their derivatives, as well as the
2PGIQGFs of each quark field. A functional relationship
is established between these kernels and those of the
2PGIQGFs. It is assumed, for later investigations, that
the bound state wave functions satisfy usual spectral prop-
erties, based on the positivity of the energies of the quark
and gluon fields and on causality, leading here to a general-
ization of the Deser-Gilbert-Sudarshan representation [25].

Thebound state equations thus obtained allowus to further
investigate the question of spontaneous chiral symmetry
breaking. It is shown that in the chiral limit (massless quarks),
the bound state equations possess a massless solution with
zero total momentum if the 2PGIQGF possesses a normal-
izable nonvanishing scalar part in this limit. This result is the
analogue of the one established by Baker, Johnson and Lee
[26] for the Bethe-Salpeter equation [27–29] and provides,
prior to the resolution of the bound state equations, a suffi-
cient criterion for chiral symmetry breaking in the case of
bound states made of quarks and antiquarks with different
flavors.

The organization of this paper follows. In Sec. II, pro-
perties of the 2PGIQGFs are summarized. In Sec. III,
4PGIQGFs are introduced and their properties are displayed.
In Sec. IV, the bound state equations are established.
Section V deals with the question of the spectral representa-
tion of the wave functions. In Sec. VI, a criterion for chiral
symmetry breaking is derived. Summary and concluding
remarks follow in Sec. VII. An Appendix is devoted to the
normalization condition of the wave functions.

II. TWO-POINT GREEN’S FUNCTIONS

We summarize in this section the main results obtained
for the 2PGIQGFs in Ref. [21]. We shall mainly be inter-
ested in path-ordered phase factors that are defined along
polygonal lines in space (skew-polygonal) and made of
junctions of straight line segments. Designated by Uðy; xÞ,
a phase factor along the straight line segment xy, with an
orientation from x to y, a displacement of one end of the
segment, while the other one is fixed, generates a displace-
ment of all points of the segment with appropriate weight
factors. We may characterize this as representing a rigid
path displacement. Parametrizing linearly the segment with
a parameter �, 0 � � � 1, such that a point of the segment
is represented as zð�Þ, with zð0Þ ¼ x and zð1Þ ¼ y, a dis-
placement of one end point of the segment gives rise to two
types of contribution, the first coming from the end point
itself and the second coming from the inner points of the
segment. One has for the rigid path derivatives the formulas

@Uðy; xÞ
@y�

¼ �igA�ðyÞUðy; xÞ þ igðy� xÞ�

�
Z 1

0
d��Uðy; zð�ÞÞF��ðzð�ÞÞUðzð�Þ; xÞ;

(2.1)

@Uðy;xÞ
@x�

¼þigUðy;xÞA�ðxÞþ igðy� xÞ�

�
Z 1

0
d�ð1��ÞUðy;zð�ÞÞF��ðzð�ÞÞUðzð�Þ; xÞ;

(2.2)

where A is the gluon potential, F its field strength, and g the
coupling constant. In the above equations, the integrals
represent the inner contributions of the segment. When
dealing with gauge invariant quantities, the end point con-
tributions are usually cancelled by similar contributions
coming from neighboring segments or fields, and it is the
inner contributions of the segments that remain. We adopt
for them the following notations:

��Uðy; xÞ
��y�þ

� igðy� xÞ�

�
Z 1

0
d��Uðy; zð�ÞÞF��ðzð�ÞÞUðzð�Þ; xÞ;

(2.3)

��Uðy;xÞ
��x��

� igðy� xÞ�

�
Z 1

0
d�ð1��ÞUðy;zð�ÞÞF��ðzð�ÞÞUðzð�Þ; xÞ:

(2.4)

Taking into account the orientation on U, the superscript þ
or � of the derivative variable indicates the segment on
which it is acting when we are in the presence of two joined
segments. Thus if we have the expression Uðy; uÞUðu; xÞ,
then the operator ��= ��uþ will act on Uðu; xÞ only, through
the end point u of the segment xu, while the operator ��= ��u�
will act on Uðy; uÞ.
The vacuum expectation value W of a Wilson loop

(or, equivalently, the Wilson loop average) along a closed
polygonal contour with n sides and n junction points
x1; x2; . . . ; xn will be denoted Wn and will be represented
as the exponential of a functional Fn [5,8],

Wn ¼ Wðxn; xn�1; . . . ; x1Þ ¼ eFnðxn;xn�1;...;x1Þ ¼ eFn; (2.5)

the orientation of the contour going from x1 to xn through
x2, x3, etc. Then, the notation ��Fn= ��x

�
i means that the

derivative acts on the internal part of the segment xixiþ1
with xiþ1 held fixed (xnþ1 ¼ x1), while ��Fn= ��x

þ
i means

that the derivative acts on the internal part of the segment
xi�1xi with xi�1 held fixed (x0 ¼ xn).
The 2PGIQGFs with phase factors along polygonal lines

can be classified according to the number of segments they
contain. The 2PGIQGF with a phase factor line with n
sides and n� 1 junction points t1; t2; . . . ; tn�1 between the
segments is defined as
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SðnÞðx;x0; tn�1; . . . ; t1Þ
¼� 1

Nc

h �c ðx0ÞUðx0; tn�1ÞUðtn�1; tn�2Þ . . .Uðt1;xÞc ðxÞi;
(2.6)

the c s being the quark fields, with mass term m, belonging
to the defining fundamental representation of the color
gauge group SUðNcÞ and the vacuum averaging being
defined in the path integral formalism. (Spinor indices are
not written and the color indices are implicitly summed.)
The orientation of the path in SðnÞðx; x0; tn�1; . . . ; t1Þ runs
from x to x0, passing by t1; t2; . . . ; tn�1.

The simplest 2PGIQGF corresponds to the case where
n ¼ 1, for which the points x and x0 are joined by a single
straight line,

Sð1Þðx; x0Þ � Sðx; x0Þ ¼ � 1

Nc

h �c ðx0ÞUðx0; xÞc ðxÞi: (2.7)

(We shall generally omit the index 1 from that function.)
A graphical representation of the 2PGIQGFs Sð1Þ and Sð3Þ is
shown in Fig. 1.

For the internal parts of rigid path derivatives, we have
the definitions

��SðnÞðx; x0; tn�1; . . . ; t1Þ
��x��

¼ � 1

Nc

�
�c ðx0ÞUðx0; tn�1ÞUðtn�1; tn�2Þ . . .

�
��Uðt1; xÞ
��x��

c ðxÞ
�
; (2.8)

��SðnÞðx; x0; tn�1; . . . ; t1Þ
��x0�þ

¼ � 1

Nc

�
�c ðx0Þ

��Uðx0; tn�1Þ
��x0�þ

Uðtn�1; tn�2Þ . . .

�Uðt1; xÞc ðxÞ
�
: (2.9)

Sð1Þ and SðnÞ satisfy the following equations of motion:

ði�:@ðxÞ �mÞSðx; x0Þ ¼ i�4ðx� x0Þ þ i��
��Sðx; x0Þ
��x��

;

(2.10)

Sðx; x0Þð�i�:@ ðx0Þ �mÞ ¼ i�4ðx� x0Þ � i
��Sðx; x0Þ
��x0�þ

��;

(2.11)

ði�:@ðxÞ �mÞSðnÞðx; x0; tn�1; . . . ; t1Þ
¼ i�4ðx� x0ÞeFnðx;tn�1;...;t1Þ

þ i��
��SðnÞðx; x0; tn�1; . . . ; t1Þ

��x��
; (2.12)

SðnÞðx; x0; tn�1; . . . ; t1Þð�i�:@
 
ðx0Þ �mÞ

¼ i�4ðx� x0ÞeFnðx;tn�1;...;t1Þ

� i
��SðnÞðx; x0; tn�1; . . . ; t1Þ

��x0�þ
��: (2.13)

The SðnÞs also satisfy equations related to the junction

points t1;. . .;tn�1 on the polygonal line or more generally
to local deformations of the paths. These involve the
gluon field equations of motion and lead to equations
related to the properties of phase factors and Wilson loops
[4–7]. They should mainly be used for the determination
of the expressions of the Wilson loop averages. In the
present paper, the latter are assumed to be known,
and therefore the corresponding equations will not be
considered.
Multiplying the equations of motion (2.12) and (2.13)

with Sðt1; xÞ and Sðx0; tn�1Þ, respectively, and integrating
with respect to x or x0, one can establish functional rela-
tions between the various 2PGIQGFs. For SðnÞ, one has

SðnÞðx; x0; tn�1; . . . ; t1Þ ¼ Sðx; x0ÞeFnþ1ðx0;tn�1;...;t1;xÞ þ
� ��Sðx; y1Þ

��y�1þ
1

þ Sðx; y1Þ
��

��y�1�
1

�
��1Sðnþ1Þðy1; x0; tn�1; . . . ; t1; xÞ

¼ Sðx; x0ÞeFnþ1ðx0;tn�1;...;t1;xÞ � Sðnþ1Þðx; z1; x0; tn�1; . . . ; t1Þ��1

� ��Sðz1; x0Þ
��z�1�

1

þ
��
 

��z�1þ
1

Sðz1; x0Þ
�
: (2.14)

FIG. 1. Graphical representation of the 2PGIQGFs Sð1Þ and
Sð3Þ. The solid lines represent the quark field contractions, the

dotted lines the phase factor along the polygonal lines, and the
arrows the orientation on them.
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(Integrations on intermediate variables are implicit and
will not be written throughout this paper. Here, y1 and z1
are integration variables.) By iterating these equations with
respect to the higher SðnÞs of the right-hand sides and
assuming that the last term rejected to infinity tends to
zero, one ends up with a series expansion of any SðnÞ (n>1)
in terms of S and its derivative and derivatives of
logarithms of Wilson loop averages. This shows that
among the infinite set of 2PGIQGFs with polygonal lines,
only the first one, with one single straight line, is a genuine

dynamical independent quantity; all others are in principle
calculable from it, provided one knows to evaluate the rigid
path derivative of S and the Wilson loop averages.
The calculation of S proceeds from the equation of

motion (2.10) [or (2.11)]. It is then necessary to devise a
method for evaluating the rigid path derivative
��Sðx; x0Þ= ��x��. This is done by applying the rigid path
derivative operator on both sides of Eq. (2.14) and repeat-
ing iteration operations. Specializing the result for S, one
finds

��Sðx; x0Þ
��x��

¼
��F2ðx0; xÞ
��x��

Sðx; x0Þ �
��2F3ðx0; x; y1Þ
��x�� ��y�1þ

1

Sðx; y1Þ��1Sð2Þðy1; x0; xÞ �
X1
n¼3

� ��Sðx; y1Þ
��y�1þ

1

þ Sðx; y1Þ
��

��y�1�
1

�
��1

� � � � �
� ��Sðyn�3; yn�2Þ

��y�n�2þ
n�2

þ Sðyn�3; yn�2Þ
��

��y�n�2�
n�2

�
��n�2

��2Fnþ1ðx0; x; y1; . . . ; yn�1Þ
��x�� ��y�n�1þ

n�1
Sðyn�2; yn�1Þ

� ��n�1SðnÞðyn�1; x0; x; y1; . . . ; yn�2Þ: (2.15)

The right-hand side involves a series of terms in which the
nth-order one contains SðnÞ and a Wilson loop with a
polygonal contour with (nþ 1) sides. One notices from
the locations of the second-order derivatives acting on the
Fs the absence of reducible-type contributions in the cor-
responding expressions; the latter are expected to be part
of the definition of the SðnÞs when expressed in terms of
free propagators. The calculation should be completed by
bringing all derivative operators to the right; the final
form shows that the nth-order term contains globally n
derivatives acting on the logarithm of the corresponding
Wilson loop average and/or on the Green’s function S
(at most at first order for the latter). Furthermore, each
derivative acting on the Wilson loop operates on a different
segment from the others; this prevents the appearance of
singularities arising from derivatives acting on the same
point. The Wilson loop contributions have the character-
istics of being irreducible and are classified into the follow-
ing three categories: connected, crossed, and nested [21].
The form (2.15) is the most convenient one for compari-
sons with other cases, such as those of the 4PGIQGFs.

Equation (2.15) can be considered as the analogue of the
self-energy Dyson-Schwinger equation in the case of the
ordinary Green’s function [17,18]. Defining the latter as
~Sðx; x0Þ ¼ 1

Nc
hc ðxÞ �c ðx0Þi, its equation of motion takes the

form

ði�:@ðxÞ �mÞ~Sðx; x0Þ ¼ i�4ðx� x0Þ þ�ðx; yÞ~Sðy; x0Þ;
(2.16)

where � defines the self-energy; it is a functional of the

Green’s function ~S itself, together with other Green’s
functions of interest, like that of the gluon field or of the

photon field in the case of QED. The expression of �½~S� in
terms of ~S and the other two-point Green’s functions
defines the Dyson-Schwinger equation.

In the present case, however, one meets a more
complicated situation in two respects. First, Eq. (2.15)
involves in its right-hand side the whole set of 2PGIQGFs
defined along polygonal lines, although all of them are
ultimately expressible in terms of S. This feature, on the
other hand, is an indication that the set of 2PGIQGFs
along polygonal lines is closed, since no other types of
contour are needed to reach the final equation for S.
Second, the integrals that are present are not of the con-
volution type; they overlap all terms that accompany
them, which is due to the presence of the Wilson loops,
whose contours pass by all points that are present. Taking
into account these facts, one needs to introduce matrix-
type self-energy operators, �mn, where the first index
refers to the initial Green’s function that is considered
(SðmÞ) and the second one to the Green’s function SðnÞ that
appears in the right-hand side of the equation. With this
definition, the equation of motion (2.10) can be schemati-
cally written in the form

ði�:@ðxÞ �mÞSðx; x0Þ ¼ i�4ðx� x0Þ þX1
n¼1
ð�1n½S� � SðnÞÞ;

(2.17)

where the star operation represents the integrals involved
in the term containing SðnÞ in the right-hand side of

Eq. (2.15), and the functional expression of �1n½S� is
deduced from that equation by identification.
The above results can also be applied with obvious

transpositions to the equation of motion (2.11). The evalu-
ation of ��Sðx; x0Þ= ��x0�þ can be done in two ways. First,
one might use the second expression of the functional
relationship of Eq. (2.14). In this case the iterative expan-
sion is done in the reverse order to that of Eq. (2.15). The
corresponding equation takes then the schematic form
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Sðx;x0Þð�i�:@ ðx0Þ �mÞ ¼ i�4ðx� x0ÞþX1
n¼1
ðSðnÞ � ~�1n½S�Þ;

(2.18)

where ~�1n½S� is deduced from �1n½S� by reversing the
orders of appearance of various matrices and Green’s
functions and some of their arguments, changing the sign
of terms containing an odd number of explicit � matrices
and replacing the rigid path derivatives ��= ��x�� and
��= ��y

�jþ
j with ��= ��x0�þ and ��= ��z

�j�
j , respectively.

Second, one might use the same functional relations as
for obtaining Eq. (2.15). In this case, the only modification
is the replacement of the rigid path derivative ��= ��x�� by
��= ��x0�þ, while in Eq. (2.11) we have to take into account
the global change of sign in front of ��Sðx; x0Þ= ��x0�þ and
the position of the matrix �� on the utmost right. We shall
write the resulting expression of the equation in the form

Sðx;x0Þð�i�:@ ðx0Þ �mÞ ¼ i�4ðx� x0ÞþX1
n¼1
ð�̂1n½S� �SðnÞÞ:

(2.19)

It is to be emphasized that once the operator �1n½S� of
Eq. (2.17) [or its analogue of Eqs. (2.18) and (2.19)] has
been evaluated by means of Eq. (2.15), then the Green’s
functions Sð1Þ; . . . ; SðnÞ, etc., have to be considered as ordi-

nary complex functions of the variables x; x0; y1; . . . ; yn,
etc., satisfying translation invariance and well defined
Lorentz transformation properties. The information con-
tained in their phase factors along the rigid straight line
segments and polygonal lines is now expressed by means
of the corresponding Wilson loop averages and their rigid
path derivatives, which, after evaluation, are themselves
ordinary functions of their arguments x, x0, etc. (the junc-
tion points of the segments). The straight line segments and
the polygonal lines no longer introduce additional degrees
of freedom, since their geometry is completely determined
by the knowledge of the positions of the junction points

of the segments. In particular, the operator @=@x of the
Dirac operator in Eq. (2.17) acts as an ordinary derivative
operator on S. This is why Eq. (2.17) and its analogues
have the status of integrodifferential equations.
In the rest of the paper we shall consider systems

involving two quarks with different flavors and generally
with different masses. To distinguish their individual
Green’s functions, we shall introduce an additional index
for their notation. Thus, they will be denoted S1;ðnÞ and
S2;ðnÞ, respectively, corresponding to quark 1 and quark 2.

The simplest Green’s functions (with one straight line) S
(� Sð1Þ) will be denoted S1 and S2.

III. FOUR-POINT GREEN’S FUNCTIONS

We now consider two different quark fields, labeled with
indices 1 and 2, respectively, with mass terms m1 and m2.
Four-point GIQGFs are constructed by including gluon
field phase factors between the quark and the antiquark
fields. Considering a polygonal line made of n segments
and another made of one segment, we define the 4PGIQGF
GðnÞ as

GðnÞ��;�0�0 ðx1; x2; x02; x01; tn�1; tn�2; . . . ; t1Þ
¼ � 1

Nc

h �c 2�ðx2ÞUðx2; tn�1Þ . . .Uðt1; x1Þc 1�ðx1Þ
� �c 1�0 ðx01ÞUðx01; x02Þc 2�0 ðx02Þi; (3.1)

where�,�,�0,�0 are the spinor indices of the quark fields.
The simplest such Green’s function is Gð1Þ,

Gð1Þðx1; x2; x02; x01Þ
¼ � 1

Nc

h �c 2ðx2ÞUðx2; x1Þc 1ðx1Þ �c 1ðx01ÞUðx01; x02Þ
� c 2ðx02Þi: (3.2)

A graphical representation of Gð1Þ and Gð3Þ is shown in

Fig. 2.

FIG. 2. Graphical representation of the 4PGIQGFs Gð1Þ and Gð3Þ. Same conventions as in Fig. 1.
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In the following, for the study of the bound state
problem, the points x01 and x02 will be sent to �1 in time;
they will then disappear by factorization from the bound
state equations, which is why the classification of the

4PGIQGFs hinges here only on the line between the points
x1 and x2.
The 4PGIQGFs satisfy the following equations of

motion:

ði�:@1 �m1ÞGðnÞðx1; x2; x02; x01; tn�1; . . . ; t1Þ ¼ i�4ðx1 � x01ÞS2;ðnþ1Þðx02; x2; tn�1; . . . ; t1; x1Þ

þ i��
��

��x
��
1

GðnÞðx1; x2; x02; x01; tn�1; . . . ; t1Þjx1t1 ; (3.3)

GðnÞðx1; x2; x02; x01; tn�1; . . . ; t1Þð�i�:@
 
2 �m2Þ ¼ i�4ðx2 � x02ÞS1;ðnþ1Þðx1; x01; x2; tn�1; . . . ; t1Þ

� i
��

��x�þ2
GðnÞðx1; x2; x02; x01; tn�1; . . . ; t1Þjtn�1x2��: (3.4)

(@1 ¼ @=@x1 and @2 ¼ @=@x2.) The � matrices that act on G from the left, act on its first spinor index (�), while those
acting from the right act on its second spinor index (�), as defined in Eq. (3.1).

Multiplying Eqs. (3.3) and (3.4) with S1ðt1; x1Þ and S2ðx2; tn�1Þ, respectively, and integrating, one obtains the following
functional relations between different 4PGIQGFs:

GðnÞðx1; x2; x02; x01; tn�1; . . . ; t1Þ ¼ S1ðx1; x01ÞS2;ðnþ2Þðx02; x2; tn�1; . . . ; t1; x1; x01Þ

þ
� ��S1ðx1; y1Þ

��y�1þ
1

þ S1ðx1; y1Þ
��

��y�1�
1

�
��1Gðnþ1Þðy1; x2; x02; x01; tn�1; . . . ; t1; x1Þ

¼ S1;ðnþ2Þðx1; x01; x02; x2; tn�1; . . . ; t1ÞS2ðx02; x2Þ

�Gðnþ1Þðx1; z1; x02; x01; x2; tn�1; . . . ; t1Þ��1

� ��S2ðz1; x2Þ
��z�1�

1

þ
��
 

��z�1þ
1

S2ðz1; x2Þ
�
: (3.5)

IV. BOUND STATE EQUATIONS

In order to obtain bound state equations, one considers in
the 4PGIQGFs the limit of large timelike separations be-
tween the set of points (x1; t1; . . . ; tn�1; x2) and the set
ðx02; x01Þ. In this limit, the Green’s functions can be saturated
by a complete set of hadronic states, among which are
single mesons representing bound states of quarks and
antiquarks. To simplify the analysis, one may either con-
sider the large-Nc limit, in which case only single poles
survive [22,30], or simply neglect inelasticity effects to
ensure the stability of the bound state. By appropriate
projection operations [28] or limiting procedures to the
pole position in the total momentum space, it is possible
to select one particular bound state among the whole set of
intermediate states.

We shall refer to the selected bound state with its
total four-momentum P only, discarding other quantum
numbers, which will not play any role in the following.
(We assume that the bound state is nondegenerate.) The
wave functions are classified according to the number of
straight line segments existing on the polygonal lines of the
phase factors (n; j ¼ 1; 2; . . . ;1),

�ðnÞ��ðx1; x2; tn�1; . . . ; t1Þ
¼ � 1ffiffiffiffiffiffi

Nc

p h0jTð �c 2�ðx2ÞUðx2; tn�1Þ . . .

�Uðt1; x1Þc 1�ðx1ÞÞjPi; (4.1)

��ðjÞ�0�0 ðx02; x01; tj�1; . . . ; t1Þ
¼ 1ffiffiffiffiffiffi

Nc

p hPjTð �c 1�0 ðx01ÞUðx01; tj�1Þ . . .Uðt1; x02Þ

� c 2�0 ðx02ÞÞj0i: (4.2)

They become in the simplest cases n ¼ 1 and j ¼ 1,

�ð1Þðx1; x2Þ ¼ � 1ffiffiffiffiffiffi
Nc

p h0jTð �c 2ðx2ÞUðx2; x1Þc 1ðx1ÞÞjPi;

(4.3)

��ð1Þðx02; x01Þ ¼
1ffiffiffiffiffiffi
Nc

p hPjTð �c 1ðx01ÞUðx01; x02Þc 2ðx02ÞÞj0i: (4.4)

(The dependence of the wave functions on the total
four-momentum P of the bound state is omitted from their
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arguments for notational simplification.) We note that the
above wave functions for all ns describe the same bound
state, but differ in their expressions due to differences in
their contents with respect to the phase factor lines.

Taking large timelike separations between initial and final
coordinates as described above, or going in total momentum
space to the pole position, and selecting one bound state,
the equations of motion (3.3) and (3.4) of the 4PGIQGFs
are transformed into wave equations (their inhomogeneous
parts not contributing to the bound states poles),

ði�:@1 �m1Þ�ðnÞðx1; x2; tn�1; . . . ; t1Þ

¼ þi��
��

��x
��
1

�ðnÞðx1; x2; tn�1; . . . ; t1Þjx1t1 ; (4.5)

�ðnÞðx1; x2; tn�1; . . . ; t1Þð�i�:@
 
2 �m2Þ

¼ �i
��

��x�þ2
�ðnÞðx1; x2; tn�1; . . . ; t1Þjtn�1x2��; (4.6)

which become for the case n ¼ 1

ði�:@1�m1Þ�ð1Þðx1;x2Þ¼þi��
��

��x��1
�ð1Þðx1;x2Þ; (4.7)

�ð1Þðx1;x2Þð�i�:@
 
2�m2Þ¼�i

��
��x�þ2

�ð1Þðx1;x2Þ��: (4.8)

A wave function �ðnÞ thus satisfies two independent

Dirac-type equations. They should, however, be

compatible among themselves in order not to give rise
to a vanishing solution. The compatibility condition is
obtained by making the two Dirac operators act on the
wave function in different orders and subtracting the
corresponding results from each other. Since the two
Dirac operators commute among themselves, the result
should be zero. One finds

� ��
��x�þ2

��
��x��1

�
��

��x��1

��
��x�þ2

�
�ðnÞ ¼ 0: (4.9)

For n � 2, the commutativity of the two rigid path
derivatives results from the fact that they operate on
different segments in an uncorrelated way. For n ¼ 1,
since they operate on the same segment, they may act
on the same point, giving rise to additional singularities. It
can, however, be shown that because of the Bianchi
identities satisfied by the gluon fields, even in this case
the two operators commute [16]. The two wave equations
(4.5) and (4.6), or (4.7) and (4.8), are therefore compatible
among themselves.
In order to evaluate the interaction part of the wave

equations, it is necessary to express the rigid path derivatives
in terms of calculable kernels. We follow here a method
similar to that used for the 2PGIQGFs (Sec. II). By selecting
in Eqs. (3.5) the bound state contribution, one obtains the
following two equivalent equations, expressing a wave func-
tion �ðnÞ in terms of �ðnþ1Þ and the 2PGIQGFs S1 or S2:

�ðnÞðx1; x2; tn�1; . . . ; t1Þ ¼ þ
� ��S1ðx1; y1Þ

��y�1þ
1

þ S1ðx1; y1Þ
��

��y�1�
1

�
��1�ðnþ1Þðy1; x2; tn�1; . . . ; t1; x1Þ

¼ ��ðnþ1Þðx1; z1; x2; tn�1; . . . ; t1Þ��1

� ��S2ðz1; x2Þ
��z�1�

1

þ
��
 

��z�1þ
1

S2ðz1; x2Þ
�
: (4.10)

However, contrary to the 2PGIQGF case [Eqs. (2.14)], they do not contain the lowest-index wave function �ð1Þ, which
could generate an iterative series and allow for the calculation of the�ðnÞs in terms of�ð1Þ. The difficulty can be overcome
by adding to the above equations identities involving �ð1Þ. Considering the equations of motion (2.12) and (2.13),
multiplying them with �ð1Þðt1; x1Þ and �ð1Þðx2; tn�1Þ, respectively, and integrating, one obtains the two equations,

�ð1Þðx1; x2ÞeFnþ1ðx2;tn�1;...;t1;x1Þ þ
� ���ð1Þðx1; y1Þ

��y�1þ
1

þ�ð1Þðx1; y1Þ
��

��y�1�
1

�
��1S2;ðnþ1Þðy1; x2; tn�1; . . . ; t1; x1Þ ¼ 0; (4.11)

�ð1Þðx1; x2ÞeFnþ1ðx2;tn�1;...;t1;x1Þ � S1;ðnþ1Þðx1; z1; x2; tn�1; . . . ; t1Þ��1

� ���ð1Þðz1; x2Þ
��z�1�

1

þ
��
 

��z�1þ
1

�ð1Þðz1; x2Þ
�
¼ 0: (4.12)

These can now be added, respectively, to the two expressions of�ðnÞ in Eqs. (4.10), yielding the following new functional
relations:
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�ðnÞðx1; x2; tn�1; . . . ; t1Þ ¼�ð1Þðx1; x2ÞeFnþ1ðx2;tn�1;...;t1;x1Þ þ
� ���ð1Þðx1; y1Þ

��y�1þ
1

þ�ð1Þðx1; y1Þ
��

��y�1�
1

�
��1S2;ðnþ1Þ

� ðy1; x2; tn�1; . . . ; t1; x1Þþ
� ��S1ðx1; y1Þ

��y�1þ
1

þS1ðx1; y1Þ
��

��y�1�
1

�
��1�ðnþ1Þðy1; x2; tn�1; . . . ; t1; x1Þ;

(4.13)

�ðnÞðx1; x2; tn�1; . . . ; t1Þ ¼ �ð1Þðx1; x2ÞeFnþ1ðx2;tn�1;...;t1;x1Þ � S1;ðnþ1Þðx1; z1; x2; tn�1; . . . ; t1Þ��1

�
� ���ð1Þðz1; x2Þ

��z�1�
1

þ
��
 

��z�1þ
1

�ð1Þðz1; x2Þ
�
��ðnþ1Þðx1; z1; x2; tn�1; . . . ; t1Þ��1

�
� ��S2ðz1; x2Þ

��z�1�
1

þ
��
 

��z�1þ
1

S2ðz1; x2Þ
�
: (4.14)

They can be used to express, through iterative calculations, �ðnÞ in terms of �ð1Þ, S1, S2 and Wilson loop averages. They
parallel relations (2.14) of the 2PGIQGFs, but with the additional complication that the iteration should be carried out
simultaneously in �ðnþ1Þ and Sðnþ1Þ.

The final step consists in using expressions (4.13) and (4.14) to bring the right-hand sides of the wave equations (4.5),
(4.6), (4.7), and (4.8) into a form where the wave functions appear as acted on by kernels made of Wilson loop averages and
their derivatives, as well as 2PGIQGFs. The procedure follows similar lines as those adopted for the 2PGIQGFs [21].
Considering in particular the wave equation (4.7), one finds

���ð1Þðx1; x2Þ
��x

��
1

¼
��F2ðx2; x1Þ

��x
��
1

�ð1Þðx1; x2Þ �
��2F3ðx2; x1; y1Þ
��x��1 ��y�1þ

1

½�ð1Þðx1; y1Þ��1S2;ð2Þðy1; x2; x1Þ þ S1ðx1; y1Þ��1�ð2Þðy1; x2; x1Þ�

�
�� ���ð1Þðx1; y1Þ

��y�1þ
1

þ�ð1Þðx1; y1Þ
��

��y�1�
1

�
��1

��2F4ðx2; x1; y1; y2Þ
��x��1 ��y�2þ

2

S2ðy1; y2Þ��2S2;ð3Þðy2; x2; x1; y1Þ

þ
� ��S1ðx1; y1Þ

��y�1þ
1

þ S1ðx1; y1Þ
��

��y�1�
1

�
��1

��2F4ðx2; x1; y1; y2Þ
��x��1 ��y�2þ

2

½�ð1Þðy1; y2Þ��2S2;ð3Þðy2; x2; x1; y1Þ

þ S1ðy1; y2Þ��2�ð3Þðy2; x2; x1; y1Þ�
�
�X1

j¼4

Xj�2
r¼1

� ��S1ðx1; y1Þ
��y�1þ

1

þ S1ðx1; y1Þ
��

��y�1�
1

�
��1

� � � � �
� ��S1ðyr�2; yr�1Þ

��y�r�1þ
r�1

þ S1ðyr�2; yr�1Þ
��

��y�r�1�
r�1

�
��r�1

� ���ð1Þðyr�1; yrÞ
��y�rþ

r

þ�ð1Þðyr�1; yrÞ
��

��y�r�
r

�

� ��r

� ��S2ðyr; yrþ1Þ
��y�rþ1þ

rþ1
þ S2ðyr; yrþ1Þ

��
��y�rþ1�

rþ1

�
��rþ1 � � �

� ��S2ðyj�3; yj�2Þ
��y

�j�2þ
j�2

þ S2ðyj�3; yj�2Þ
��

��y
�j�2�
j�2

�

� ��j�2
��2Fjþ1ðx2; x1; y1; . . . ; yj�1Þ

��x��1 ��y
�j�1þ
j�1

S2ðyj�2; yj�1Þ��j�1S2;ðjÞðyj�1; x2; x1; y1; . . . ; yj�2Þ

�X1
j¼4

� ��S1ðx1; y1Þ
��y�1þ

1

þ S1ðx1; y1Þ
��

��y�1�
1

�
��1 � � � � �

� ��S1ðyj�3; yj�2Þ
��y

�j�2þ
j�2

þ S1ðyj�3; yj�2Þ
��

��y
�j�2�
j�2

�

� ��j�2
��2Fjþ1ðx2; x1; y1; . . . ; yj�1Þ

��x��1 ��y
�j�1þ
j�1

½�ð1Þðyj�2; yj�1Þ��j�1S2;ðjÞðyj�1; x2; x1; y1; . . . ; yj�2Þ

þ S1ðyj�2; yj�1Þ��j�1�ðjÞðyj�1; x2; x1; y1; . . . ; yj�2Þ�: (4.15)
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In the double sum with respect to r and j, y0 means x1.
When r ¼ 1, factors with S1 and derivatives do not exist on
the left of �ð1Þ; when r ¼ j� 2, factors with S2 and
derivatives do not exist on the right of �ð1Þ, except the
one preceding S2ðjÞ.

The kernels appearing in the right-hand side of
Eq. (4.15) can be expressed through functional relation-
ships in terms of those of the 2PGIQGFs. Going back to
Eq. (2.17) and to the definition of the operator�1n½S� there,
to which we assign now a new index, 1 or 2, according to its
content of quark 1 or quark 2, the wave equation (4.7) can
be rewritten in the form

ði�:@1 �m1Þ�ð1Þðx1; x2Þ

¼ X1
n¼1
ð�1;1n½S1� ��ðnÞÞ

þX1
n¼2

��
��1;1n½S1�

�S1
� ��ð1Þ

�
� S2;ðnÞ

�
; (4.16)

where the double-star operator means that after function-
ally taking the derivative of �1;1n½S1� with respect to S1,
the latter is replaced in the same place by �ð1Þ and all S1s
on the right of�ð1Þ are replaced by S2. A similar expression

can also be derived for the right-hand side of Eq. (4.8),
using either of the forms (2.18) or (2.19).

Equation (4.15) parallels Eq. (2.15) of the 2PGIQGF.
High-index wave functions and 2PGIQGFs should in
principle be eliminated in terms of the lowest-index ones
using the functional relations (4.13), (4.14), and (2.14).
Derivative terms of �ð1Þ that appear in the right-hand

side of Eq. (4.15) in high-order terms could be eliminated
using the first terms of the expansions through an iterative
procedure. Expansion (4.15) should be completed by
bringing all derivative terms to the right; the result is
very similar to what is obtained in the 2PGIQGF case.
Connected parts of the Wilson loop averages of high-order
terms involve an increasing number of derivatives, each
on a different segment of the corresponding polygonal
contours [21].

In perturbation theory, each derivative of a Wilson loop
introduces one multiplicative power of the coupling con-
stant. Therefore, for the perturbative regime, terms with the
smallest number of derivatives would be the dominant
ones. For large distances, Wilson loop averages are ex-
pected to be dominated by minimal surfaces [3,5,10]. Here
also, the dominant terms are those with the smallest num-
ber of derivatives. This suggests that the expansion (4.15)
has, at least formally, a perturbative structure, the decrease
in magnitude of the terms being estimated by the global
number of the derivative operators. The first term of the
above expansions involves a Wilson loop with one deriva-
tive, which, however, vanishes for symmetry reasons. The
first leading term of the expansion is then the two-
derivative term, involving a Wilson loop along a triangular
contour. In two-dimensional QCD in the large-Nc limit,

this term is actually the only one that survives in the above
expansions and brings an indirect confirmation to the
previous analysis.
Our remark [in the paragraph following Eq. (2.19)]

concerning the interpretation of Eq. (2.17) and its ana-
logues also applies to Eq. (4.16) and its analogues. Once
the rigid path derivative of the wave functions has been
evaluated by means of Eq. (4.15) or similar ones, then the
wave functions have to be considered as ordinary complex
functions of their arguments x1; x2; t1; . . . ; tn, P, etc. The
wave equations of the type of (4.16) become integrodiffer-
ential equations.
For completeness, the normalization condition of the

wave functions is presented in the appendix.

V. SPECTRAL REPRESENTATION

A two-particle wave function of colorless fields is a
vertex function and satisfies, on the basis of the properties
of causality and positivity of physical particle energies, an
integral representation known as the Deser-Gilbert-
Sudarshan (DGS) representation [25]. One might try to
apply the DGS analysis to the presently defined wave
functions (4.1) and (4.3). However, an immediate difficulty
arises from the fact that intermediate states needed for the
determination of their singularities are necessarily colored
objects. Intermediate states, placed inside the operators
that are present in the matrix elements (4.1) or (4.3), should
have the quantum numbers of operators made of one quark
(belonging to the defining fundamental representation of
the color gauge group) and a certain number of gluons
(belonging to the adjoint representation); these combina-
tions cannot produce color singlet operators. Therefore,
hadronic intermediate states, which are expected to form
the only physical states of the theory, do not contribute to
the formation of the singularities of the wave functions.
One then is tempted to conclude that the wave functions are
free of singularities and are entire functions. However, the
equations satisfied by the GIQGFs do display momentum-
space singularities generated by the free quark propagators
present in them. The same difficulty also appeared in the
2PGIQGF case.
To explain the presence of singularities in the Green’s

functions it is necessary to admit that completeness sums
may be considered with colored quark and gluon states,
irrespective of the fact that the latter may not be observable
as asymptotic free states. (A similar conclusion was also
drawn in Ref. [31] concerning ordinary propagators.) It is
the solutions of the corresponding equations which should
ultimately determine their precise properties. We further
assume the usual spectral and causality properties of quan-
tum field theory. The presence of gluon fields, treated here
covariantly, might introduce in addition negative norm
states (but still carrying positive energies) in the complete-
ness sum, whose main effect could be the change of sign
within certain intervals of the concerned spectral function

GAUGE INVARIANT BOUND STATE EQUATIONS FOR . . . PHYSICAL REVIEW D 88, 025034 (2013)

025034-9



[19,20,31]. Therefore, no positivity conditions should be
imposed in advance on the spectral functions (this concerns
mainly the 2PGIQGFs).

More generally, the fact that the intermediate states are
colored objects puts constraints on their specific properties:
the colored states, when placed inside a gauge invariant
operator, separate the latter into two gauge covariant op-
erators; their contribution should reproduce at the end
gauge invariant quantities. The study of the mechanism
of that operation deserves attention in future investigations.

The above general hypotheses were applied to the
2PGIQGF case and led to a generalized Källén-Lehmann
representation [21,24,32]. The analytic resolution of
the 2PGIQGF equation in two-dimensional QCD in the
large-Nc limit has confirmed the previous hypotheses: the
quarks and gluons do contribute to the spectral functions
with positive energies, with the difference that their singu-
larities are no longer represented by simple poles, but by an
infinite number of branch points with a stronger power than
poles [23]. Furthermore, Lehmann’s positivity conditions
(or inequalities) [24] remain satisfied.

It is therefore reasonable to continue to apply the same
approach to the study of the spectral representation of the
wave functions. Considering the wave function �ð1Þ
[Eq. (4.3)], one can repeat the same analysis as in Ref. [21]
for the 2PGIQGF. The presence of the gluon field phase
factor introduces an infinite series of additional powers of
the denominator of the dispersive integral. Defining total and
relative coordinates as X ¼ 1

2 ðx1 þ x2Þ and x ¼ x1 � x2,

one can factorize the plane wave part of the wave function
and introduce the internal wave function as

�ð1ÞðP; x1; x2Þ ¼ e�iP:X�ð1ÞðP; xÞ: (5.1)

�ð1ÞðP; xÞ satisfies a generalized form of the DGS

representation, which we write here, for simplicity, for
the total spin-0 case, ignoring the spinorial content,

�ð1ÞðP; xÞ ¼
X1
n¼1

i
Z d4k

ð2	Þ4 e
�ik:x Z 1=2

�1=2
d�

2	

�
Z 1
0

ds0
Hð1Þ;nðs0; �Þe�i�P:x
ðk2 � s0 þ i"Þn : (5.2)

The lower bound of the spectral variable s0 may actually
depend on the quark masses, on P2 and on �. The above
general form might still be simplified through integrations
by parts and recombinations. In particular, the sum might
lead to a global fractional power. In two-dimensional QCD,
the resulting power of the denominator for the 2PGIQGF
case was found 3=2 [23].

Representation (5.2), or a simpler version of it, could be
used for the search for solutions of the wave equations.
According to the solutions that are found, its detailed
properties could be better specified. Nevertheless, we do
not dispose of much theoretical freedom for qualitative
changes of representation (5.2) without altering some basic

property of quantum field theory. That question might still
be reconsidered in the light of the confinement mechanism
that would be found in four-dimensional QCD.

VI. CHIRAL SYMMETRY BREAKING

In the limit of Nf � Nc massless quarks, it is expected

that the chiral SUðNfÞ � SUðNfÞ symmetry group of

QCD undergoes a spontaneous breakdown to its diagonal
subgroup SUðNfÞV [33–36]. On the other hand, the

Nambu–Jona-Lasinio model [37] underlines the intimate
relationship that exists between chiral symmetry breaking
and the dynamical mass generation of fermions. Baker,
Johnson and Lee considered the case of QED and showed
that a similar relationship also exists there: the generation
of a nonzero mass term in the fermion self-energy in the
massless limit entails the existence of a zero-mass pseudo-
scalar bound state solution of the Bethe-Salpeter equation
[26]. They argued, however, that such a solution might not
necessarily correspond to an observable boson. The latter
phenomenon is actually a consequence of the axial
anomaly problem in Abelian sectors [38,39] and should
be avoided by considering nonsinglet sectors of a non-
Abelian chiral group.
In this section we aim at showing that the relationship

between dynamical mass generation of fermions and chiral
symmetry breaking also exists in QCD. That question is
not new and in the past many works, based on approaches
using the axial-vector Ward-Takahashi identities, Dyson-
Schwinger equations and instantaneous approximations
of the Bethe-Salpeter kernel with confining interactions,
have shown the possible validity of such a mechanism
[19,20,40–47]. Our proof below is more formal and inde-
pendent of any approximation of the interaction kernels.
To this end, we consider the case of massless quarks 1

and 2; in this limit the labeling of the 2PGIQGFs with the
quark indices 1 and 2 becomes irrelevant and we may
discard them from our notations. The 2PGIQGF Sð1Þ is
decomposed into vector and scalar parts [21]. The part
that is most sensitive to chiral symmetry breaking is the
scalar one. We isolate it by taking the anticommutator of
Sð1Þ with the �5 matrix. It satisfies the equations

i�:@1½�5; Sð1Þðx1; x2Þ�þ ¼ i��
��

��x��1
½�5; Sð1Þðx1; x2Þ�þ;

(6.1)

½�5; Sð1Þðx1; x2Þ�þð�i�:@
 
2Þ

¼ �i
��

��x�þ2
½�5; Sð1Þðx1; x2Þ�þ��; (6.2)

where ½; �þ represents the anticommutator.
The right-hand sides of Eqs. (6.1) and (6.2) are obtained

from Eq. (2.15) and its adjoint with respect to x2 and more
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schematically from Eqs. (2.17), (2.18), and (2.19). We have
for the rigid path derivative with x1,

��
��x��1

½�5;Sð1Þðx1;x2Þ�þ

¼
��F2ðx2;x1Þ

��x��1
½�5;Sð1Þðx1;x2Þ�þ

�
��2F3ðx2;x1;y1Þ
��x��1 ��y�1þ

1

f½�5;Sð1Þðx1;y1Þ�þ��1S2;ð2Þðy1;x2;x1Þ

þS1ðx1;y1Þ��1½�5;Sð2Þðy1;x2;x1Þ�þgþ . . . ; (6.3)

where the dots correspond to similar terms coming from
the contribution of the sum contained in Eq. (2.15). In
schematic form, the equation relative to x1 is

i�:@1½�5; Sð1Þ�þ
¼ X1

n¼1
ð�1n½Sð1Þ� � ½�5; SðnÞ�þÞ

þX1
n¼2

��
��1n½Sð1Þ�

�Sð1Þ
� �½�5; Sð1Þ�þ

�
� SðnÞ

�
; (6.4)

where �1n and the star operation were introduced in
Eq. (2.17), while the definition of the double-star operator
is the same as in Eq. (4.16), with the only difference that
the quark indices, 1 or 2, are now removed from the
Green’s functions.

Comparing the above equation with Eq. (4.16) (in the
limitsm1 ¼ m2 ¼ 0 and removing the quark indices 1 or 2),
one immediately concludes that ½�5; Sð1Þðx1; x2Þ�þ satisfies

the same equation as �ð1Þðx1; x2Þ, provided the following

correspondences are also done: ½�5; SðnÞ�þ ! �ðnÞ, n ¼
1; 2; . . . ;1, the general case of n being itself established
from the equations of SðnÞ. A similar conclusion also holds

for the adjoint equations corresponding to x2. On the other
hand, the 2PGIQGFs do not depend on the bound state total
momentum vector P. Therefore, the above correspondence
is possible only if the �s are independent of P; this is
possible if P ¼ 0 in the corresponding bound state, which
in turn implies P2 ¼ 0.

We thus arrive at the conclusion that if the 2PGIQGF Sð1Þ
has, in the massless quark limit, a nontrivial normalizable
scalar part, then the latter, multiplied by the �5 matrix, is a
solution of the bound state equation with zero mass, in the
limit of zero total momentum. This is an indication of the
existence of a pseudoscalar Goldstone boson in the bound
state spectrum. The complete expression of the corre-
sponding wave function for nonzero P should be searched
for from the bound state equations themselves; that part is
not given by the 2PGIQGFs.

The previous exact relationship between the scalar part
of the 2PGIQGF Sð1Þ and the wave function with zero total

momentum could also be stated in any truncation scheme
adopted as an approximation for the resolution of the

corresponding equations. Equation (6.4), when written
explicitly, has a structure similar to that of Eq. (4.15).
Therefore, any truncation scheme in one of the equations
has its equivalent truncation scheme in the other equation.
This is easily checked with Eq. (6.3), where dropping the
dots would amount to truncating the series beyond two
derivative terms in the kernels. One checks in Eq. (4.15)
that the same approximation, keeping in the right-hand side
the first three terms, reproduces the structure of Eq. (6.3).
This property remains true order by order of the expansion
based on the number of derivatives. It allows, on practical
grounds, the use of approximations that remain compatible
with chiral symmetry.
It is worth noting that the scalar part of the 2PGIQGF Sð1Þ

does not necessarily correspond to a conventional mass term
whichwould give rise to a pole structure in the quarkGreen’s
function. Rather, the property that quarks are confined sug-
gests that it would possess a more complicated structure. In
two-dimensional QCD, the resolution of the problem led to
the appearance of an infinite set of branch points, at dynami-
cally generated mass values M1;M2; . . . ;Mn; . . . , with
stronger singularities than simple poles [23].
The above criterion for chiral symmetry breaking is only

a sufficient one. This is a consequence of the fact that the
equations satisfied by � are linear in � (given the expres-
sions of the Ss), while the equations satisfied by ½�5; S�þ
are nonlinear, since the latter are also contained in the Ss
present in the equations.

VII. SUMMARYAND CONCLUDING REMARKS

Phase factors along polygonal lines allow a simple
classification of gauge invariant quark Green’s functions
according to the number of segments they contain on the
lines and permit a systematic investigation of their prop-
erties through their equations of motion. The latter can be
reexpressed as integrodifferential equations in which the
kernels are essentially represented by Wilson loop aver-
ages along polygonal contours with an increasing number
of sides and derivatives.
This approach was applied to the cases of two-point and

four-point Green’s functions in QCD, leading in the latter
case to bound state equations for quark-antiquark systems.
The functional relationships between the kernels of the
bound state equations and those of the two-point functions
were displayed. A sufficient criterion for spontaneous chi-
ral symmetry breaking was derived, relating the Goldstone
boson wave function in the zero total momentum limit with
the scalar part of the two-point Green’s function.
The idea of relating the perturbative degree of a kernel

with the number of sides and derivatives of theWilson loop
contours offers promising perspectives for practical appli-
cations of the equations obtained thus far. In this case, the
dominant terms of the interaction kernels would come
from the simplest contours and the least number of deriva-
tives. That feature is also manifest in two-dimensional
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QCD in the large-Nc limit. An analysis of the structure of
the present equations in two dimensions would provide us
with a simplified framework for the understanding of
various mechanisms at work and this in turn might serve
as helpful guidance for future resolutions of the relevant
problems in four dimensions.
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APPENDIX: NORMALIZATION CONDITION

The normalization condition of the wave functions is
usually obtained by acting on the four-point Green’s
function with its inverse. In the present case, the inhomo-
geneous parts of the equations of motion (3.3) and (3.4)
being two-point Green’s functions, one needs to use, for
Gð1Þ, simultaneously both equations. One obtains

�
i�:@1 �m1 � i��

��
��x

��
1

�
Gð1Þðx1; x2; x02; x01Þ

�
�
�i�:@ 2 �m2 � i��

��
 

��x�þ2

�

¼ i2�4ðx1 � x01Þ�4ðx2 � x02Þ: (A1)

[F2ðx2; x1Þ ¼ 1.]
After calculating the effects of the rigid path derivatives,

one passes to total momentum space P by taking the
Fourier transform with respect to the total coordinate dif-
ference X � X0 ¼ 1

2 ðx1 þ x2Þ � 1
2 ðx01 þ x02Þ, while remain-

ing in the relative coordinate spaces x ¼ ðx1 � x2Þ and
x0 ¼ ðx01 � x02Þ. Designating by LðP; xÞ the operator acting
in the left-hand side of Eq. (A1), the latter can be written in
condensed form as

LðP; xÞ � Gð1ÞðP; x; x0Þ ¼ i2�4ðx� x0Þ; (A2)

where the star notation represents here the complete series
of terms obtained by the action of LðP; xÞ on Gð1Þ as in

Eqs. (2.15) and (4.15), which involves linearly the set of
Green’s functions GðnÞ (n ¼ 1; 2; . . . ).

We specify with the label k one of the bound states of
the system and isolate its contribution and that of its
antiparticle in Gð1Þ from the rest,

Gð1ÞðP; x; x0Þ ¼
i�ð1ÞkðPk; xÞ ��ð1ÞkðPk; x

0Þ
P2 � P2

k þ i"
þ iRð1ÞkðP; x; x0Þ;

(A3)

where the �s represent the internal part of the wave
functions, as defined in Eq. (5.1). [The chronological

product being evaluated with the time components of the
xs, we have also Pk ¼ P.] Decomposition (A3) is replaced
in Eq. (A2) and then both sides of the latter are multiplied
with ��ð1ÞkðxÞ and integrated with respect to x, with the trace
on the spinor indices taken. Taking into account the fact
that the operator LðPkÞ annihilates �ð1Þk, one obtains

��ð1ÞkðxÞ
�
LðP; xÞ � LðPk; xÞ
P2 � P2

k þ i"

�
��ð1ÞkðxÞ ��ð1Þkðx0Þ

þ ��ð1ÞkðxÞLðP; xÞ � Rð1ÞkðP; x; x0Þ ¼ i ��ð1Þkðx0Þ: (A4)

At this stage, when working with conventional Green’s
functions, one takes the limit P2 ! P2

k. The convolutive

nature of LðPÞ then allows it also to act on the left and the
remainder contribution disappears from the equation. In
the present case, the operator LðPÞ acts specifically on the
right and without further information it is not entitled to be
converted to the left.
To go further, we consider, as in Eq. (A1), equations of

motion ofGð1Þ concerning its two right arguments and define

correspondingly an operator L
 ðPÞ acting from the right,

Gð1ÞðP; x00; xÞ � L
 ðP; xÞ ¼ i2�4ðx00 � xÞ: (A5)

From Eqs. (A2) and (A5) one deduces

Gð1ÞðP; x00; xÞLðP; xÞ � Gð1ÞðP; x; x0Þ
¼ Gð1ÞðP; x00; xÞ � L

 ðP; xÞGð1ÞðP; x; x0Þ
¼ i2Gð1ÞðP; x00; x0Þ; (A6)

which entails aweak form of conversion of the operatorLðPÞ
from right to left. Since this result is true for anyP, x00 and x0,
one might adopt the assumption that it remains true also for
parts ofGð1Þ. Adopting the latter assumption, and taking the

limit P2 ! P2
k in Eq. (A4), one obtains the two relations,

1

i

Z
d4x ��ð1ÞkðxÞ@LðP; xÞ

@P2

��������P2¼P2
k

��ð1ÞkðxÞ ¼ 1; (A7)

Z
d4x ��ð1ÞkðxÞLðPk; xÞ � Rð1ÞkðPk; x; x

0Þ ¼ 0; (A8)

which display the normalization and orthogonality condi-
tions. In Eq. (A7), the derivative ofLðP; xÞwith respect toP2

is understood in the sense that one first evaluates the effect of
LðPÞ on �ð1Þk and then takes in the resulting kernels the

corresponding derivative.
Isolating in Rð1Þk the contribution of another bound state,

specified by a label m, and assuming its independence
from the rest, one obtains the more precise orthogonality
relation,

Z
d4x ��ð1ÞkðxÞ

�
LðPk;xÞ�LðPm;xÞ

P2
k�P2

m

�
��ð1ÞmðxÞ¼0; m�k:

(A9)
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We notice that the free part of the normalization kernel in Eq. (A7), coming from the two Dirac operators, is the same as
for the Bethe-Salpeter wave functions [29]. In the nonrelativistic limit, decomposing � into 2� 2 components, those
which are dominant satisfy the properties �0� ¼ ���0 ¼ �.
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