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We construct the duality-symmetric actions for a large class of six-dimensional models describing

hierarchies of non-Abelian scalar, vector and tensor fields related to one another by first-order (self-)duality

equations that follow from these actions. In particular, this construction provides a Lorentz invariant action

for non-Abelian self-dual tensor fields. The class of models includes the bosonic sectors of the 6d (1, 0)

superconformal models of interacting non-Abelian self-dual tensor, vector, and hypermultiplets.
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I. INTRODUCTION

Understanding the detailed structure of the effective
6d theory of multiple M5-branes remains one of the im-
portant long-standing issues of string/M theory which, in
particular, hampers the development of AdS7=CFT6 corre-
spondence. On general grounds this should be a (2, 0)
superconformal theory of non-Abelian chiral tensor super-
multiplets [1]. The theory does not have a free dimension-
less parameter to make it weakly coupled and this casts
doubts on the very existence of its action. However, the
action for a single M5-brane does exist [2–4]1 and pro-
duces theM5-brane equations of motion [8] first derived in
[9] and analyzed in detail in [10,11] using the superembed-
ding techniques (see [12] and e.g. [13–16] for a review and
references). Various other aspects of the theory of
M-branes are reviewed e.g. in [17–20]. One may hope
that also for the multiple M5-branes an action may exist
at least for a certain branch of the theory in which a
dimensionless coupling constant appears and makes per-
turbative Lagrangian description possible.

To make progress in the construction of the theory
of multiple M5-branes one should first of all solve the
problem of consistently endowing the chiral tensor field
with non-Abelian gauge structure, which itself is a highly
nontrivial problem. If one succeeds, one can then look for
equations of motion and eventually for the action. Different
ways of tackling these problems have been pursued. Several
approaches have been aimed at rewriting and reinterpreting
the 6d theory (compactified on a circle) in terms of a 5d
super-Yang-Mills theory [21–35]. In this way one gains a
dimensional parameter (the radius of the compactification
circle) which allows for perturbative description. Other
approaches use more sophisticated mathematical tools
such as higher gauge theories, twistor spaces and gerbes

[36–41]. Each of the approaches has its advantages, but
also issues and limitations. However, one may hope that all
these approaches should be related to one another and can
give us, from different perspectives, hints on what is a
detailed structure of the multiple M5-brane theory.
A more traditional field-theoretical approach based on

the hierarchy of non-Abelian vector-tensor systems [42]
has been put forward in [43] (see also [44] for a particular
case) and further considered in [45–47]. It aims at the
construction of superconformal models including non-
Abelian tensor multiplets directly in 6-dimensional space-
time showing that a non-Abelian deformation of 6d chiral
tensor fields is indeed possible upon further introducing
higher rankp-forms. Supersymmetrization of this construc-
tion and on-shell closure of the (1, 0) supersymmetry alge-
bra produces unique equations of motion of the fields. It has
further been shown that a subclass of these models can be
promoted to have a pseudoaction in the sense that it repro-
duces all equations of motion except for the self-duality
equations of the tensor fields. While such a pseudoaction
may be considered as an efficient bookkeeping device for
checking supersymmetry (and other symmetries) of the
field equations, it does not provide a reliable starting point
for the quantization of the theory. In particular, one may
wonder towhich extent some of the bothersome features of
these models such as the apparent presence of ghosts in the
scalar sector and the complicated vector field dynamics are
an artifact of a pseudoaction.
The aim of this paper is to complete the construction of

the actions for (1, 0) superconformal theories initiated in
[43,45,47] by integrating the equations of motion to a fully
fledged self-dual Lagrangian for the non-Abelian chiral
2-form fields and a duality-symmetric Lagrangian for
vector gauge fields and their 3-rank tensor duals. This
construction yields a non-Abelian generalization of the
covariant actions for 6d Abelian chiral tensor fields [48]
and of their gauge-fixed counterparts [49–51]. This paper
also generalizes and extends to D ¼ 6 the results of [52]
in which duality-symmetric but nonmanifestly covariant

1For an alternative construction based on the Bagger-Lambert-
Gistavsson model with the gauge symmetry of volume preserv-
ing diffeomorphisms see [5–7]. The equivalence of these models
to [2–4] is still to be proved.
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actions for D ¼ 4 models with non-Abelian twisted
self-duality were constructed.

The paper is organized as follows: in Sec. II, we review
the general system of non-Abelian p-forms and their gauge
transformations in six dimensions describing the hierarchy
of non-Abelian scalar, vector and tensor fields. The bo-
sonic field equations for this system are given in Sec. III as
dictated by (1, 0) superconformal symmetry. They contain
the non-Abelian self-duality equations for the tensor fields,
while the vector field dynamics may be expressed in terms
of a first-order duality equation relating their non-Abelian
field strength to the field strength of the 3-form gauge
potentials. The main part of the paper is Sec. IV in which
we present an action that gives rise to a general set of non-
Abelian (self-)duality equations in six dimensions, includ-
ing the bosonic sector of the (1, 0) models as a special
case. Space-time covariance is ensured by the presence of
an auxiliary scalar field. We carefully analyze the
Euler-Lagrange equations of the duality-symmetric action
and show that their various bits cascade down to a combi-
nation of the first-order duality equations and derivatives
thereof (which can be integrated as in the Abelian case).
Together, the various parts of the equations of motion
assemble into the full set of first-order (self-)duality equa-
tions. In Sec. V, we work out some illustrative example and
collect our conclusions in Sec. VI.

II. NON-ABELIAN p-FORMS IN SIX DIMENSIONS

In this section we will briefly review the system of
non-Abelian p-forms (p ¼ 1; . . . ; 4) and their gauge trans-
formations in six dimensions describing the hierarchy of
non-Abelian scalar, vector and tensor fields. For more
details the reader is referred to [43,45,47].

The tensor hierarchy is formed by the p-forms
ðAr

1;B
I
2;C3r;C4�Þ or in component notation ðAr

�;B
I
��;

C���r;C�����Þ, with six-dimensional space-time indices

�; �; . . . . They couple to the scalars ðYijr; �IÞ, where Yijr

are part of the off-shell vector multiplets, while�I together
with BI

2 and their fermionic partners form the chiral tensor
supermultiplet. Later we will also add the non-Abelian
hypermultiplets. To avoid the proliferation of indices, we
will work with differential forms on which the external
derivative will act from the right. In what follows we will
be only interested in a subclass of the models which have a
Lagrangian description. This requires the introduction of
an (indefinite) constant metric �IJ and its inverse �IJ

(�IJ�JK ¼ �I
K) which raise, lower and contract the indices

I, J, K.
The non-Abelian field strengths of the p-form gauge

potentials are given by

F r :¼ 1

2
dx� ^ dx�F r

�� ¼ dAr þ 1

2
fst

rAs ^ At þ grIB
I
2;

(2.1)

H I
3
:¼ 1

3!
dx�^dx�^dx�H I

���

¼DBI
2þdIstA

s^dAtþ1

3
fpq

sdIrsA
r^Ap^AqþgIrC3r

¼dBI
2þdIstA

s^ðF tþgtJB
J
2Þ�

1

6
fpq

sdIrsA
r^Ap^Aq

þgIrðC3r�2dJrsB
J
2^AsÞ; (2.2)

H 4r :¼ 1

4!
dx	^dx�^dx�^dx�H ���	r

¼DC3r�2BJ
2^

�
dAsþ1

2
fpq

sAp^Aq

�
dJrs

�BJ
2^BI

2dIrsg
s
Jþ

1

3
dAs^At^AudJs½tdJu�r

þk�r C4�þ/A^A^A^A: (2.3)

They are constructed with the use of the antisymmetric
‘‘structure constants’’ fst

r ¼ f½st�
r, the constant tensors

dIrs ¼ dIðrsÞ inducing Chern-Simons couplings, and the con-

stant tensors gIr and k�r that induce Stückelberg-type cou-
plings among forms of different degree. These tensors
satisfy certain algebraic relations which we have collected
in the Appendix. Notably, they satisfy the orthogonality
relations

gIrgsI :¼ gIr�IJg
Js ¼ 0; gIrk�r ¼ 0: (2.4)

The covariant derivatives D are defined as follows:

DF r :¼ dF r þF t ^ AsXst
r

¼ dF r �F t ^ Asfst
r þF t ^ AsdIstg

r
I; (2.5)

DH I
3
:¼ dH I

3 þH J
3 ^ AsXsJ

I

¼ dH I
3 þ 2H J

3 ^ AsdIstgJ
t � 2H J

3 ^ ArgIsdJsr;

(2.6)

DH 4r :¼ dH 4r �H 4t ^ AsXsr
t: (2.7)

Let us also note that the algebraic constraints among
the constant tensors parametrizing the gauge system in
particular imply that the gauge generators appearing in
these covariant derivatives are related to the Stückelberg
coupling k�r via

Xrs
t � dIrsg

t
I � frs

t ¼ �k�r c
t
�s;

XrIJ � 4gs½IdJ�rs ¼ 2k�r c�IJ;
(2.8)

with tensors ct�s and c�IJ whose role will be clarified
below. From (2.1)–(2.7) one gets the Bianchi identities

DF r ¼ grIH
I
3; (2.9)

DH I
3 ¼ dIstF s ^F t þ gIrH 4r; (2.10)
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DH 4r ¼ �2H I
3 ^F sdIsr þ k�r H 5�: (2.11)

Equation (2.11) defines the 5-form field strength H 5� ¼
DC4� þ � � � (at least under projection with k�r ). We will
not need its explicit form in our construction. We only
notice that H 5� contains the tensors ct�s and c�IJ which
enter Eqs. (2.8), so that its Bianchi identities read [43]

DH 5� ¼ �c�IJH I
3 ^H J

3 � cr�sF s ^H 4r þ . . . :

(2.12)

Actually, also neither explicit form of H 4r nor H I
3 is

needed for our calculations. The expressions for the gen-
eral variation of the covariant field strengths (2.1)–(2.3)
can be reproduced formally from the Bianchi identities.
These are

�F r ¼ D�Ar þ grI�B
I
2;

�H I
3 ¼ D�BI

2 þ 2dIrsF r ^ �As þ gIr�C3r;

�H 4r ¼ D�C3r � 2dIrsF s ^ �BI
2

� 2dIrsH I
3 ^ �As þ k�r �C4�; (2.13)

where we have introduced the compact notation

�BI
2��BI

2þdIrsA
r^�As;

�C3r��C3r�2dIrsB
I
2^�As�1

3
dIrsd

I
pqA

s^Ap^�Aq;

k�r �C4��k�r �C4�þ��� (2.14)

The non-Abelian gauge transformations with (p� 1)-
form parameters ð�r;�I

1;�2r;�3�Þ are given by

�Ar ¼ D�r � grI�
I
1;

�BI
2 ¼ D�I

1 � 2dIrs�
rF s � gIr�2r;

�C3r ¼ D�2r þ 2dIrsF s ^�I
1 þ 2dIrsH I

3�
s � k�r �3�;

(2.15)

k�r �C4� ¼ k�r D�3� � 4XrIJH I
3 ^�J

1

� Xrs
tðF s ^�2t þ�sH 4tÞ: (2.16)

Under these transformations, the field strengths (2.1)
transform covariantly as �F r ¼ �F t�sXst

r, �H I
3 ¼

�H J
3�

sXsJ
I, etc. Notice, in particular, that the left- and

the right-hand sides of (2.16) vanish when contracted with
gKr in virtue of the identities (A1). For completeness, we
also note that the connection in (2.16) is given by

k�r A
sXs�


 � AsXrs
tk
t . Consequently, also the 4-form field

strengths transform covariantly as

�H 4r ¼ 2�sdIrsg
t
IH 4t þF s ^ Xrs

t�2t

þ k�r c
t
�sðF s ^�2t þ�sH 4tÞ ¼ �sXsr

tH 4t:

(2.17)

III. BOSONIC PART OF THE (1, 0)
SUPERCONFORMAL FIELD EQUATIONS

So far, we have introduced the non-Abelian system of
p-forms in six dimensions on a purely kinematical level. Its
supersymmetric dynamics may be deduced from closure of
the (1, 0) supersymmetry algebra [43]. In particular, this
fixes the couplings of the p-forms to the scalar fields �I

and Yij completing the (1, 0) vector and tensor multiplets,
respectively.
In absence of hypermultiplets, and when all the fermions

are set to zero, the resulting bosonic field equations are

H I
3 þ �H I

3 ¼ 0; (3.1)

D �D�I � 2dIrsF r ^ �F s � d6xð2dIrsYijrYs
ij

þ 3grðJg
s
KdIÞrs�J�KÞ ¼ 0; (3.2)

for the tensor multiplets and

dIrsY
s
ij�

I ¼ 0; (3.3)

2dIrs�
I �F s þH 4r ¼ 0; (3.4)

for the vector multiplets. Equation (3.3) reflects the auxil-
iary nature of the fields Yijr. Equation (3.1) tells us that the
3-form field strength is self-dual and Eq. (3.4) is the first-
order duality equation that relates the vector field strengths
to the field strengths of the 3-form tensors. Its derivative
together with the Bianchi identities (2.11) yields the stan-
dard second-order Yang-Mills equation for the vector
fields. In turn, the 4-form tensors are related by their field
strength to the scalar fields of the theory by means of the
duality equation

k�r �H 5� ¼ 1

2
J r � 1

2
XrIJ�

ID�J; (3.5)

with the scalar matter current J r. In presence of hyper-
multiplets, the rhs of this duality equation receives an
additional contribution from the hyperscalar current [47].
In the next section we will construct an action that

reproduces the first-order (self-)duality equations (3.1),
(3.4), and (3.5), by extending the construction of [48] to
the non-Abelian case.

IV. THE ACTION

In this section we will present an action from which the
field equations of the previous section are derived. In
particular, this includes an action for the non-Abelian
chiral gauge field BI

2. More generally, we will construct
an action which reproduces the general set of six-
dimensional non-Abelian (self-)duality equations for the
p-forms

H I
3 þ �H I

3 ¼ 0; H 4r þMrs �F s ¼ 0;

2k�r �H 5� � J r ¼ 0:
(4.1)
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The particular choice of

M rs ¼ 2�IdIrs; J r ¼ XrIJ�
ID�J; (4.2)

for the vector kinetic matrix and the scalar current corre-
sponds to the bosonic sector of the (1, 0) superconformal
models discussed in Sec. III above, but our results apply to
any six-dimensional system of the form (4.1). In particular,
they include the coupling of the vector and tensor multip-
lets to the (1, 0) hypermultiplets considered in [47].

We will proceed in two steps. First, in Sec. IVA we
construct an action that gives rise to the non-Abelian self-
duality equation (3.1) for the tensor fields together with the
standard second-order field equations for the remaining
fields. It is of the form

S¼
Z
M6

L¼
Z
M6

ðLscalþLvecþLtopþLHH Þ: (4.3)

The first three terms in (4.3) which include kinetic terms of
the scalars and the vector gauge field have been constructed

in [43]. The last termLHH is the Lagrangian for the non-
Abelian chiral gauge field BI

2 whose construction is one of
the main results of this paper. In the second step, in
Sec. IVB, we generalize this action to a duality-symmetric
action that also treats vector fields and 3-form gauge
potentials on the same footing and produces their first-
order duality equation (3.4) among the proper field equa-
tions. This is achieved by extending (4.3) to

S ext ¼
Z
M6

Lext

�
Z
M6

ðLscal þLvec þLtop þLHH þLH 4=F Þ;
(4.4)

with the new termLH 4=F carrying the field strength of the
3-form gauge potentials.

In the differential form notation the first term in the
actions (4.3) and (4.4) has the following generic form:

L scal ¼ � 1

2
D�I ^ �D�J�IJ � Vscald

6x; (4.5)

with covariant derivatives D and where d6x stands for the
6-form dx�1 ^ . . . ^ dx�6 ¼ "�1...�6d6x. The scalar poten-
tial Vscal is a priori arbitrary. In the case of the (1, 0)
superconformal models of [43] it takes the following form:

Vscal � �dIrsð2�IYijrYs
ij þ grJg

s
K�

I�J�KÞ; (4.6)

with additional contributions in the presence of hypermul-
tiplets [47]. The kinetic term for the vector fields in (4.3)
and (4.4) is of the standard form

L vec ¼ MrsF r ^ �F s (4.7)

where the matrix Mrs is constructed from the scalars. In
the case of the (1, 0) superconformal models it is defined by
(4.2) in terms of the tensor multiplet scalars.

The presence of the topological term Ltop in the action
(as in the other cases of this kind) is due to the presence of
Chern-Simons-like terms in the covariant field strengths
(2.1)–(2.3). It is constructed as follows. The 6d space-time
M6 is formally extended to a 7d manifold M7 assuming
M6 to be the boundary ofM7 (M6 ¼ @M7). Then using
the field strengths (2.1)–(2.3) one constructs the 7d form

dLtop :¼ �2dIstF s ^F t ^H I
3 þH I

3 ^DH J
3�IJ

¼ �dIstF s ^F t ^H I
3 þH I

3 ^ grIH 4r; (4.8)

which is (identically) closed ddLtop � 0, as can easily be
checked using the Bianchi identities (2.9)–(2.11). Then the
topological action is

Stop ¼
Z
M7

ðH I
3 ^ grIH 4r � dIstF s ^F t ^H I

3Þ

¼
Z
M6¼@M7

Ltop: (4.9)

For performing thevariation of the actionwe do not need the
explicit form ofLtop, since �Ltop ¼ i�ðdLtopÞ þ dði�LtopÞ
and the second term does not contribute to the integral when
the 6d space is assumed to have no boundaries.2 Actually
we also use this property for other Lagrangian forms and
omit total derivative terms in their variation.
The following construction applies to arbitrary scalar

and vector couplings Lscal, Lvec and, in the following, we
will not make use of the specific form of the scalar poten-
tial (4.6) and the kinetic matrix (4.2) dictated by super-
conformal invariance. The topological term on the other
hand is universal with its form determined by the non-
Abelian tensor hierarchy of Sec. II.

A. Action for chiral tensor fields

Let us now describe in detail the chiral tensor field
Lagrangian entering the actions (4.3) and (4.4). It has the
following form:

LHH ¼�ðiv �H I
3þ ivH I

3Þ^H 3I^v

¼1

2
d6xv�ð�H I

���þH I
���Þð�H ���

I Þv�; (4.10)

where the 1-form

v :¼ dx�v� ¼ dx�@�aðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@�a@

�a
p ; v�v

� ¼ 1; (4.11)

is the normalized derivative of the auxiliary scalar field
aðxÞ, whose presence in the action ensures its space-time
covariance (see [48] for the Abelian chiral field case in
D ¼ 6). Consistency of the construction requires that the
action (4.3) is invariant under a local symmetry which

2i� is the contraction operation with the variation � considered
as a vector field, so that i�d ¼ �, i�dA

r ¼ �Ar etc. In our
conventions this operation acts from the right, e.g. i�ðd�I ^
d�JÞ ¼ d�I��J � ��Id�J .
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allows one to gauge-fix v� to a constant value and more-

over that the variation of the action produces the desired
equations of motion. To this end, let us consider a generic
variation of (4.3) with respect to the scalar and tensor
fields. The variation of the Lagrangian (4.10) reads

�LHH ¼ 2ivð�H I
3 þH I

3Þ ^ v

^
�
�H I

3 �
1

2
�v ^ ðiv �H I

3 þ ivH I
3Þ
�

�H 3I ^ �H I
3; (4.12)

where �H I
3 was defined in (2.13) and

�v¼dx��v�; �v�¼ð����v�v�Þ@��aðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@�a@

�a
p : (4.13)

To obtain (4.12), the following identities are useful:

Fp � ivFp ^ vþ �ðiv � Fp ^ vÞ; F6 ¼ ivF6 ^ v;

iv �H I
3 � �ðH I

3 ^ vÞ; (4.14)

and Fp ^ �Gp ¼ Gp ^ �Fp. Introducing the notation

G I
2
:¼ ivð�H I

3 þH I
3Þffiffiffiffiffiffiffiffiffiffiffiffi

@a@a
p ; (4.15)

we can write (4.12) as

�LHH ¼ 2GJ
2�IJ ^ da ^

�
�H I

3 �
1

2
dð�aÞ ^ GI

2

�

�H 3I ^ �H I
3; (4.16)

Now, using Eqs. (2.13) and the Bianchi identities (2.9) and
(2.10), one gets

�LHH ¼2G2I^da^
�
D�BI

2�
1

2
dð�aÞ^GI

2

þ2dIstF s^�AtþgIr�C3r

�

þðgrIH 4rþdIstF s^F tÞ^�BI
2�grIH

I
3^�C3r

�2dIstH I
3^F s^�At: (4.17)

Terms similar to those in the second line of (4.17) enter the
variation of the topological term Ltop (4.8)

�Ltop¼ð�dIstF s^F tþgrIH 4rÞ^�BI
2þgrIH

I
3^�C3r

�2dIstH I
3^F s^�At: (4.18)

Thus

�ðLHH þLtopÞ ¼ 2GJ
2�JI ^ da ^

�
D�BI

2 �
1

2
ð�aÞGI

2

þ 2dIstF s ^ �At þ gIr�C3r

�

þ 2grIH 4r ^�BI
2

� 4dIstH I
3 ^F s ^ �At: (4.19)

Combining this with the variation of the matter Lagrangian
Lscal þLvec, we finally obtain the variation of the full
Lagrangian (4.3)

�L ¼ 2GJ
2�JI ^ da ^

�
D�BI

2 �
1

2
ð�aÞGI

2

þ 2dIstF s ^ �At þ gIr�C3r

�

þ 2grIðMrs �F s þH 4rÞ ^ �BI
2

þ ðJ t þ 2DðMts �F sÞ � 4dIstH I
3 ^F sÞ ^ �At

þ �YLþ ��L; (4.20)

with the matter current J r defined by the variation of the
matter Lagrangian as

�Lscal ¼ J r ^ �Ar � k�r J � ^ �Ar: (4.21)

The form of Eq. (4.20) suggests that the action (4.3) is
invariant under the following local transformations of BI

2

and C3r:

�’1
BI
2 ¼ ’I

1 ^ da; �’2
C3r ¼ ’2r ^ da; (4.22)

where the 2-form parameter ’2rðxÞ is arbitrary and the
1-form parameter ’I

1ðxÞ satisfies the condition gsI’
I
1 ¼ 0.

Note that in general these symmetries are not included in
the tensor gauge symmetries of (2.15) whose parameters
�2r and �3� appear only under the projection with the
tensors gIr and k�r , respectively.
Another local symmetry of the action is the one which

exposes the auxiliary nature of the scalar field aðxÞ
�a¼’ðxÞ; �’B

I
2¼�aGI

2; �’C3r¼�aG3r; (4.23)

where ’ðxÞ is an arbitrary scalar parameter and

G 3r :¼ ivðH 4r þMrs �F sÞffiffiffiffiffiffiffiffiffiffiffiffi
@a@a

p : (4.24)

One can use this symmetry to gauge-fix v� to be e.g. the

constant unit timelike vector

v� ¼ �0
�: (4.25)

If in (4.10) we substitute v� with its gauge-fixed value

(4.25), the manifest space-time invariance of the action will
be broken and it reduces to the non-Abelian generalization
of the Henneaux-Teitelboim action [49,50] for a single
chiral 2-form in D ¼ 6. However, the gauge-fixed action
is still invariant under modified Lorentz transformations,
which preserve the gauge (4.25). They are the combination
of Lorentz rotations with the parameters l�

� and local

transformations (4.23) and (4.13) such that

�Lv� ¼ �lv� þ �’v� ¼ �Lð�0
�Þ ¼ 0

¼ l�
0 þ @�’� �0

�@0’ (4.26)

from which it follows that

’ðxÞ ¼ �x�l�
0 (4.27)

and the modified Lorentz transformations under which the
gauge-fixed action is invariant are
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�LB
I
2 ¼ �lB

I
2 � x�l�

0GI
2;

�LC3r ¼ �lC3r � x�l�
0G3r:

(4.28)

In (4.28) it is implied that in the quantities GI
2 and G3r,

defined in (4.15) and (4.24), v� takes its gauge-fixed

value (4.25).

1. Derivation of the field equations

Let us now discuss the derivation of the field equations
from the variation (4.20) of the action. It demonstrates in an
instructive manner how the tensor hierarchy intertwines
equations of motion of different tensor fields. For the
analysis of the equations of motion it is useful to introduce
a constant projector PI

J of minimal rank satisfying

grIP
I
J ¼ grJ; PI

JP
J
K ¼ PI

K (4.29)

and the complementary (orthogonal) projector

�P ¼ I� P; �P �P ¼ �P: (4.30)

which obeys grI
�PI

J ¼ 0. We stress that the introduction of
this projector is an auxiliary structure in order to derive the
different parts of the equations of motion, whereas even-
tually the combined set of equations of motion does not
carry any reference to this projector.

We start with the equation of motion produced by the
variation of C3r

G I
2g

r
I ^ da :¼ grIivðH I

3 þ �H I
3Þ ^ v ¼ 0: (4.31)

Due to the properties of the projector (4.29) and its com-
plementary (4.30), we see that this equation is equivalent to

P I
JivðH J

3 þ �H J
3Þ ^ v ¼ 0; (4.32)

since (4.31) is satisfied if and only if (4.32) holds. In view
of the identities Eq. (4.14), Eq. (4.32) amounts to the
anti-self-duality of the part of H I

3 projected with PI
J,

P I
JðH J

3 þ �H J
3Þ ¼ 0: (4.33)

Moreover, we can use the second symmetry in (4.22) to put

ivðH 3I þ �H 3IÞ ^ vPI
J ¼ 0 ) ðH 3I þ �H 3IÞPI

J ¼ 0:

(4.34)

Indeed, under the second symmetry in (4.22) �G2I ¼
grI’2r ) �G2JP

J
I ¼ grI’2r, which can be used to fix

G2JP
J
I ¼ 0. Now, the variation of �BI

2 gives

DðivðH I
3 þ �H I

3Þ ^ vÞ � gIrðH 4r þMrs �F sÞ ¼ 0:

(4.35)

Projecting the above equation with PI
J and

�PI
J, in view of

(4.34) we get

grJðH 4r þMrs �F sÞ ¼ 0; (4.36)

�P I
JDðivðH 3I þ �H 3IÞ ^ vÞ ¼ 0: (4.37)

Equation (4.36) is a projected version of the duality rela-
tion between H 4r and F r. As for Eq. (4.37), it reduces to

�P I
JdðivðH J

3 þ �H J
3Þ ^ vÞ ¼ 0; (4.38)

since, by virtue of (4.33), the nontrivial connection part of
the covariant derivative D in (4.37) is

�PK
IXrLKðivðH L

3 þ �H L
3 Þ ^ vÞ

¼ �PK
I
�PL

JXrLKðivðH J
3 þ �H J

3Þ ^ vÞ; (4.39)

and thus vanishes since

�P K
I
�PL

JXrLK ¼ 0; (4.40)

according to the definition of XrL
K in (2.6) and of the

projectors in (4.29) and (4.30). Then, Eq. (4.38) can be
solved in the same way as in the case of the Abelian chiral
tensor fields [48] with the general solution (at least locally
or in the topologically trivial cases) being

ivðH I
3 þ �H I

3Þ ^ v ¼ dð�I
1 ^ daÞ; (4.41)

where the 1-form �I
1ðxÞ is such that �I

1g
r
I ¼ 0, or equiv-

alently PK
I�

I
1 ¼ 0. One can now use the local symmetry

(4.22) with the parameter’I
1ðxÞ (also obeying’I

1g
r
I ¼ 0) to

annihilate the right-hand side of Eq. (4.41) and, in view of
(4.33), arrive at the anti-self-duality condition for all H I

3

H I
3 þ �H I

3 ¼ 0: (4.42)

When (4.42) is satisfied, the variation (4.20) with respect to
�a vanishes identically, thus confirming that the scalar aðxÞ
is entirely auxiliary, while the variation of Ar provides us
with the vector field equations of motion. The complete set
of the field equations obtained from varying the action (4.3)
with respect to the p-forms is

H I
3 þ �H I

3 ¼ 0; gIrðH 4r þMrs �F sÞ ¼ 0;

2DðMst �F sÞ þ J t � 4dIstH I
3 ^F s ¼ 0: (4.43)

Notice that the field aðxÞ does not enter these equations.
This once again manifests the fact that aðxÞ is completely
auxiliary and is only required for ensuring the space-time
covariance of the action.
The (bosonic limit of the) (1, 0) models of [43] are

recovered with the particular choice of Mrs and Jt as in
Eq. (4.2) and the scalar potential as in (4.6) dictated by
supersymmetry. In this case the variation of the action (4.3)
with respect to the scalar fields yields the equations of
motion

D�D�I�2dIrsF r^�F s�d6xð2dIrsYijrYs
ij

þ3grðJg
s
KdIÞrs�J�KÞ¼0; �IdIrsY

ijr¼0: (4.44)

Comparing (4.43) to the full system of first-order duality
equations (4.1), we see that the action (4.3) gives rise to the
full self-duality equation (3.1) but only to a projection of
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the duality equation between the vector and the 3-form
gauge potentials. This will be rectified in the next section.

Finally, before concluding this section let us note that,
using the Bianchi identities (2.11) one can rewrite the
general variation (4.20) as follows:

�L¼2GJ
2�JI^da^

�
D�BI

2�
1

2
dð�aÞ^GI

2

þ2dIstF s^�AtþgIr�C3r

�

þ2grIK4r^�BI
2þ2DK4r^�Ar

þk�r ð�J ��2H 5�Þ^�Arþ�YLþ��L; (4.45)

where

K 4r :¼ H 4r þMrs �F s: (4.46)

The first term in the fourth line of (4.45) infers that the
4-form gauge potential k�r C4� can be dual to the scalars�I

[see Eq. (3.5)]. This duality condition, however, does not
follow from the above action [note that the action (4.3)
does not even contain the 4-form field C4�]. In the next
section, we will construct an action for the extended tensor
hierarchy system, that explicitly includes the 4-form C4�

and also treats the vector and 3-form fields Ar
1 and C3r in a

duality-symmetric fashion. Equation (3.5) will then appear
as a full-fledged equation of motion.

B. Action with manifest vector-tensor duality symmetry

In this section we will extend the action (4.3) to the form
(4.4) in such a way that it treats the vector and 3-form
tensor fields on an equal footing and yields their first-order
duality relation (4.46) among the proper equations of mo-
tion. The corresponding action includes all the p-form
fields ðYijr; �I; Ar

1; B
I
2; C3r; C4�Þ and is obtained by adding

to the action (4.3) the following term:

LH 4=F ¼ � 1

4
~Mrsðiv �K4rÞ ^ �ðiv �K4sÞ; (4.47)

whereK4r has been defined in (4.46), and the matrix ~Mrs

is such that

~MrsMst ¼ Pr
s;

~MrsMst
~Mtq ¼ ~Mrq;

Mst
~MtqMqr ¼ Msr;

(4.48)

where Pr
s is the projector of the same rank as Mst, i.e.

MP ¼ M; P ~M ¼ ~M:

IfMrs is invertible, which is the case we shall mostly deal

with, ~Mrs is inverse of Mrs, i.e.

Pr
s ¼ ~MrtMts ¼ �r

s: (4.49)

The full duality-symmetric Lagrangian is given by (4.4).

The termsLvec from (4.7) andLH 4=F from (4.47) together
form the duality-symmetric Lagrangian for the fields Ar

1

andC3r. Indeed, their sum can be rewritten in the following
manifestly duality-symmetric form:

LvecþLH 4=F ¼1

2
MrsF r^�F s�1

2
~MrsH 4r^�H 4s

�ð ~MMÞrsH 4r^F s

þ1

4
~Mrsðiv �K4rÞ^�ðiv �K4sÞ

þ1

2
~MrsðivK4rÞ^�ðivK4sÞ: (4.50)

We should now check that the addition of the
Lagrangian (4.47) to the action (4.3) does not spoil the
local symmetries (4.22) and (4.23). Using the relation
�ðiv �K4r ^ vÞ ¼ K4r � ivK4r ^ v we find that the ge-
neric variation of (4.47) is

�LH 4=F ¼ � 1

2
~MrsG3r ^ G1s ^ da ^ d�aþ 1

2
~MrsG1s ^ da ^ �H 4r � 1

2
~MrtMtsG3r ^ da ^ �F s

þ 1

2
~MrtMtsK4r ^ �F s þ 1

4
� ~Mrsivð�K4rÞ ^K4s ^ v1 þ 1

2
~Mrt�MtsF s ^K4r; (4.51)

where we introduced the definitions

G 1r :¼ ivð�K4rÞffiffiffiffiffiffiffiffiffiffiffiffi
@a@a

p ; G3r :¼ ivK4rffiffiffiffiffiffiffiffiffiffiffiffi
@a@a

p ; (4.52)

in accordance with (4.24). Adding this variation to (4.45) and making use of the explicit form of �F r and �H 4r given in
(2.13) we get

�Lext ¼ 2GJ
2�JI ^ da^

�
D�BI

2 �
1

2
dð�aÞ ^GI

2 þ 2dIstF s ^�At þ gIr�C3r

�
þ 2 ~MrsG3r ^G1s ^ da^ d�a

� 2 ~MrsG1s ^ da^D�C3r þ 2gsIð�� ~MMÞrsK4r ^�BI
2 þ 2ð�� ~MMÞrsK4r ^D�As

þ k�r ð�J � � 2H 5�Þ ^�Ar þ 4 ~MrtG1t ^ da^F sdIrs ^�BI
2 þ 2 ~MrtMtsG3r ^ da^ gsI�B

I
2

þ 4 ~MrtG1t ^ da^H I
3 ^�AsdIrs þ 2 ~MrtMtsG3r ^ da^D�As � 2 ~MrsG1s ^ da^ k�r �C4� þ�YLþ��L:

(4.53)
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One can check that this variation vanishes for the local
symmetry transformations (4.23) provided that Ar

1 and C4�

transform as follows:

�Ar ¼ �a ~MrsG1s; (4.54)

�C4�k
�
r ¼ �affiffiffiffiffiffiffiffiffiffiffið@aÞ2p ðk�r ivH 5��2gs½IdJ�srM

Iiv�DMJ

þ�ðG1t^daÞivDð ~MMÞtrÞ�ð�� ~MMÞsrX4s;

(4.55)

where the 4-form X4s is such that

X4sð�� ~MMÞsrgIr¼ �affiffiffiffiffiffiffiffiffiffiffið@aÞ2p gIr�ðG1t^daÞivDð ~MMÞtr:

This relation has solutions when ð ~MMÞtrgIr ¼ 0. It is
trivially satisfied in the case of nondegenerate Mrs, i.e.
when ð ~MMÞtr ¼ �t

r. It is this case that we shall consider
in detail in the following. If on the other hand Mrs is
degenerate, some vector gauge fields do not have the kinetic
terms in the Lagrangian and are therefore nondynamical. In
[47] it has been shown that for the (1, 0) superconformal
models, invertibility of Mrs from (4.2) can always be
achieved by including Abelian factors in the gauge group.

1. Derivation of the field equations

Let us now discuss the derivation of the field equations
from the variation (4.53) of the extended Lagrangian (4.4),
assuming that the kinetic matrixMrs of the vector fields is
invertible (4.49). In this case, the variation (4.53) reduces to

�Lext ¼ 2GJ
2�JI ^ da ^

�
D�BI

2 �
1

2
dð�aÞ ^ GI

2 þ 2dIstF s ^ �At þ gIr�C3r

�
þ 2 ~MrsG3r ^ G1s ^ da ^ d�a

� 2 ~MrsG1s ^ da ^D�C3r þ 2G3r ^ da ^ grI�B
I
2 þ 4 ~MrtG1t ^ da ^F sdIrs ^�BI

2

þ 4 ~MrtG1t ^ da ^H I
3 ^ �AsdIrs þ 2G3r ^ da ^D�Ar þ k�r ð�J � � 2H 5�Þ ^ �Ar

� 2 ~MrsG1s ^ da ^ k�r �C4� þ �YLext þ ��Lext: (4.56)

It follows that this variation vanishes under an extension of
the local symmetry transformations (4.22) and under

�Ar ¼ ’rda; �’1
BI
2 ¼ ’I

1 ^ da;

�’2
C3r ¼ ’2r ^ da; �C4� ¼ ’3� ^ da;

(4.57)

where the parameters ’I
1, ’2r, and’3� are arbitrary and’r

satisfies k�r ’
r ¼ 0. Similar to (4.29) it turns out to be

useful to introduce two projectors Pr
s and P r

s of minimal
rank satisfying

k�r P r
s ¼ k�s ; grIPr

s ¼ gsI; (4.58)

respectively, together with their respective complementary
projectors defined according to (4.30). The orthogonality
grIk

�
r ¼ 0 implies that

P r
tPs

t ¼ 0; (4.59)

whereas the opposite contraction of the two projectors is
not necessarily vanishing. The equations of motion which
follow from the �C4� variation of (4.56) are

k�r
~MrsG1s ^ da ¼ 0: (4.60)

By construction G1s / ivK4 does not contain any contri-
bution proportional to da, which means that (4.60) implies

P r
t
~MtsG1s ¼ 0: (4.61)

Let us turn to the equations appearing as the coefficient for
�C3r in the variation (4.56):

Dð ~MrsG1s ^ daÞ ¼ gIrG2I ^ da: (4.62)

Upon projection with �P, we find

0 ¼ �Ps
rDð ~MstG1t ^ daÞ ¼ �Ps

r �P s
vdð ~MvtG1t ^ daÞ;

(4.63)

where the second equality uses (4.60) and the fact that the
connection part vanishes due to

�P s
r �P t

vXut
s ¼ �Ps

r �P t
vðk�t cs�u þ 2dItug

s
IÞ ¼ 0: (4.64)

Similar to the Abelian case, we thus conclude that locally

ð �Ps
r ~MstG1tÞ ^ da ¼ dð �Ps

r�sdaÞ; (4.65)

with �s satisfying k�s �
s ¼ 0. We can thus use the local

symmetry (4.57) with the parameter ’r (also obeying
k�s ’

s ¼ 0) to obtain �Ps
r ~MstG1t ¼ 0. Finally, the local

symmetry (4.57) with properly chosen parameter ’I
1

can be used to extend this equation to the full duality
equation

~M rsG1s ¼ 0: (4.66)

We note that this fixes the local symmetry with parameter
’I

1 up to parameters satisfying grI’
I
1 ¼ 0 which do not

contribute to the variation of ~MrsG1s. We are thus left
with the local symmetries of (4.22) above, while Eq. (4.62)
reduces to (4.31). Thus we can proceed as in Sec. IVA1 for
the minimal case and obtain

gIrðH 3I þ �H 3IÞ ¼ 0: (4.67)
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Let us turn to the equations produced by the variation �BI
2

in (4.56). In view of (4.66) we get

DðG2I ^ daÞ ¼ grIG3r ^ da: (4.68)

Equations (4.67) and (4.68) are precisely analogous to
Eqs. (4.33) and (4.35) which have been our starting point
in the discussion of field equations in the minimal case in
Sec. IVA1. Proceeding as above, we may thus further
gauge-fix the remaining local symmetries of (4.22) and
arrive at the field equations

H 3I þ �H 3I ¼ 0; grIG3r ¼ 0: (4.69)

Finally, let us turn to the equations appearing as the
coefficient for the vector fields �Ar in (4.56). Upon using
all field equations that we have already derived, these
equations reduce to

2DðG3r ^ daÞ ¼ k�r ð�J � � 2H 5�Þ; (4.70)

and can be solved with the same strategy: projection with
�P yields

0 ¼ �P r
sDðG3r ^ daÞ ¼ �P r

s
�Pr

tdðG3t ^ daÞ; (4.71)

where again we have used (4.64) together with (4.69) to
show that the connection part of the covariant derivative
vanishes. As in the Abelian case we conclude that locally

ð �P r
sG3rÞ ^ da ¼ dð �P r

s�3r ^ daÞ: (4.72)

As above, proper combinations of the remaining local
symmetries from (4.57) allow us to obtain G3r ¼ 0.
Together with (4.66) we thus obtain K4r ¼ 0. The rhs of
(4.70) eventually gives the last equation of (4.1).

Summarizing, we have shown that the extended
Lagrangian (4.4) gives rise to the set of non-Abelian dual-
ity equations (4.1). Again, the field aðxÞ does not enter
these equations, showing that aðxÞ is completely auxiliary
and is only required for ensuring the space-time covariance
of the action. Via the Bianchi identities (2.9) these equa-
tions give rise to the second-order field equations for the
vector fields in (4.43). The last equation in (4.1) is a
projection of the duality relation (3.5) between the scalar
fields and the 4-form gauge fields. In addition, the variation
of the Lagrangian (4.4) with respect to the scalar fields
gives rise to their standard second-order field equations.

V. EXAMPLE

Let us now consider an example of a minimal
Lagrangian model given in [45]. In this model the vector
fields split into two sets

Ar ¼ ðAa;AÎÞ (5.1)

and the constant tensors frs
t and dIrs reduce as follows:

frs
t !

�
fab

c;� 1

2
ðTaÞÎ Ĵ

�
; dIrs ! 1

2
ðTaÞÎ Ĵ ; (5.2)

i.e., e.g. f
aÎ

Ĵ ¼ �f
Îa

Ĵ ¼ � 1
2 ðTaÞÎ Ĵ, where the indices a,

b, c label the adjoint representation of a gauge group G
whose algebra is defined by the structure constants fab

c,

and the indices Î, Ĵ label representationsR (upper indices)

and R0 (lower indices) of G generated by ðTaÞÎ Ĵ.
The scalars �I and the 2-form fields BI split into two

sets taking values in R0 and R

�I ¼ ð�̂Î; �
ĴÞ; BI

2 ¼ ðB̂2Î ; B
Ĵ
2Þ: (5.3)

It is important to note that the fields with lower and upper

indices Î are different fields, and that the metric �IJ is
antidiagonal:

�IJ ¼
0 �Ĵ

Î

�Î
Ĵ

0

0
@

1
A: (5.4)

To be more explicit, in the case under consideration

gIs ¼ �IĴ�s
Ĵ
; grJ ¼ �r

Ĵ
�Ĵ
I ; (5.5)

dIrs ¼ ð0; dÎrsÞ ¼ ð0; �a
ðr�

Ĵ
sÞTaĴ

ÎÞ;
dIrs ¼ ðdÎrs; 0Þ ¼ ð�a

ðr�
Ĵ
sÞTaĴ

Î; 0Þ;
(5.6)

fst
r ¼ �b

s�
c
t fbc

a�r
a � �a

½s�
Ĵ
t�TaĴ

Î�r
Î
; (5.7)

Xst
r ¼ ��b

s�
c
t fbc

a�r
a þ 2�a

½s�
Ĵ
t�TaĴ

Î�r
Î
;

XrJ
I ¼ �r

aTaĴ
Îð�I

Î
�Ĵ
J � �IÎ�JĴÞ:

(5.8)

Notice that both of Eqs. (5.8) give X
aĴ

Î ¼ T
aĴ

Î.

Finally, the 3-form fields take values in the R0 repre-
sentation only, i.e.

C3r ¼ ðC3Î ; 0Þ: (5.9)

For simplicity, in the further consideration we shall not
take into account tensor fields which are singlets with
respect to the non-Abelian symmetries.
The field strengths (2.1)–(2.3) take the following form:

F r: F a ¼ dAa þ 1

2
fbc

aAb ^ Ac;

F Î ¼ dAÎ þ 1

2
AÎ ^ AaT

aĴ
Î þ BÎ

2 � BÎ
2;

(5.10)

H I
3: H

Î
3 ¼ DBÎ

2;

H 3Î ¼ dB̂2Î �
1

2
T
aĴ

ÎAa ^ B̂Î þ C3Î � C3Î ;

(5.11)

H 4r̂: H 4Î ¼ DC3Î ; (5.12)

where the covariant derivative D contains the vector
potential Aa only,

DUALITY-SYMMETRIC ACTIONS FOR NON-ABELIAN . . . PHYSICAL REVIEW D 88, 025024 (2013)

025024-9



D ¼ dþ AaTa

or more explicitly

DBÎ
2 ¼ dBÎ

2 þBĴ
2 ^ AaT

aĴ
Î;

DC3Î ¼ dC3Î � C3Ĵ ^ AaT
aÎ

Ĵ:
(5.13)

Note that the fieldsAÎ and B̂2Î are of a Stückelberg type

and thus can be absorbed, respectively, by BÎ
2 and C3Î,

which is indicated in (5.10) and (5.11) by renaming F Î �
BÎ

2 and H 3Î � C3Î. It is these latter fields that transform
covariantly under the gauge-group representations gener-

ated by ðTaÞĴ Î and enter the action.

In this case the action (4.3)–(4.10) reduces to the follow-
ing form:

S ¼
Z
M6

ð�D�̂Î ^ �D�Î þ d6x�̂ÎðTaÞĴ ÎYaijYĴ
ij

þ 2�̂ÎðTaÞĴ ÎBĴ
2 ^ �F aÞ

�
Z
M6

ðivðH Î
3 þ �H Î

3Þ ^ C3Î ^ v

þ ivðC3Î þ �C3ÎÞ ^H Î
3 ^ v�H Î

3 ^ C3ÎÞ: (5.14)

The first term in (5.14) can be rewritten in the following
form:

ivðH Î
3 þ �H Î

3Þ ^ C3Î ^ v ¼ ivðC3Î þ �C3ÎÞ ^H Î
3 ^ v

þ C3Î ^H Î
3: (5.15)

So the action (5.14) takes the form

S ¼
Z
M6

ð�D�̂Î ^ �D�Î þ d6x�̂ÎðTaÞĴ ÎYaijYĴ
ij

þ 2�̂ÎðTaÞĴ ÎBĴ
2 ^ �F aÞ

þ 2
Z
M6

H Î
3 ^ ðC3Î � ivðC3Î þ �C3ÎÞ ^ vÞ: (5.16)

Now note that the combination of the C3Î terms is anti-
self-dual. Indeed, in view of the identity (4.14)

C�
3Î
:¼ C3Î � ivðC3Î þ �C3ÎÞ ^ v

¼ �iv � C3Î ^ vþ �ðiv � C3Î ^ vÞ ¼ � � C�
3Î
: (5.17)

The generic identity (4.14) applied to an anti-self-dual
tensor reads

C�
3Î
¼ ivC

�
3Î
^ v� �ðivC�

3Î
^ vÞ: (5.18)

From (5.17) and (5.18) it follows that

�C3Î ¼ �C�
3Î
þ �ð’2Î ^ vÞ ) C3Î ¼ C�

3Î
þ ’2Î ^ v;

’2Î ¼ ivðC3Î þ �C3ÎÞ: (5.19)

The ’2Î ^ v part of C3Î does not contribute to the action, so
without loss of generality, in (5.16) we can replace C3Î with
C�
3Î
and the action reduces to

S ¼
Z
M6

ð�D�̂Î ^ �D�Î þ d6x�̂ÎðTaÞĴ ÎYaijYĴ
ij

þ 2�̂ÎðTaÞĴ ÎBĴ
2 ^ �F aÞ þ 2

Z
M6

H Î
3 ^ C�

3Î
: (5.20)

We see that the auxiliary 1-form field vðxÞ completely
disappears from the action and the anti-self-dual field
C�
3Î
¼ � � C�

3Î
is the Lagrange multiplier which ensures

the anti-self-duality of H Î
3. On the other hand, the varia-

tion of this action with respect to BÎ
2 produces the duality

relation between the field strengths of C�
3Î
and Aa

DC�
3Î
þ �F a�̂ĴðTaÞÎ Ĵ ¼ 0: (5.21)

The variation with respect to Aa gives the equation of
motion�
�̂ĴD �BÎ

2 þ �BÎ
2 ^D�̂Ĵ � 2BÎ

2 ^ C�
3Ĵ
þ 1

2
�Î �D�̂Ĵ

þ 1

2
�Ĵ �D�̂Î

�
T
aÎ

Ĵ ¼ 0: (5.22)

Yang-Mills-type equations for the vector gauge fields can
be obtained as a self-consistency condition for Eq. (5.21),

ð�̂ĴD �F a þ �F a ^D�̂Ĵ � 1=2F a ^ C�
3Ĵ
ÞT

aÎ
Ĵ ¼ 0:

(5.23)

Finally, the scalar field equations are

D �D�̂Î ¼ 0;

D �D�Î ¼ T
aĴ

Îðd6xYaijYĴ
ij þ 2BĴ

2 ^ �F aÞ;
(5.24)

�̂ ÎðTaÞĴ ÎYaij ¼ 0; �̂ÎðTaÞĴ ÎYĴ
ij ¼ 0: (5.25)

VI. CONCLUSION

We have constructed the duality-symmetric actions for a
large class of six-dimensional models describing hierar-
chies of non-Abelian scalar, vector and tensor fields related
to each other by (self-)duality equations that follow from
these actions. This class includes the bosonic sectors of the
6d (1, 0) superconformal models of interacting non-
Abelian vector, tensor and hypermultiplets constructed in
[43,45,47]. The supersymmetrization of the actions of this
paper by the inclusion of fermionic sectors will be consid-
ered elsewhere. A generic feature of the supersymmetric
manifestly duality-invariant actions is that the off-shell
supersymmetry transformations of fermionic fields get
augmented by terms which vanish when the bosonic fields
satisfy the (self-)duality conditions (see e.g. [51,53]).
We have first obtained the action (4.3) that gives rise to

non-Abelian self-duality equations for the tensor fields. In
the second step, we have extended this action to the action
(4.4) that also yields the non-Abelian first-order duality
equations between vector and 3-form tensor gauge poten-
tials. Continuing this line of thought, a natural next step in
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the construction would be the extension of (4.4) to an
action that also yields the first-order duality equations
between scalar and 4-form tensor gauge potentials. This
would correspond to a truly democratic formulation of the
six-dimensional models, in which all p-forms enter on
equal footing with the forms of different degree interlocked
by the non-Abelian structure of the tensor hierarchy. This
final extension to include the duality equations for the
scalar fields will proceed straightforwardly along the pat-
tern put forward in Sec. IV. On the technical side it will
require us to extend the six-dimensional tensor hierarchy of
Sec. II by the inclusion of 5-form gauge potentials, cf. [54].

In connection with the issues of the (2, 0) superconfor-
mal theory of multipleM5-branes, further study is required
for understanding whether in some of these (1, 0) super-
symmetric models the redundant degrees of freedom asso-
ciated with propagating vector fields can be removed and
(1, 0) supersymmetry can be enhanced to (2, 0). Another
important issue to be resolved is the presence (in general)
of ghosts in the action due to the nonpositive definiteness
of the metric �IJ [see e.g. Eq. (4.5)]. Clearly, it would also
be of interest to study the relation of these systems to other
proposals of non-Abelian 6d chiral tensor models and, by
dimensional reduction, to 5d and 4d super-Yang-Mills
theories.
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APPENDIX: ALGEBRAIC CONSTRAINTS ON THE
CONSTANT TENSORS

The algebraic consistency conditions for the tensors fst
r,

dIrs, g
Ir, k�r defining the six-dimensional tensor hierarchy

are given by

dIrðudIvsÞ ¼ 0;

ðdJrðudIvÞs � dJuvd
I
rs þ dKrsd

K
uv�

IJÞgsJ ¼ frðu
sdIvÞs;

3f½pq
ufr�u

s � gsId
I
u½pfqr�

u ¼ 0;

Xrs
t � dIrsg

t
I � frs

t ¼ �k�r c
t
�s

XrIJ � 4gs½IdJ�rs ¼ 2k�r c�IJ

frs
tgrI � dJrsg

t
Jg

r
I ¼ 0;

grKg
s
½IdJ�sr ¼ 0; grIg

Is ¼ 0; k�r g
Ir ¼ 0:

(A1)

In particular, the third equation shows that the violation
of the Jacobi identities of the ‘‘structure constants’’ frs

t

is related to the Stückelberg coupling grI . The general
structure of solutions to these constraints has been
analyzed in [45].
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