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The proper-time 4D path integral is used as a starting point to derive the new explicit parametric form of

the quark-antiquark Green’s function in gluonic and QED fields entering as a common Wilson loop. The

subsequent vacuum averaging of the latter allows us to derive the instantaneous Hamiltonian. The explicit

form and solutions are given in the case of the q �q mesons in magnetic field.

DOI: 10.1103/PhysRevD.88.025028 PACS numbers: 12.38.Aw, 13.40.Ks, 14.40.�n

I. INTRODUCTION

The path-integral formalism in quantum mechanics
created by Feynman [1,2] is an important benchmark in
the development and in our understanding of quantum
theory. Many varieties of this formalism and new methods
to solve the problems, which seemed before unsolvable,
have been suggested since then; see the books and review
papers [3–9] summarizing the modern achievements in this
field.

The extension of the path-integral formalism to the
quantum field theory was done in several directions. One
of the most known line of development was started already
in Ref. [2], where field variables, i.e., electromagnetic
potentials Aiðx; tÞ, ’ðx; tÞ, play the role of quantum spatial
coordinates qðtÞ, and the resulting path integral is becoming
the functional integral. This line is now a part of standard
lore present in many textbooks, see, e.g., Refs. [5–9].

However, it is important that in all works of this direc-
tion, the path integration concerns spatial coordinates and/
or field variables, but not the time coordinate, and in this
way one can say that this development is similar to the path
integrals in quantum mechanics, where time plays the
ordering role and stays outside of the realm of fluctuating
variables.

Another and more general approach unifying space and
time coordinates in the path integral is based on the proper
time coordinate. The latter was introduced by Fock [10]
and Schwinger [11], who used proper time formalism for
the field theory in external electromagnetic fields; however,
it did not exploit path integrals.

In QED, path integrals based on the proper time were
suggested in Ref. [12] and developed in Ref. [13].

Path integrals for QCD both in time and space variables
using proper time as an ordering variable were suggested in
Refs. [14–16]. The first use of the QCD path integral for
quarks and gluons was done in Ref. [17] and exploited
to demonstrate the confinement due to field correlators
(stochastic confinement) (for a review, see Ref. [18]).

The full form of the path integral in QCD for quarks and
gluons, based on the proper time ordering, was given in
Ref. [17] for T ¼ 0 and in Ref. [19] for T > 0, and differ-
ent approximations were reviewed in Ref. [20] for some

relativistic models and in Ref. [21] for QCD. It was called
the Fock-Feynman-Schwinger representation, and we
retain this name in what follows.
Based on Fock-Feynman-Schwinger representation, a

new relativistic Hamiltonian was derived in Refs. [22,23]
for quarks and in Refs. [24,25] for gluons, where a new
important variable ! was introduced, playing the role of
the einbein variable [26]. Its average value !0 is the
average quark (or gluon) energy and explains the appear-
ance of the notion of constituent mass in earlier models.
The relativistic Hamiltonian with einbeins !i allows us to
calculate all low-lying states in QCD—mesons, glueballs,
baryons, and hybrids—from the first-principle input:
current quark masses, �s, and string tension �, see
Refs. [27–29] for reviews.
However, the introduction of !i as einbein variables,

being successful, is an approximate procedure, and its
limitations and corrections were not clarified enough
in the literature. An attempt in this direction was done in
Ref. [30], where the fluctuation of the time coordinate in
the path integration was substituted by the fluctuation’s
integration in �!i. The resulting expressions for quark
decay constants of mesons in Ref. [30] are quite successful
in comparison with experiment; however, the exact scheme
of approximations was not clearly stated.
An additional impulse for a development in this area was

given recently by the inclusion of high magnetic field B in
the dynamics of QCD and QED, see Refs. [31–35] for
recent papers. In this case, !i depend on B and might
vanish or grow fast (depending on quark spin projection),
which calls for a careful analysis of all corrections.
In the present paper, we undertake such an analysis and

rederive different forms of path integrals and relativistic
Hamiltonians for the QCD and QED systems, typically for
quark-antiquark or atoms, taking into account both QCD
and QED dynamics in the first case.
The first thing we meet confronting 4D path integrals

is the problem of the time-coordinate fluctuation, which
necessarily requires distinguishing average (ordering) time
and fluctuating time, similar to the old notion of the
Zitterbewegung. We analyze this phenomenon by compar-
ing the Bethe-Salpeter and path-integral formalisms and
show how the latter can be developed using the fact that all
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dynamics is contained in the Wilson loop formalism
augmented by spin insertions.

II. PATH INTEGRAL: TREATING TIME
FLUCTUATIONS

We start with the simplest example of a scalar particle in
external field; this problem was considered for QED by
Feynman in Ref. [12].

The scalar one particle Green’s function is (in Euclidean
space-time)

gðx; yÞ ¼
�

1

m2 �D2
�

�
xy

¼
Z 1

0
dsðD4zÞxy exp ð�KÞ�ðx; yÞ; (1)

where D� ¼ @� � ieA�,

K ¼ m2sþ 1

4

Z s

0
d�

�
dz�
d�

�
2
; (2)

�ðx; yÞ ¼ exp ie
Z x

y
A�dz�; (3)

and

ðD4zÞxy ’ lim
N!1

YN
n¼1

Z d4zðnÞ
ð4�"Þ2

Z d4p

ð2�Þ4 e
ip

�P
N
n¼1

zðnÞ�ðx�yÞ
�
;

N" ¼ s: (4)

At this point, it is important to stress the difference
between the nonrelativistic quantum-mechanical and
relativistic path integration. In the first case, one has
ðD3zÞ ¼ ðD3zðtÞÞ in (1), and the time variable t has the
ordering character: the consecutive pieces of trajectory zðtÞ
are ordered by time. In the relativistic path integral, this
role is given to the proper time �, s while the ‘‘time’’ z4ð�Þ
is fluctuating together with spatial coordinates zð�Þ. In
terms of any local field theory and Bethe-Salpeter type
of equation, this is allowable and necessary, since any
moment of time z4 appears in the amplitude with a new
interaction point, which may happen before or after the
previous interaction point; thus, the points of interaction lie
chaotically on the time axis. However, from the point
of view of a stationary process, which creates the system
with a given quantized energy state in the limit of a long
time interval, one may think of an averaged progressive
time and averaged trajectories of constituents, where sto-
chastic time fluctuations are dealt with in a well-defined
averaging process. In this way, the time-fluctuating
relativistic trajectories are averaged into stationary time-
ordered trajectories, similar to the quantum mechanical
ones, where fluctuations are allowed for spatial coordi-
nates. Correspondingly, one can write

z4ð�Þ ¼ �z4ð�Þ þ ~z4ð�Þ; (5)

where �z4ð�Þ � tE ¼ 2!� is the averaged time proportional
to the proper time, while the fluctuating time ~z4ð�Þ can be
written as a sum of one-step fluctuations:

~z4ð�Þ ¼
Xn
k¼1

�z4ðkÞ; � ¼ n";

N" ¼ s;
XN
k¼1

�z4ðkÞ ¼ 0:

(6)

The proper time s is expressed via the total Euclidean time
T ¼ x4 � y4 and the new variable !,

s ¼ T=2!; (7)

and hence the scalar Green’s function (1) can be rewritten
in the form

gðx; yÞ ¼ T
Z 1

0

d!

2!2
D3ze�Kð!Þh�ðx; yÞi�z4 : (8)

Here,

Kð!Þ ¼
Z T

0
dtE

�
!

2
þ m2

2!
þ!

2

�
dz

dtE

�
2
�
; (9)

while

h�ðx; yÞi�z4 ¼ D�z4 exp

�
ie
Z

AiðzðtEÞ; tE þ ~z4Þdzi

þ ie
Z

A4dtE þ ie
Z

A4d�z4

�
; (10)

D�z4 �
Z dp4

2�

Yn
k¼1

d�z4ðkÞffiffiffiffiffiffiffiffiffi
4�"

p exp

(XN
k¼1

"
ip4�z4ðkÞ

� 1

4

ð�z4ðkÞÞ2
"

þ ie�z4ðkÞA4

#)
: (11)

The result of integration in (11) can be written as

h�ðx; yÞi�z4 ¼
ffiffiffiffiffiffiffiffiffiffi
!

2�T

r
�ðx; yÞ; (12)

where ��ðx; yÞ is the averaged Wilson line augmented by
the fluctuation,

��ðx; yÞ ¼ exp

�
ie
Z x

y
AiðzðtEÞ; tEÞdzi

þ ie
Z x4

y4

A4ðzðtEÞ; tEÞdtE
�
exp ð�SÞ: (13)

In the simplest case of the free scalar Green’s function,

A� � 0 and ��ðx; yÞ ¼ 1, hence,
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g0ðx;yÞ¼
ffiffiffiffiffiffiffi
T

8�

s Z 1

0

d!

!
ffiffiffiffi
!

p ðD3zÞxye�Kð!Þ

¼ 1

8�2T

Z 1

0
d!exp

�
�m2T

2!
�ðx�yÞ2

2T
!�!T

2

�

¼ 1

4�2

m

u
K1ðmuÞ;

u2¼T2þðx�yÞ2; (14)

where K1ðxÞ is the Bessel function of the second kind.
At this point the role of ! becomes clear, since for large

T the integral in (14) can be taken by the stationary point
method with the action

Sð!; TÞ ¼ m2T

2!
þ ðx� yÞ2

2T
!þ!T

2
;

@Sð!; TÞ
@!

��������!¼!0

¼ 0
(15)

and

!0 ¼ mTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 � yÞ2 þ T2
p ! m; for T � jx� yj;

and one finally obtains the standard answer for large T
yielding the asymptotics of the rhs of (14) at large T,

g0ðx; yÞ ¼
ffiffiffiffi
m

p
4�3=2T3=2

exp ð�mTÞ: (16)

Another form exploits the Hamiltonian in (14); namely,
one can use the relationZ

ðD3zÞxye�Kð!Þ ¼ hxje�Hð!ÞTjyi; (17)

where

Hð!Þ ¼ p2 þm2

2!
þ!

2
: (18)

Applying the stationary point method to the integrals
(14) and (17), one obtains at large T the energy eigenvalue

@Hð!Þ
@!

��������! ¼ !0 ¼ 0; !0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
: (19)

From (19), one can understand that ! plays the role of a
virtual particle energy, and the condition (19) has the
meaning of the energy shell condition. This interpretation
holds also for the case ofN particles with interaction, when
the integrals aver

QN
i¼1 d!i are involved. Note that in this

way, !i are no longer approximate einbein variables, as in
our previous works (see, e.g., Refs. [18,23]).

We now turn to the case of A� � 0 and remark that

A�ðz; z4Þ are functions of coordinates, which will be used

later in the process of vacuum averaging, yielding points of
interaction, correlators, etc., but at this moment in (13),
��ðx; yÞ is a set of all possibleWilson lines obtained by time

fluctuations with the weight given in (11), see Fig. 1 as an
illustration.
In one particular case, when zðtEÞ is fixed, i.e., the

trajectory is parallel to the z4 axis, all �z4 fluctuations
are washed out, since all fluctuations cancel each other,

exp

�
ie
Z

A4ðz; z4Þdz4
�
¼ exp

�
ie
Z

A4ðz; tEÞdtE
�
: (20)

The same would happen in the case of QCD, where
again overlapping pieces of the Wilson line cancel each
other. We shall come back to the problem of fluctuating
Wilson lines when we consider gauge invariant two-body
Green’s functions.
In the case of the white system of the quark and

antiquark of opposite charges, one must start with the
one-body Green’s function

Siðx; yÞ ¼ ðmi þ @̂� igÂ� ieiÂ
ðeÞÞ�1

xy

� ðmi þ D̂ðiÞÞ�1
xy

¼ ðm1 � D̂ðiÞÞðm2
i � ðD̂ðiÞÞ2Þ�1

xy : (21)

The path-integral representation for Si is [8]

Siðx; yÞ ¼ ðmi � D̂ðiÞÞ
Z 1

0
dsiðDzÞxye�Ki�ðiÞ

� ðx; yÞ
� ðmi � D̂ðiÞÞGiðx; yÞ; (22)

where

Ki ¼ m2
i si þ

1

4

Z si

0
d�i

�
dzðiÞ�
d�i

�
2
; (23)

�ðiÞ
� ðx; yÞ ¼ PAPF exp

�
ig
Z x

y
A�dz

ðiÞ
� þ iei

Z x

y
AðeÞ
� dzðiÞ�

�

� exp

�Z si

0
d�i���ðgF�� þ eiB��Þ

�
: (24)

Here, F�� and B�� are correspondingly gluon and c.m.

field tensors, and PA, PF are ordering operators, ��� ¼
1
4i ð���� � ����Þ. Equations (21)–(24) hold for the quark,
i ¼ 1, while for the antiquark one should reverse the signs
of ei and g. In explicit form, one writes

FIG. 1. The time-fluctuating trajectory in the z1, z4 plane. The
points z1ðtEÞ, tE are marked by circles and are connected by the
average trajectory depicted by the dotted line.
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���F�� ¼ �H �E

�E �H

 !
; ���B�� ¼ �B 0

0 �B

 !
:

(25)

The two-body q1q2 Green’s function can be written
as [17,21]

Gq1 �q2ðx;yÞ¼
Z 1

0
ds1

Z 1

0
ds2ðDzð1ÞÞxyðDzð2ÞÞxyhT̂W�ðAÞiA

�exp

�
ie1

Z x

y
AðeÞ
� dzð1Þ� � ie2

Z x

y
AðeÞ
� dzð2Þ�

þe1
Z s1

0
d�1ð�BÞ�e2

Z s2

0
d�2ð�BÞ

�
; (26)

where

T̂ ¼ trð�1ðm1 � D̂1Þ�2ðm2 � D̂2ÞÞ; (27)

‘‘tr’’ is the trace over Dirac and color indices acting on all
terms. Here hW�ðAÞi is the closed Wilson loop with the
spin insertions, and one should have in mind that color and
electromagnetic (e.m.) spin insertions in general do not
commute, which should be taken into account when com-
puting the spin-dependent part of the interaction, see
Ref. [36]; in (26), this fact was disregarded,

W�ðAÞ ¼ PaPF exp

�
ig
I

A�dz� þ g
Z s1

0
�ð1Þ

��F��d�1

� g
Z s2

0
�ð2Þ

��F��d�2

�
: (28)

It is important that the physically meaningful result
for the Green’s function is obtained by two different
averaging procedures applied to the total Wilson loop

W ¼ �ð1Þ
� ðx; yÞ�ð2Þ

� ðy; xÞ:
(1) one should average W over all time fluctuations;
(2) one should average W over all nonperturbative (np)

and perturbative (pert) field configurations with the
weight given by the standard QEDþ QCD field
actions so that the final result is

hhWii � hhWi�z4iA;AðeÞ : (29)

However, the class of processes of interest in QCD is
very wide, since any process starting and finishing with
definite hadron states, such as form factors, decays, and
hadron reactions, needs an explicit definition of initial and
final states as eigenstates of the Hamiltonian Hð!1; !2Þ,
and therefore can use the formalism discussed in this
paper.

It is clear that in the fluctuation averaging hWi�z4 the

result is an average Wilson loop passing through the points
fzðtEÞ þ �zðtEÞ; tE þ�tEg, tE�ð0; TÞ, where �zðtEÞ, �tE
depend on T, m1, m2 and also on the concrete field con-
figuration. The latter dependence goes away after the next
averaging process, over vacuum fields.

One can estimate the average time fluctuation �tE in the
case of the free relativistic particle propagation.
E.g., assuming the correlation function has the form

fðzð1Þ4 � zð2Þ4 Þ ¼ exp

�
�ðzð1Þ4 � zð2Þ4 Þ2

ð��zÞ2
�
; (30)

and taking into account time fluctuations zð1Þ4 ¼
tð1ÞE þ ~z4ðtEÞ, and integrating over �z4, one obtains the
increase of the correlation time

ð��zÞ2 ! ð�zÞ2�z4 ¼ ð��zÞ2 þ tð1ÞE

2!
� ð��zÞ2 þ T

2m
: (31)

However, this result is an artifact of the inaccurate
definition of the path-integration measure, when at the
ends of the time interval �tE the path can change the
direction, implying infinite time derivative. Imposing a
proper condition on the magnitude of the derivative, i.e.,
with smooth trajectories, the result would be different.
From the point of view of the relation �M�t * 1, one
can in principle calculate however accurate values of
masses M for large T, and only the coupling to decay
channels, i.e., the width �, should put a lower limit on
the accuracy �M.
It is interesting how this problem occurs in our path-

integral formalism. Indeed, the basic dynamics which is
contained in hhWii when the time fluctuation is supported
by the interaction, Eq. (30), can be described by the dia-
gram in Fig. 2. Now, from the point of view of Hamiltonian
dynamics with the trace of the hypersurface shown in
Fig. 2 by a dotted line, the Hamiltonian becomes a matrix
with Fock states, numerating columns, and rows,

Hq �q !
Hq �q V̂12 � � �
V̂21 Hðq �qÞ;ðq �qÞ2 � � �
� � � � � � � � �

0
BB@

1
CCA; (32)

FIG. 2. The vacuum averaged Wilson lines displaying pair
creation in the time fluctuation process. The hypersurface traces
I and II mark the double quark pair state of the Hamiltonian.
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where nondiagonal elements are transition operators and
the diagonal ones define dynamics (and masses) of more

and more complex systems. Therefore, e.g., V̂13 is respon-
sible for the decay q �q ! ðq �qÞ1 þ ðq �qÞ2, and hence defines
the accuracy of the possible mass determination of the
incident state (q �q).

The wave functions of (32) are actually Fock columns of
different states, e.g., f�qq�;�ðqq�Þðqq�Þ;...g, and therefore the

(q �q) eigenstates f�ðnÞ
qq�g are no longer an orthonormal set of

states. As we shall see, the eigenstates�nð!1; !2Þ will not
be orthonormal on the energy shells ð!ð0Þ

1 ; !ð0Þ
2 Þ, different

for each n. In this way, going from the 4D path integral to
the relativistic Hamiltonian 3D formalism, one naturally
meets the many-channel Hamiltonian, where diagonal el-
ements correspond to the fluctuation-averaged trajectories.

III. FROM PATH INTEGRAL TO
INSTANTANEOUS DYNAMICS

As a result of two averaging processes, time fluctuation
and vacuum averaging, the basic dynamical input of the

resulting 3D path integral—the doubly renormalized
Wilson loop—can be written as

hhWii ¼ ZW exp

	
� 1

2

ZZ
d���ð1Þd�	�ð2Þ

� ½g2hF��ð1ÞF	�ð2Þi þ e2hFðeÞ
��ð1ÞFðeÞ

	�ð2Þi�
þOðFFFÞ



; (33)

where

d��� � ds�� þ �ð1Þ
��

dtð1ÞE

2!1

� �ð2Þ
��

dtð2ÞE

2!2

;

and the integration ds�� is done over the minimal area

Smin inside the time-averaged trajectories of quark and
antiquark �L1 and �L2. Note that in addition to the time-
fluctuation smearing discussed above, there is also non-
perturbative smearing provided by the np field correlators.
Indeed, the quadratic (Gaussian) color field correlators

can be written as [19]

g2

Nc

hhTrEiðxÞ�EjðyÞ�yii ¼ 
ij

�
DEðuÞ þDE

1 ðuÞ þ u24
@DE

1

@u2

�
þ uiuj

@DE
1

@u2
;

g2

Nc

hhTrHiðxÞ�HjðyÞ�yii ¼ 
ij

�
DHðuÞ þDH

1 ðuÞ þ u2 @D
H
1

@u2

�
� uiuj

@DH
1

@u2
;

g2

Nc

hhTrHiðxÞ�EjðyÞ�yii ¼ "ijku4uk
@DEH

1

@u2
;

(34)

where DE, DH are purely np correlators, and DE;H
1 contain

a perturbative part. The same type of equations but with
replacement g2

Nc
! e2 and keeping only DE;H

1 holds also for
e.m. correlators. Note that at zero temperature, color-
electric and color-magnetic correlators coincide; note
also that np correlators DE, DH are due to Euclidean
vacuum fields.

The explicit form of perturbative correlators DE;H
1 to

lowest order in �s is

DE
1 ðxÞ ¼ DH

1 ðxÞ ¼
16�s

3�x4
þOð�2

sÞ; (35)

while for e.m. fields one should replace 4
3�s ! �.

At this point it is important to realize that the correlators

depend on space and time intervals, e.g., Dðzð1Þ �
zð2Þ; tð1ÞE � tð2ÞE Þ and hhWii in Eq. (34) even after fluctuation
averaging implies nonlocal in time dynamics; e.g., the termRR

ezhFðeÞ
��ð1ÞFðeÞ

	�ð2Þids��ð1Þds	�ð2Þ stands actually for a

photon exchange diagram. We are now going to replace
this time nonlocal interaction by the instantaneous one,
which is easily done in the correlator language, simply
by integrating in (34) all correlators over time differ-

ences, tð1ÞE � tð2ÞE ,

dtð1ÞE dtð2ÞE ¼ dtEdðtð1ÞE � tð2ÞE Þ; dtE ¼ d
tð1ÞE þ tð2ÞE

2
:

It is important that the main part of our interaction,
the confining interaction, is ensured by the correlator

DEð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2þ r2

p Þ, which has a very small correlation length
	, as was shown on the lattice [36] and analytically [37].

DEðtÞ � e�t=	, t * 	, 	� 0:1 fm, and therefore the
transition to the instantaneous dynamics is done on
small averaging interval �t� 	. Therefore, for all pro-
cesses with momentum (energy) transfer �Q satisfying
�Q	 & 1, this transition of a np confining mechanism to
the instantaneous dynamics is allowable. The case of gluon
exchange is similar to the Coulomb interaction, where the
instantaneous approximation in the Bethe-Salpeter equa-
tion is known as the Salpeter equation and is widely used in
the literature. We shall mostly use the one-gluon exchange
(OGE) interaction as a perturbation, and therefore our
transition to the instantaneous dynamics is justified.
For the case of the zero angular momentum (see in

Ref. [23] the general derivation), one can write for the in-

stantaneous straight linew�ðt;�Þ¼zð1Þ� ðtÞ�¼zð2Þ� ðtÞð1��Þ,
0 � � � 1, and, e.g., ds�4¼ðzð1Þ� ðtÞ�zð2Þ� ðtÞÞd�dt.
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For zero angular momentum, one can simplify the
integration over the area of the minimal surface in (33)
and obtain the result neglecting spin-containing terms
in (33) for the moment,

hhWii ¼ ZW exp

�
�
Z T

0
½V0ðrðtEÞÞ�dtE

�
; (36)

where rðtEÞ ¼ jz1ðtEÞ � z2ðtEÞj, and
V0ðrÞ ¼ VconfðrÞ þ VOGEðrÞ; (37)

VconfðrÞ ¼ 2r
Z r

0
d	

Z 1

0
d�Dð	; �Þ ! �r; ðr ! 1Þ;

(38)

� ¼ 2
Z 1

0
d�

Z 1

0
d	Dð�; 	Þ; (39)

VOGE ¼
Z r

0
	d	

Z 1

0
d�Dpert

1 ð	; �Þ ¼ � 4

3

�s

r
: (40)

As a result, one can write for the product of q �q Green’s
functions (we omit renormalization Z factors, Fock ampli-
tude coefficients, and ordering operators for simplicity), 

1

ðm2
1�D̂2

1Þðm2
2� D̂2

2Þ

!
xy

¼ T

8�

Z 1

0

d!1

!3=2
1

Z 1

0

d!2

!3=2
2

ðD3z1ÞxyðD3z2Þxye�Að!1;!2;z1;z2Þ;

(41)

where A � K1ð!1Þ þ K2ð!2Þ þ
R
V0ðrðtEÞÞdtE, and

Kið!iÞ ¼ m2
i þ!2

i

2!i

T þ
Z T

0
dtE

!i

2

�
dzðiÞ

dtE

�
2
:

We can also introduce here the two-body 3D Hamiltonian
Hð!1; !2;p1;p2Þ and rewrite (41) as 

1

ðm2
1 � D̂2

1Þðm2
2 � D̂2

2Þ

!
xy

¼ T

8�

Z 1

0

d!1

!3=2
1

Z 1

0

d!2

!3=2
2

hxje�Hð!1;!2;p1;p2ÞTjyi; (42)

where H is obtained in a standard way from the action
Að!1; !2; z1; z2Þ [we omit all e.m. fields except for exter-
nal magnetic fields (m.f.) B],

H ¼ X2
i¼1

ðpðiÞ � ei
2 ðB� zðiÞÞÞ2 þm2

i þ!2
i � ei�

iB

2!i

þ V0ðrÞ þ Vss þ �MSE; (43)

and V0 is given in (37). The spin-dependent part of H, Vss

is obtained perturbatively from ���F�� terms in (28) and

is calculated in the presence of m.f. in Ref. [36]. It is

considered as a perturbative correction and is a relativistic
generalization of the standard hyperfine interaction,

VssðrÞ ¼ 1

4!1!2

Z
h�ðiÞ

��F��ðxÞ�ð2Þ
�	F�	ðyÞidðx4 � y4Þ:

Its explicit form is given in Ref. [38]. Finally, the

correction h�ðiÞFðxÞ�ðiÞFðyÞi
4!1!2

, where i refers to the same quark

(antiquark) yields the spin-independent self-energy correc-
tion �MSE which was calculated earlier [39] and for zero
mass quarks and no m.f. is

�MSE ¼ � 3�

2�!1

� 3�

2�!2

: (44)

For the case of nonzero m.f., the resulting�MSE is given in
Ref. [38]. We can now write the total Green’s function of
q1 �q2 system denoting by Y the product of projection

operators Y ¼ �ðm1 � D̂1Þ�ðm2 � D̂2Þ,

m1 � D̂1 ¼ m1 � ip̂1 ¼ m1 þ!1�4 � ip�;

m2 � D̂2 ¼ m2 �!2�4 � ip�;
(45)

where p is the quark 3-momentum in the c.m. system.
As a result, one has

Z
d3ðx� yÞGðx; yÞ

¼
Z

d3ðx� yÞtr
 

4Y�

ðm2
1 � D̂2

1Þðm2
2 � D̂2

2Þ

!
xy

¼ T

2�

Z 1

0

d!1

!3=2
1

Z 1

0

d!2

!3=2
2

hY�ihxje�Hð!1;!2;p1;p2ÞTjyi:

(46)

We have used in (46) the relations 4hYi ¼
trh�ðm1 � ip̂1Þ�ðm2 � ip̂2ÞÞ, and neglected spin-
dependent terms in H; we have taken into account that
D� acting on theWilson line, i.e.,D� exp ðigRx A�dz�Þ�,

yields exp ðigRx A�dz�Þ@��. The c.m. projection of the

Green’s function yields

Z
d3ðx� yÞhxje�Hð!1;!2;p1;p2ÞTjyi

¼ X
n

’2
nð0Þe�Mnð!1;!2ÞT; (47)

see the Appendix for explicit separation of the relative
coordinates, Eqs. (A9)–(A12). Here, Mnð!1; !2Þ is the
eigenvalue of Hð!1; !2;p1;p2Þ in the c.m. system, where
p ¼ p1 þ p2 ¼ 0; p1 ¼ p ¼ �p2.
The integrals over d!1, d!2 for T ! 1 can be

performed by the stationary point method. Namely, one has
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Z
Gðx; yÞd3ðx� yÞ

¼ T

2�

Z 1

0

d!1

!3=2
1

Z 1

0

d!2

!3=2
2

X
n

e�Mnð!1;!2ÞT’2
nð0ÞhYi

¼ X
n

e�Mnð!ð0Þ
1
;!ð0Þ

2
ÞT’2

nð0ÞhYi
!ð0Þ

1 !ð0Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!ð0Þ

1 M”
nð1ÞÞð!ð0Þ

2 M”
nð2ÞÞ

q ; (48)

where

@Mnð!1;!2Þ
@!i

��������!i¼!ð0Þ
i

¼0; M”
nðiÞ¼@Mnð!1;!2Þ

@!2
i

��������!i¼!ð0Þ
i

;

(49)

and we have neglected the mixed terms
@2Mn

@!1@!2
for simplic-

ity; however, we should keep them in concrete calculations
(see the exact result in the Appendix). Comparing the
results of (47) and (48) with the definitions of quark decay
constants fn�,Z

G�ðxÞd3x

¼ X
n

Z
d3xh0jj�jnihnjj�j0ieiPx�MnT

d3P

2Mnð2�Þ3

¼ X
n

"� 	 "�
ðMnf

n
�Þ2

2Mn

e�MnT; (50)

where for � ¼ ��, ���5,X
k¼1;2;3

"ðkÞ� ðqÞ"ðkÞ� ðqÞ ¼ 
�� �
q�q�

q2
; (51)

and "� ¼ 1 for � ¼ 1, �5, one obtains the expression for
fn� (to lowest order in Vss),

ðfn�Þ2 ¼
NchY�ij’nð0Þj2
!ð0Þ

1 !ð0Þ
2 Mn
n

;


n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!ð0Þ

1 M”
nð1ÞÞð!ð0Þ

2 M”
nð2ÞÞ

q
:

(52)

It is interesting that numerical estimates using (52) and
(A20) are close to those obtained in Ref. [30].

IV. RELATIVISTIC HAMILTONIANS OF
A MESON IN MAGNETIC FIELD

The resulting relativistic Hamiltonian in the instanta-
neous limit is given in (43) and can be written as

H ¼ X2
i¼1

ðpðiÞ � ei
2 ðB� zðiÞÞÞ2 þm2

i þ!2
i � ei�

ðiÞB
2!i

þUðzð1Þ � zð2Þ;�ð1Þ;�ð2Þ; !1; !2Þ; (53)

where

U ¼ V0ðrÞ þ Vss þ�MSE: (54)

We shall be interested in the spectrum of the q1 �q2
system in the magnetic field B, but before that we shall
test the general form of the Hamiltonian Hð!1; !2;p1p2Þ
and its eigenvalues obtained at the stationary point values

!ð0Þ
1 , !ð0Þ

2 .

We start with the case of B ¼ 0 and U ¼ � Z�
jzð1Þ�zð2Þj .

Separating the total and relative momenta and coordinates,

R ¼!1z
ð1Þ þ!2z

ð2Þ

!1þ!2

; �¼zð1Þ �zð2Þ; �¼1

i

@

@�
;

(55)

and P¼pð1Þþpð2Þ, one obtains in (53) with B ¼ 0,

H ¼ P2

2ð!1 þ!2Þ þ
�2

2 ~!
þUð�Þ þ X

i¼1;2

m2
i þ!2

i

2!i

: (56)

(1) The first example is the relativistic electron with
mass m1 in the Coulomb field of a heavy atom of
mass m2 with charge Ze, Uð�Þ ¼ � Z�

� . For P ¼ 0,

one has for the ground state

Mð!1; !2Þ ¼
X
i¼1;2

m2
i þ!2

i

2!i

� ~!ðZ�Þ2
2

: (57)

Minimizing in !1 for m2 � m1, one obtains

M 
 m2 þm1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðZ�Þ2

q
; (58)

which coincides with the exact answer from the
Dirac equation.

(2) As a second example, we consider an electron-
positron system; then from the same Hamiltonian
(56) for P ¼ 0 and m1 ¼ m2 ¼ m, one obtains after
minimization

M ¼ 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

4

s

 2m�m�2

4
; (59)

which looks correct, at least in the expansion in �.
(3) In the next example, we consider the noninteracting

q1 �q2 system in constant magnetic fieldB along the z
axis. For U ¼ 0, one can solve the one-body prob-
lem for each quark in m.f. with the result for the
lowest Landau levels

Mð!1;!2Þ

¼X
i

m2
i þ!2

i þeBð2niþ1Þ�ei�
ðiÞBþðpðiÞ

z Þ2
2!i

;

(60)

and after minimization one has
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Mð!ð0Þ
1 ; !ð0Þ

2 Þ

¼ X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpðiÞ

z Þ2 þm2
i þ eBð2ni þ 1Þ � ei�

ðiÞB
q

:

(61)

We turn now to the general case of the q1 �q2 system and
consider first the case of a neutral system, e1 ¼ �e2 ¼ e.
In terms of total and relative momenta, the Hamiltonian
has the form

Hq1q2 ¼ HB þH� þU; (62)

HB¼ 1

2!1

�
~!

!2

Pþ��e1
2
B�

�
Rþ ~!

!1

�

��
2

þ 1

2!2

�
~!

!1

P���e2
2
B�

�
R� ~!

!2

�

��
2
; (63)

H� ¼ X
i¼1;2

m2
i þ!2

i � ei�
ðiÞB

2!i

: (64)

The R dependence for (62) in the case when e1 ¼ �e2
can be factorized out in the way discovered long ago [40],

�ðR;�Þ ¼ ’ð�Þ exp
�
iPR� ie

2
ðB� �ÞR

�
; (65)

and for ’ð�Þ, one obtains the equation
ðH0 þH� þUÞ’ð�Þ ¼ M’ð�Þ; (66)

where H0 is

H0 ¼ 1

2 ~!

�
� @2

@�2
þ e2

4
ðB� �Þ2

�
: (67)

One can replace for simplicity the linear confining term

by the oscillator potential, Vconf ¼��! ~Vconf ��
2 ð�

2

� þ�Þ,
where � satisfies stationary point condition @M

@� j�¼�0 ¼ 0,

which ensures some 5% accuracy of this replacement.
Then the lowest eigenvalue �M of the basic part of
Hamiltonian �H ¼ H0 þH� þ ~Vconf is

�Mð!1; !2; �Þ ¼ "n?;nz þ
X
i¼12;

m2
i þ!2

i � ei�
ðiÞB

2!i

; (68)

where e1 ¼ e ¼ �e2, and

"n?;nz ¼
1

2 ~!

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2B2 þ 4� ~!

�

s
ð2n? þ 1Þ

þ
ffiffiffiffiffiffiffiffiffiffi
4� ~!

�

s �
nz þ 1

2

�35þ ��

2
: (69)

We turn now to the case of the charged two-body system
in m.f., and here one can consider two different situations.
In the first case, when e1 ¼ e2 ¼ e and alsom1 ¼ m2 [and

hence !ð0Þ
1 ¼ !ð0Þ

2 ], one can do an exact factorization ofR
and �,

HB ¼ P2

2ð!1 þ!2Þ �
ePðB�RÞ
!1 þ!2

þ e2

8 ~!
ðB�RÞ2 þ �2

2 ~!
þ e2ðB� �Þ2ð!3

1 þ!3
2Þ

8ð!1 þ!2Þ2!1!2

þ�HBð!1; !2Þ: (70)

H� is given in (64) and �HB is

�HBð!1; !2Þ ¼ � !2
2 �!2

1

!1!2ð!1 þ!2Þ
e

2
�ðB� �Þ �!2 �!1

!1!2

e

2
�ðB�RÞ �!2 �!1

ð!1!2Þ
e

2
PðB� �Þ

þ ð!2
2 �!2

1Þ
ð!1 þ!2Þ2!1!2

e2

4
ðB�RÞðB� �Þ: (71)

For !1 ¼ !2, �HB vanishes and the Hamiltonian has the form

H ¼ P2

4!
� eðPðB�RÞÞ

2!
þ e2

4!
ðB�RÞ2 þ �2

!
þ e2

16!
ðB� �Þ2 þ 2m2 þ 2!2 � eð�1 þ �2ÞB

2!

þ �

2

�
�2

�
þ �

�
þ VOGE þ Vss þ �MSE: (72)

The lowest eigenvalues of the Hamiltonian (72) are
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M ¼ m2 þ!2

!
þ hVOGEi þ hVssi þ h�MSEi þ eB

2!
ð2N? þ 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
eB

2!

�
2 þ 2�

�0!

s
ð2n? þ 1Þ

þ
�
nk þ 1

2

� ffiffiffiffiffiffiffiffiffiffi
2�

�0!

s
� eð�1 þ �2ÞB

2!
þ �0�

2
: (73)

We now turn to the general case of a charged q1 �q2
system, when e1 � e2, and write the full instantaneous
Hamiltonian as in Eqs. (62)–(64) but with arbitrary e1
and e2, e1 þ e2 ¼ e, and e is the total charge of the meson.

In this case, the simple factorization form (65) does not
work, and one must instead make a first step towards
factorization; namely, one must associate the c.m. motion
in m.f. with the total charge e of the system. This is done in
the following form discussed previously in Ref. [33]:

�ð�;RÞ ¼ exp ði�Þ’ð�;RÞ; (74)

� ¼ PR� �e

2
ðB� �ÞR; �e ¼ e1 � e2

2
; (75)

and the resulting Hamiltonian from the relation H0� ¼
exp ði�ÞH0

0’ is

H0
0 ¼

P2

2ð!1 þ!2Þ þ
ð!1 þ!2Þ�2

RR
2
?

2
þ �2

2 ~!
þ ~!�2

��
2
?

2

þ XLPBLP þ XL�
BL� þ X1PðB� �Þ

þ X2ðB�RÞ � ðB� �Þ þ X3�ðB�RÞ

þm2
1 þ!2

1

2!1

þm2
2 þ!2

2

2!2

; (76)

�2
R ¼ B2 ðe1 þ e2Þ2

16!1!2

; (77)

�2
�¼ B2

2 ~!ð!1þ!2Þ2
�ðe1!2þ �e!1Þ2

2!1

þðe2!1� �e!2Þ2
2!2

�
:

(78)

Here, all coefficients Xiði ¼ 1; 2; 3Þ are given explicitly in
Appendix 2 of Ref. [33].

Treating the terms X1, X2, X3 as a perturbation �MX,

�MX¼hX1PðB��ÞþX2ðB�RÞðB��ÞþX3�ðB�RÞi;
(79)

one can write the total energy eigenvalues Mð0Þ
n of the

Hamiltonian �H in (68) as

Mð0Þ
n ¼ Mð0ÞðPÞ þMð0Þð�Þ þ �MX þH�; (80)

where

Mð0ÞðPÞ ¼ P2
z

2ð!1 þ!2Þ þ�Rð2nR? þ 1Þ þ XLPLPB;

(81)

and Mð0Þð�Þ is the eigenvalue of the operator H�,

H� ¼ �2

2 ~!
þ ~!�2

��
2
?

2
þ XL�

BL� þ Vconf þ VOGE: (82)

We have written above the most general forms of instan-
taneous Hamiltonians in the external m.f. It is seen that to a
good accuracy the dynamical contributions of e.m. and
color fields can be separated, except in the OGE and
spin-dependent terms, and as shown in Ref. [38], the m.f.
contribution to the both terms is decisive at large eB.

V. DISCUSSION OF RESULTS

We have started with the general 4D proper-time
path integral for the Green’s function of a quark and
an antiquark in gluonic ðA�; F��Þ and e.m. ðAe

�; B��Þ
fields. These fields are contained in the generalized
Wilson loop W with the inclusion of spin-field operators
ð���ðF�� þ B��ÞÞ.
After a vacuum averaging procedure in the partition

function, the averaged Wilson loop hWiA;AðeÞ contains all

possible interactions including internal quark loops from

the terms tr ln ðm2
i � D̂2

i Þ in the partition function.
As a first step, we have traded the particle proper times

for the Euclidean (ordering) times tð1ÞE , tð2ÞE and performed
path integration over fourth particle coordinates z4, �z4,

which is physically the time fluctuations around tð1ÞE , tð2ÞE .
We have shown that this time-fluctuation integration leads
to the 3D path integrals with the action (or Hamiltonian in
the Hamiltonian form of path integral) which is a matrix in
the Fock states. The resulting 3D path integrals are inte-
grals over new parameters !1, !2, and the spectrum of the
q1 �q2 system can be found for large times by a stationary
point procedure in !1, !2.
In this way, one is going from the 4D formalism to the

multichannel 3D formalism with an additional ! integra-
tion for each particle.
As a next step, we have observed that the interaction

appearing in the averaged Wilson loop hWiA;AðeÞ has the

form of field correlators hF��ðxÞF	�ðyÞi, hB��ðxÞB	�ðyÞi,
and the first correlator has a very small correlation length
	� 0:1 fm (found on the lattice [36] and in analytic
calculations [37]). This allows us to go over to the instan-
taneous dynamics when the bilocal or multilocal interac-
tion hFðxÞFðyÞi is replaced by the time-averaged potentials
Vðx� yÞ ¼ R

dðx4 � y4ÞhFðxÞFðyÞi, and this is valid when
the basic parameter defining the quark trajectory, string
tension � satisfies �	2 � 1 so that the typical time length
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on trajectory t0 � 1ffiffiffi
�

p is much larger than 	. Note that this

condition is opposite to the one used for validity of the
OPE and QCD sum rules.

As a result, one obtains the instantaneous relativistic
Hamiltonian Hð!1; !2Þ depending on two parameters
!1, !2 [for the ðq1 �q2Þ Hamiltonian matrix element], and
the actual spectrum is obtained from the eigenvalues

Mnð!1; !2Þ at the stationary points !ð0Þ
1 , !ð0Þ

2 . Note that

these points are different for different n ¼ 0; 1; 2 . . .
We have checked the results in Sec. IV for several

simple systems and found good agreement with the known
results. Moreover, this formalism for eigenvalues has been
used for more than 20 years in many papers, a small part of
which were cited here, and the results in all systems—
mesons, baryons, hybrids and glueballs—are well com-
pared with the experimental and lattice ones.

The important new element in this paper is the rigorous
derivation of the integral representation for the (q1 �q2)
Green’s function Eqs. (41), (42), and (48), which gives a
new meaning to the parameters !1, !2, and allows us not
only to calculate the spectrum but also the Green’s function
itself.

As an important application of the developed formalism,
we have derived in Sec. IV the explicit form of
Hamiltonians of the (q1 �q2) system in the constant m.f. B,
and defined the main part of the spectrum for neutral and
charged mesons.

These results have been used for the explicit numerical
evaluation of the �-meson spectra in Ref. [41], which are in
reasonable agreement with existing lattice data. Moreover,
the same formalism was extensively exploited in Ref. [35]
for the calculation of chiral condensate and in Ref. [33] for
magnetic moments.

Actually, the field of possible applications of our method
in QCD and QED is enormous, and the method is espe-
cially simple in the cases when only spectral properties are
of interest. This is clearly seen when one compares this
method with the Bethe-Salpeter equation. In the last case,
one is facing the problems of the relative time and insuffi-
ciency of the ladder kernel already in the QED case.

In the QCD case, the use of the Bethe-Salpeter equation
is in addition associated with the vector propagator form of
confinement, which is physically not consistent, or with
some phenomenological form, and in this way the method
loses its fundamental character. On the contrary, the very
short-correlation property of confinement suits perfectly to
establish the validity of instantaneous Hamiltonian formal-
ism and allows for an accurate and simple procedure.
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APPENDIX: DERIVATION OF
THE GENERAL EXPRESSION FOR
THE q1 �q2 GREEN’S FUNCTION

We start with the general definition for the q1 �q2 Green’s
function in the vacuum gluonic and external e.m. fields,

Gðx; yÞ ¼ htr�S1ðx; yÞ �� �S2ðy; xÞiA

¼
*
tr�

ðm1 � D̂1Þ
m2

1 � D̂2
1

��
ðm2 � �̂D2Þ
ðm2

2 � �̂D
2
2Þ

+
A

(A1)

¼4
Z 1

0
ds1

Z 1

0
ds2ðD4zð1ÞD4zð2ÞÞxye�K1�K2hYWFi;

(A2)

where hYWFi ¼ 1
4 tr½�ðm1 � ip̂1Þ ��ðm2 � ip̂2ÞhWFiA� and

WF � hhWii given in (33); the spin operator ordering in
(A2) is not written explicitly. Neglecting spin dependence,
one has a purely scalar function WF, which is proportional
to a unit 4� 4 matrix.
Introducing the effective energies !i ¼ T

2si
, T �

jx4 � y4j, one can rewrite (A1) as

Gðx; yÞ ¼ T

2�

Z 1

0

d!1

!3=2
1

d!2

!3=2
2

�ðD3zð1ÞD3zð2ÞÞxye�K1ð!1Þ�K2ð!2ÞhhYWFii�z4 ;
(A3)

and we have taken into account that

Z
ðDzð1Þ4 Dzð2Þ4 Þx4y4hYWFie�

1
4

R
s1
0

�
dz
ð1Þ
4

d�1

�
2

d�1�1
4

R
s2
0

�
dz
ð2Þ
4

d�2

�
2

d�2

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
!1!2

p
2�T

hhYWFii�z4 : (A4)

Here, hhYWFii�z4 corresponds to the time-fluctuating

Wilson loop average, as in Fig. 1, renormalized and nor-
malized by the condition

hhYWFii�z4ðg ¼ e ¼ 0Þ ¼ 1: (A5)

We omit in what follows the Fock column structure of the
corresponding particle contents in our averaged Wilson
loop hhYWFiifl with the corresponding Zi factors for

each Fock line and concentrate on the simplest case of
one renormalized closed (q1 �q2) loop depending on tE, as
shown in Fig. 2. In the neutral case, e1 ¼ �e2, hhYWFii�z4

depends only on coordinate differences �ðtEÞ ¼ zð1ÞðtEÞ �
zð2ÞðtEÞ defined at the same moment tE, and one can
proceed integrating out the c.m. motion. K1, K2 in (A3) are
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K1ð!1Þ þ K2ð!2Þ

¼
�
m2

1 þ!2
1

2!1

þm2
2 þ!2

2

2!2

�
T

þ
Z T

0
dtE

�
!1

2

�
dzð1Þ

dtE

�
2 þ!2

2

�
dzð2Þ

dtE

�
2
�
: (A6)

Introducing now the coordinates

�ðtEÞ ¼ zð1Þ � zð2Þ;

�ðtEÞ ¼ !1

!1 þ!2

zð1ÞðtEÞ þ !2

!1 þ!2

zð2ÞðtEÞ;
(A7)

one can rewrite the last term in (A6) asZ T

0
dtE

�
!1 þ!2

2

�
d�

dtE

�
2 þ ~!

2

�
d�

dtE

�
2
�
; (A8)

and the path integral ðD3zð1ÞD3zð2ÞÞxy as
ðD3zð1ÞD3zð2ÞÞxy

¼
Z d3p1

ð2�Þ3
Z d3p2

ð2�Þ3e
ip1

�P
�zð1Þ�ðx�yÞ

�
þip2

�P
�zð2Þ�ðx�yÞ

�

� d3�zð1Þ

ð4�"1Þ3=2
d3�zð2Þ

ð4�"2Þ3=2
¼ðD3�ÞxyðD3�Þ00; (A9)

where

ðD3�Þxy ¼
Z d3P

ð2�Þ3
Y
k

e
iP

�P
��k�ðx�yÞ

�
d3��k�
2��tE
!1þ!2

�
3=2

; (A10)

ðD3�Þ00 ¼
Z d3q

ð2�Þ3
Y
k

eiq
P

k
��k d3��k�

2��tE
~!

�
3=2

: (A11)

In absence of an external magnetic field, which acts on
c.m. coordinate �, it is convenient to consider the P ¼ 0
projection of the Green’s functionZ

Gðx; yÞd3ðx� yÞ

¼ T

2�

Z 1

0

d!1

!3=2
1

Z 1

0

d!2

!3=2
2

ðD3�Þ00e�Kð�ÞhhYWFii�z4

¼ T

2�

Z 1

0

d!1

!3=2
1

Z 1

0

d!2

!3=2
2

h0jhYie�HTj0i; (A12)

where

Kð�Þ ¼
�
m2

1 þ!2
1

2!1

þm2
2 þ!2

2

2!2

�
T þ

Z T

0
dtE

~!

2

�
d�

dtE

�
2
;

(A13)

h0je�HTj0i ¼ X1
n¼0

j’nð0Þj2e�Mnð!1;!2ÞT: (A14)

Here, ’nð0Þ ¼ ’nð!1; !2;�Þj�¼0, and Mnð!1; !2Þ is the
eigenvalue of the Hamiltonian

H � Hð!1; !2Þ; H’n ¼ Mnð!1; !2Þ’n: (A15)

Assuming that hhWFii�z4 can be represented as

hhWFii�z4 ¼ exp

�
�
Z

V̂ð�;!ÞdtE
�
; (A16)

the Hamiltonian can be written in the form

Hð!1; !2Þ ¼
X
i¼1;2

m2
i þ!2

i

2!i

þ p2

2 ~!
þ V̂ð�;!1; !2Þ:

(A17)

At this point one can define the so-called quark decay

constants fðnÞ� [30],

Z
Gðx; yÞd3ðx� yÞ ¼ X

n

"�
O

"�
�MnðfðnÞ� Þ2

2
e� �MnT;

(A18)

where "� ¼ 1 for the S and P channels, and "� ¼ "ðkÞ� for
the V, A channels,X

k¼1;2;3

"ðkÞ� ðqÞ"ðkÞ� ðqÞ ¼ 
�� �
q�q�

q2
; (A19)

and hence fðnÞ� can be found from (A12) as

ðfðnÞ� Þ2e� �MnT ¼ T

2�

2hYi
�Mn

Z 1

0

d!1

!3=2
1

�
Z 1

0

d!2

!3=2
2

’2
nð0Þe�Mnð!1;!2ÞT: (A20)

Here, T on both sides is assumed to tend to1, and one can
calculate the integral on the rhs of (A20) by the stationary
point method,

Mnð!1; !2Þ

¼ Mnð!ð0Þ
1 ; !ð0Þ

2 Þ þMð11Þ
n ð!ð0Þ

1 ; !ð0Þ
2 Þ ð!1 �!ð0Þ

1 Þ2
2

þMð22Þ
n ð!ð0Þ

1 ; !ð0Þ
2 Þ ð!2 �!ð0Þ

2 Þ2
2

þMð12Þ
n ð!ð0Þ

1 ; !ð0Þ
2 Þð!1 �!ð0Þ

1 Þð!2 �!ð0Þ
2 Þ; (A21)

where

MðikÞ
n ¼ @2Mn

@!i@!k

��������!i¼!ð0Þ
i ;!k¼!ð0Þ

k

(A22)

and

@Mn

@!i

��������!i¼!ð0Þ
i

¼ 0; i ¼ 1; 2: (A23)
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Doing the integration in (A20) with the help of (A21),
one obtains

ðfðnÞ� Þ2 ¼ NchYi’2
nð0Þ

ð!ð0Þ
1 !ð0Þ

2 Þ �Mn
n

;

where


n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!ð0Þ

1 !ð0Þ
2 �n

q
;

with

�n ¼ ��ð�� �Þ2
ð�� �Þ2 þ �2

þ �2½ð�þ �Þ2 � 2ð�� �Þ2 � �2�
4½ð�� �Þ2 þ �2� ; (A24)

where we have denoted

� ¼ 1

2
Mð11Þ

n ; � ¼ 1

2
Mð22Þ

n ; � ¼ Mð12Þ
n ; (A25)

and finally

�Mn ¼ Mnð!ð0Þ
1 ; !ð0Þ

2 Þ;
�Y ¼ 1

4
trDð�ðm1 � ip̂1Þ ��ðm2 � ip̂2Þ;

(A26)

and trD denotes the trace over Dirac 4� 4 indices.
It is instructive to compare (A24) with the old result

obtained in Ref. [30] using approximate path integrals
over (D�!),

ðfðnÞ� Þ2�! ¼ 2NchYi’2
nð0Þ

�Mn!
ð0Þ
1 !ð0Þ

2

: (A27)

As one can see, comparing (A24) and (A27), in the first
case (the time-fluctuation approach of the present paper)
the factor 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�!ð0Þ
1
!ð0Þ

2

p should be equal to 2 for both expres-

sions to coincide. In practice, for the (q1 �q2) state made
of zero mass quarks, m1 ¼ m2 ¼ 0, and with the total
mass made of confining interaction, see Ref. [28] for
details, one has

Mnð!1; !2Þ ¼
X2
i¼1

m2
i þ!2

i

2!i

þ ð2 ~!Þ�1=3�2=3an;

a0 ¼ 2; 338;
(A28)

and for m1 ¼ m2 ¼ 0 one obtains

ð�0!
ð0Þ
1 !ð0Þ

2 Þ�1=2 ¼ 3; (A29)

while for m1 ¼ 0, m2 �
ffiffiffiffi
�

p
, the result is

ð�0!
ð0Þ
1 !ð0Þ

2 Þ�1=2 ffi 2:34: (A30)

This implies that the quark decay constants fðnÞ� obtained

in the new method will be larger by (10–20)% as compared
with previous calculations in Ref. [30].
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