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Particle production due to a quantized, massless, minimally coupled scalar field in two-dimensional flat

spacetime with an accelerating mirror is investigated, with a focus on the time dependence of the process.

We analyze first the classes of trajectories previously investigated by Carlitz and Willey and by Walker

and Davies. We then analyze four new classes of trajectories, all of which can be expressed analytically

and for which several ancillary properties can be derived analytically. The time dependence is investigated

through the use of wave packets for the modes of the quantized field that are in the out vacuum state. It is

shown for most of the trajectories studied that good time resolution of the particle production process can

be obtained.
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I. INTRODUCTION

As the simplest theoretical manifestation of the dynami-
cal Casimir effect (DCE), the moving mirror model of
DeWitt [1] and Davies and Fulling [2,3] describes the
disturbance of a field by an accelerated boundary, which
results in both particle production and a flux of energy. As
the mirror model matured [4–8], it became apparent that
accelerating boundaries could be used to understand en-
tropy production [9,10], the relationship between particles
and energy [11], and thermodynamical paradoxes [12–14].
The DCE has the potential to be measured [15,16]. Indeed,
one experiment claims to have effectively measured the
DCE using a superconducting quantum interference device
that acts as a moving mirror [17]. In another recent set
of experiments [18], an analogue of the DCE has been
observed in the case of a Bose-Einstein condensate.

One aspect of the moving mirror model that has been
largely unexplored is the study of the time dependence of
the particle production process. The time dependence of
the stress-energy tensor for the quantized field has been
worked out. However, the stress-energy contains vacuum
polarization effects along with particle production effects,
and in most cases there is no clear way of separating the
two. In a flat-space background the Bogolubov transfor-
mation between the in and out vacuum states can be used
to accurately describe the particle production process.
However, the resulting particle frequency spectrum retains
no information regarding the time dependence of creation.

One way to explore the time dependence of particle
production is through the use of wave packets. Hawking
[19] made use of such packets to describe the late-time
behavior of black hole radiation when a black hole forms
from collapse. In the context of a moving mirror, wave
packets have been used by Dorca and Verdaguer [20] for
a specific class of trajectories that generate a thermal
spectrum at late times.
In this paper we explore the use of wave packets as a

means of obtaining information about the time dependence
of particle production due to accelerating mirrors in
(1þ 1) dimensions. We do so using two previously inves-
tigated trajectories and four new ones. In each case we
compare the particle creation results with the stress energy
of the quantum field. We work with a massless minimally
coupled free scalar field. The packets are obtained by
integrating the modes of the quantum field over specific
frequency ranges using a parametrized weighting function
that creates a packet whose amplitude is largest near a
particular time that is related to the value of one of the
parameters. By computing the Bogolubov transformation
using packets for the modes in the out vacuum state, it is
possible to obtain an expression for the number of particles
produced in various frequency and time intervals as a
function of time [21]. There is a fundamental uncertainty
principle involved in working with the wave packets such
that small frequency bins lead to good resolution in fre-
quency and poor resolution in time, and vice versa. We
explore the effects of this uncertainty relation for the
trajectories chosen.
To facilitate the investigation, we have restricted our

attention to mirror trajectories for which the Bogolubov
components can be computed analytically. Only a
small number of classes of trajectories has previously
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been considered for which it is possible to analytically
compute the Bogolubov coefficients. These include the
trajectories studied by Carlitz and Willey [7], which are
designed so that there is a constant flux of energy, and the
class of trajectories studied by Walker and Davies [22],
which involve a mirror that starts at rest in the infinite past,
accelerates, and ends at rest in the infinite future. In this
paper we introduce four new trajectories for which the
Bogolubov coefficients can be computed analytically.
Three of these involve mirrors that start at rest in the
infinite past. In one case the mirror trajectory is also
asymptotically static in the future, in another the mirror’s
speed is asymptotically constant, and in the third the
mirror’s speed approaches the speed of light. In this third
case, the trajectory nevertheless ends up at future timelike
infinity instead of being asymptotic to a null trajectory.
A fourth class of trajectories begins in the same way as
those studied by Carlitz and Willey but then, instead of
becoming asymptotic to a null ray at late times, approaches
a constant velocity and thus becomes inertial.

In the only previous use of wave packets for the moving
mirror model that we are aware of, Dorca and Verdaguer
[20] studied the asymptotic form of the trajectory
originally discussed by Davies and Fulling [2,3]. Their
procedure involved wave packets for modes in both the
in and out states. This technique allowed them to obtain a
finite spectrum even though the total number of particles
produced by the mirror in that model is infinite.

Here we use wave packets only on the modes that
approach future null infinity to the right, Iþ

R , and are in

the out vacuum state. The idea is to model what a particle
detector at a large distance from the mirror would see.
It turns out that one can compute either the packets first
and then the Bogolubov transformation to determine the
number of particles in a given packet, or one can do the
computation in reverse order. We do the latter and first
compute the exact Bogolubov transformation for the
modes and integrate over frequencies using the appropriate
weighting function [21] to obtain the Bogolubov coeffi-
cient for a packet. To obtain the total number of particles in
the frequency range for that packet, we then integrate over
the entire frequency range !0 of the modes in the in
vacuum state. For two of the trajectories considered, there
is an infrared divergence in the number of particles created,
which manifests as a divergence in the number of particles
in those packets that include modes of arbitrarily small
frequencies. Any real detector would have an infrared
cutoff, so we eliminate this divergence through the use of
a low-frequency cutoff in the computation of the wave
packets. That is, for these trajectories, we do not consider
packets that include modes in the out state with arbitrarily
small frequencies. In two other cases, the Bogolubov trans-
formation results in an infrared divergence in the total
number of particles created, but there is no corresponding
divergence in the number of particles in the packets with

small frequency modes. In the other two cases, there are
no infrared divergences, and the total number of particles
is finite.
The outline of this paper is as follows. In Sec. II we

review the relevant aspects of the moving mirror model in
(1þ 1) dimensions in some detail. In Sec. III we discuss
both the Carlitz-Willey [7] and Walker-Davies [22] trajec-
tories. For the Carlitz-Willey trajectory, we first review
some previous results and provide an analytic expression
for the trajectory. We then use wave packets to show that
the spectrum is time independent with a Planck character.
We analytically compute the spectrum at a given time for
wave packets of various frequency widths to investigate the
distortion of the spectrum. For the Walker-Davies trajec-
tory, we review some of the analytic results found previ-
ously. Unlike the Carlitz-Willey case, it does not appear
possible to calculate analytically the expected number of
particles in the wave packet modes. In Sec. IV we discuss
four new trajectories and for each compute the relevant
Bogolubov coefficients; the stress-energy tensor; the
number of particles produced at a given frequency; and,
for one trajectory, the total number of particles produced.
Section V includes a comparison of the time dependence of
the stress-energy tensor for the quantum field and the
number of particles produced, where the latter is investi-
gated through the use of wave packets. The difficulties
encountered in obtaining simultaneously good time and
frequency resolution for the number of particles produced
are discussed, as well as the divergences that occur for
some trajectories in the number of particles produced and
the energy of those particles. Our conclusions are given
in Sec. VI. Throughout this paper units are used such that
ℏ ¼ c ¼ 1.

II. BACKGROUND

The moving mirror model in (1þ 1) dimensions
consists of a quantized massless scalar field in flat space
that obeys Dirichlet boundary conditions on a perfectly
reflecting (mirror) boundary. The scalar field satisfies the
wave equation

h� ¼ 0: (2.1)

In this paper we always expand the field in terms of mode
functions that are parametrized by the frequency !.
Denoting them for the moment as �!, they obey the
equation

ð�@2t þ @2xÞ�! ¼ �@u@v�! ¼ 0; (2.2)

with

u � t� x; (2.3a)

v � tþ x: (2.3b)

The general solution is
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�! ¼ gðvÞ þ hðuÞ; (2.4)

with g and h being arbitrary functions. The mode functions
are normalized using the scalar product

ð�1; �2Þ � �i
Z
�
d�n�½�1ðxÞ@$��

�
2ðxÞ�: (2.5)

Here � is any Cauchy surface for the spacetime, n� is a
future-directed unit normal to that surface [21], and we
adopt the usual notation for the derivative acting to the
right first and then to the left with a minus sign [23]. For
this scalar product, the canonical relations hold,

ð�!ðxÞ;�!0 ðxÞÞ¼�ð��
!ðxÞ;��

!0 ðxÞÞ¼�ð!�!0Þ; (2.6a)

ð�!ðxÞ;��
!0 ðxÞÞ¼0: (2.6b)

ForMinkowski space with no boundaries, we can choose
the normalized modes

�!u ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p e�i!u; (2.7a)

�!v ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p e�i!v: (2.7b)

Then

� ¼
Z 1

0

d!ffiffiffiffiffiffiffiffiffiffiffi
4�!

p ½a!ue
�i!u þ a!ve

�i!v

þ ay!ueþi!u þ ay!veþi!v�; (2.8)

with a!u, a!v, a
y
!u, and ay!v being the usual annihilation

and creation operators.
If there is a mirror with trajectory zðtÞ, so that at any time

t the mirror is at the position x ¼ zðtÞ, then the spacetime
effectively has a boundary. In this paper we only consider
solutions to the mode equation that are to the right of the
mirror and incorporate reflection from the mirror’s surface.
We also only consider mirror trajectories that begin at past
timelike infinity, i�. In this case past null infinity, I�, only
consists of the surface u ¼ �1. This is a Cauchy surface.
If the mirror trajectory ends at future timelike infinity, iþ,
then future null infinity, Iþ, only consists of the surface
v ¼ 1, and this is a Cauchy surface. But if the trajectory is
asymptotic to the null ray v ¼ v0, then Iþ has two parts,
Iþ
R and Iþ

L , using the notation of Ref. [7]. The surface Iþ
R

lies at v ¼ 1, and Iþ
L consists of the part of the surface

u ¼ 1 that goes from v ¼ v0 to v ¼ 1. Taken together
they also provide a Cauchy surface.

It is useful to evaluate the scalar product (2.5) using the
Cauchy surfaces for I� and Iþ. It can be shown (see, e.g.,
Ref. [24]) that for I�

ð�1;�2Þ ¼�i
Z 1

�1
½�1ðu¼�1;vÞ@$v�

�
2ðu¼�1;vÞ�dv;

(2.9)

and for Iþ

ð�1; �2Þ ¼ �i
Z 1

�1
½�1ðu; v ¼ 1Þ@$u�

�
2ðu; v ¼ 1Þ�du

� i
Z 1

v0

½�1ðu ¼ 1; vÞ@$v�
�
2ðu ¼ 1; vÞ�dv:

(2.10)

If Dirichlet boundary conditions are imposed on the
scalar field, then the mode functions �! must vanish at
the location of the mirror. To quantify this, it is useful to
introduce functions umðtÞ and vmðtÞ that give the values of
u and v at the location of the mirror at a given time t. Thus,

u ¼ umðtÞ ¼ t� zðtÞ; (2.11a)

v ¼ vmðtÞ ¼ tþ zðtÞ: (2.11b)

We can invert the first equation to get t via a function tmðuÞ,
or we can invert the second to get t via a function �tmðvÞ.
In the presence of a mirror, we can consider either the

mode functions that are positive frequency at I�, and thus
correspond to the in vacuum state, or the mode functions
that are positive frequency at Iþ, and thus correspond
to the out vacuum state. The modes that are positive
frequency at I� are

�in
!0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

4�!0p ½e�i!0v � e�i!0pðuÞ�: (2.12)

Substitution into Eq. (2.6) using Eq. (2.9) shows that the
normalization is correct. For these mode functions to van-
ish at the mirror we must have v ¼ pðuÞ at the location of
the mirror. If we invert Eq. (2.11a) above to find t ¼ tmðuÞ
and then use the definition (2.11b), we find that

pðuÞ ¼ tmðuÞ þ zðtmðuÞÞ; (2.13)

which fixes the function pðuÞ.
In a general left-right construction (for mirrors that have

a horizon at v0), there are two sets of mode functions that
are positive frequency at Iþ. One set, which wewill denote
as�R

!, is nonzero at Iþ
R and zero at Iþ

L .
1 The other set,�L

!,
is zero at Iþ

R and nonzero at Iþ
L . The former is given by

�R;out
! ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

4�!
p ½e�i!fðvÞ � e�i!u�; v < v0: (2.14)

Mirrors that are asymptotically inertial in the future have
v0 ¼ 1. Note that all trajectories that begin at past time-
like infinity, i�, (the only type we consider here) span the
range �1< u<1. Substitution into Eq. (2.6) using
Eq. (2.10) shows that these modes are normalized correctly
also. Again, for these modes to vanish at the mirror, we
must have u ¼ fðvÞ at the location of the mirror, which
is the inverse relation to v ¼ pðuÞ and an equivalent

1The left and right coefficient formulation lies at the crux of
the calculations in Ref. [7], and, despite the call for more
attention [25], the construction has been underused.
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representation of the mirror trajectory in u, v coordinates.
If Eq. (2.11b) is inverted to find t ¼ �tmðvÞ and the defini-
tion (2.11a) is used, then one finds that

fðvÞ ¼ �tmðvÞ � zð�tmðvÞÞ; (2.15)

which fixes the function fðvÞ.
There are no other modes if v0 ¼ 1. But if the mirror’s

trajectory is asymptotic to the null surface v ¼ v0, then
one must also include the set of modes �L

! that reach Iþ
L

and never interact with the mirror. Substituting into
Eq. (2.6) and using Eq. (2.10), one finds that

ð�L
!;�

L
!0 Þ ¼ �i

Z 1

v0

dv�L
!@
$
v�

L�
!0 ¼ �ð!�!0Þ: (2.16)

To further examine the behavior of these modes, it is useful
to work with a specific trajectory. This has been done by
Carlitz andWilley [7] for a trajectory with a future horizon.
We study other aspects of this trajectory in Sec. III.

The usual procedure for calculating interesting observ-
able quantities, such as the energy or particle number,
starts with the choice of an appropriate trajectory, zðtÞ.
Then either the function pðuÞ or its inverse fðvÞ is found
using the procedures described above. A key aspect of
these procedures involves the solution of the relevant,
and sometimes transcendental, function inversions. This
requirement has made it difficult to find trajectories that
allow both a fully analytic description of the mirror’s
motion and an analytic calculation of the associated
Bogolubov coefficients (see below).

The function pðuÞ, commonly called the ray-tracing
function [26], characterizes the mirror trajectory and is
incorporated in the modes, the two-point function, the
energy flux, and the correlation functions. The trajectories
and, where known, the ray-tracing functions for the mirror
trajectories considered in this paper are given in Table I.

A. Bogolubov transformations

Oneway to describe the particle production that arises in
the presence of an accelerating mirror is to use the

Bogolubov transformation. The positive frequency modes
at I�,�in

!0 , form a complete set, and one can expand modes

at Iþ in terms of them,

�J
! ¼

Z 1

0
d!0½�J

!!0�in
!0 þ �J

!!0�in�
!0 �; (2.17)

with J representing either R or L. Using the relations (2.6),
one finds

�J
!!0 ¼ ð�J

!;�
in
!0 Þ; (2.18a)

�J
!!0 ¼ �ð�J

!;�
in�
!0 Þ: (2.18b)

The field � expressed in terms of the mode functions can
be represented in either of two ways:

� ¼
Z 1

0
d!0½ain!0�in

!0 þ ainy
!0 �in�

!0 � (2.19a)

¼ X
J

Z 1

0
d!½bJ!�J

! þ bJy! �J�
! �: (2.19b)

Using bJ! ¼ ð�; �J
!Þ [21] one finds

bJ! ¼
Z 1

0
d!0½ð�J

!!0 Þ�ain!0 � ð�J
!!0 Þ�ainy!0 �: (2.20)

If the field is in the in vacuum state specified by the positive
frequency modes at I�, we can use the operator NJ

! �
ðbJ!ÞybJ! to compute the average number of particles with
frequency ! that reach Iþ

J ,

hNJ
!i � h0injNJ

!j0ini ¼
Z 1

0
d!0j�J

!!0 j2: (2.21)

The expectation value of the total number of particles that
reach Iþ

J is

hNJi � h0injNJj0ini ¼
Z 1

0
d!

Z 1

0
d!0j�J

!!0 j2: (2.22)

Since we are primarily concerned with the number of
particles that reach Iþ

R , we will focus on the computation
of �R

!!0 . If the Cauchy surface I� is used, then Eq. (2.18b)

along with Eqs. (2.9), (2.12), and (2.14) give

TABLE I. Some classes of trajectories, zðtÞ, and the ray-tracing functions pðuÞ and fðvÞ associated with them.

Trajectory pðuÞ fðvÞ
Static z ¼ 0 p ¼ u f ¼ v

Constant velocity z ¼ �v0t p ¼ 1�v0

1þv0
u f ¼ 1þv0

1�v0
v

Uniform acceleration z ¼ ��1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 þ t2

p
p ¼ u

1þ�u f ¼ v
1��v

Carlitz-Willey z ¼ �t� 1
�Wðe�2�tÞ p ¼ � 1

� e
��u f ¼ � 1

� log ð��vÞ
Walker-Davies t ¼ �z� A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�2z=B � 1

p

Arctx z ¼ � 1
� tan

�1ðe�tÞ
Darcx z ¼ � �

	 sinh
�1ðe	tÞ

Proex z ¼ � 1

Wðe
tÞ p ¼ u� 1


Wð2e
uÞ f ¼ vþ 2

 e


v

Modified Carlitz-Willey z ¼ � 1��
1þ� t�W½e�2�t=ð1þ �Þ�=� p ¼ �u� 1

� e
��u f ¼ v

� þ 1
�Wðe�v�=�=�Þ

GOOD, ANDERSON, AND EVANS PHYSICAL REVIEW D 88, 025023 (2013)

025023-4



�R
!!0 ¼ 1

4�
ffiffiffiffiffiffiffiffiffiffi
!!0p

Z v0

�1
dve�i!0v�i!fðvÞ

�
!0 �!

dfðvÞ
dv

�
:

(2.23)

If the Cauchy surface Iþ
R is used, then one similarly finds

�R
!!0 ¼ 1

4�
ffiffiffiffiffiffiffiffiffiffi
!!0p

Z 1

�1
due�i!u�i!0pðuÞ

�
!0 dpðuÞ

du
�!

�
:

(2.24)

These expressions are, of course, equivalent.
It is possible to write Eq. (2.24) in terms of a time

integral over a function of the trajectory zðtÞ. Since pðuÞ
is a fixed function of u and u ranges from�1 toþ1, one
can substitute umðtÞ for u in Eq. (2.24). Then using
Eq. (2.11a) to change variables, one finds

�R
!!0 ¼ 1

4�
ffiffiffiffiffiffiffiffiffiffi
!!0p

Z 1

�1
dte�i!þtþi!�zðtÞð!þ _zðtÞ �!�Þ;

(2.25)

where !þ � !þ!0 and !� � !�!0. This expression
is applicable for trajectories that are asymptotically inertial
in the limits t ! �1. Note that if we consider an inertial
trajectory, it is easy to show that �R

!!0 ¼ 0. Thus, as

expected no particles are produced when the mirror does
not accelerate.

It is not hard to show that the Bogolubov coefficient
�!!0 may be obtained from the above expressions for�!!0

by letting !0 ! �!0 everywhere in the expressions for

�!!0 , except for the factor 1=
ffiffiffiffiffiffiffiffiffiffi
!!0p

, which must remain
unchanged. Finally, we note that if the trajectory is initially
inertial and the acceleration does not continue forever, then
the total energy produced is finite and given by the follow-
ing sum over the quantum modes [11]:

Eqs ¼
Z 1

0
!hN!id!: (2.26)

B. Stress-energy tensor

The renormalized stress-energy tensor for the massless,
minimally coupled scalar field was computed in terms of
the function pðuÞ and in terms of the trajectory zðtÞ by
Davies and Fulling [2]. They found that the energy flux
produced by the mirror as a function of u is given by2

hTuui ¼ 1

24�

�
3

2

�
p00

p0

�
2 � p000

p0

�
; (2.27)

where primes indicate derivatives with respect to u. Their
expression for the energy flux in terms of zðtmðuÞÞ is

hTuui ¼ z
:::ð _z2 � 1Þ � 3 _z€z2

12�ð _z� 1Þ4ð _zþ 1Þ2
��������t¼tmðuÞ

; (2.28)

where the dots refer to derivatives with respect to t.
Equation (2.28) is equivalent to Eq. (2.27) evaluated at

the surface of the mirror. In either case, it is easy to
show that for an inertial trajectory hTuui ¼ 0, as would
be expected when the scalar field is in the vacuum state.
It is also possible to write Eq. (2.28) in terms of the time

derivative of the proper acceleration:3

� � €z=ð1� _z2Þ3=2: (2.29)

The result is

hTuui ¼ � _�

12�

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ _z

p
ð1� _zÞ3=2 : (2.30)

The overall negative sign implies that on the right-hand
side of the mirror, a flux of negative energy is given off if
the change in acceleration of the mirror is toward the right,
and a flux of positive energy is given off if the change in
acceleration is toward the left.
For trajectories that are asymptotically inertial in the

limits t ! �1, pðuÞ ! c1uþ c0 for some constants c1
and c0. For trajectories considered in this paper, a finite
amount of energy reaches Iþ

R (except for the Carlitz-
Willey or modified Carlitz-Willey classes). Because the
flux (2.27) is only a function of u and therefore does not fall
off at Iþ

R , the total amount of energy Est that reaches Iþ
R

can be obtained by integrating over u,

Est ¼
Z 1

�1
hTuuidu: (2.31)

Walker [11] has a proof that Est ¼ Eqs provided that the

mirror is asymptotically inertial in both the past and future,
i.e.,�ð�1Þ ¼ 0, and the velocity toward Iþ

R never reaches
the speed of light, _zð�1Þ � 1. Substituting Eq. (2.27) into
Eq. (2.31) and integrating by parts, one finds

Est ¼ 1

48�

Z 1

�1

�
p00

p0

�
2
du; (2.32)

so long as the surface terms with p00=p0 vanish as
u ! �1. The result can also be written in terms of a
time integral over a function of the trajectory of the mirror
by letting u ! umðtÞ, inverting Eq. (2.11a) to find
t ¼ tmðuÞ and then using Eq. (2.28). The result is

Est ¼ � 1

12�

Z 1

�1
_�

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ _z

1� _z

s
dt: (2.33)

Integrating by parts gives another expression:

Est ¼ 1

12�

Z 1

�1
�2ð1þ _zÞdt;

¼ 1

12�

Z 1

�1
€z2

ð1þ _zÞ2ð1� _zÞ3 dt: (2.34)

2Some other components are hTtti ¼ hTtxi ¼ hTxxi ¼ hTuui.

3The proper acceleration is the acceleration in the instanta-
neous rest frame of the mirror. Note that the time derivative is in
the inertial frame, not the rest frame of the mirror.
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Notice that this last formmasks the dependence on the time
derivative of the proper acceleration.

C. Wave packets

Another way to investigate particle production is to use
wave packets [19,21]. An advantage of this approach, as
discussed in the Introduction, is that one can study the
time-dependent aspects of particle production.

A wave packet, �jn, can be constructed from �!

by integrating over a finite range of frequencies with a
particular weighting function so that [21]

�jn � 1ffiffiffi
�

p
Z ðjþ1Þ�

j�
d!e2�i!n=��!: (2.35)

Here n takes on integer values, and j takes on nonnegative
integer values. Substituting Eq. (2.14) into Eq. (2.35) and
noting that the first term does not contribute due to rapid
oscillations in the limit v ! 1, one can see that the
integral is largest for values close to u ¼ 2�n=�. It is clear
from Eq. (2.35) that the value of j is related to the
frequency of the modes in the packet with ðjþ 1=2Þ�
giving the frequency at the center of the range and � giving
the width of the range. When the weighting functions are

applied to the modes e�i!u=
ffiffiffiffiffiffiffiffiffiffiffi
4�!

p
, the resulting wave

packets form a complete and orthonormal set.
One can use the scalar product to construct the

Bogolubov coefficients that correspond to the wave pack-
ets [21]. As mentioned previously, we are concerned in this
paper with the particles that reach Iþ

R . In that case

�R
jn;!0 ¼ �ð�R

jn; �
in�
!0 Þ: (2.36)

It is possible to obtain these wave packet coefficients
directly from the coefficients �R

!!0 by using the same

weighting, integrating over frequency, and interchanging
the order of integration,

�R
jn;!0 ¼ 1ffiffiffi

�
p

Z ðjþ1Þ�

j�
d!e2�i!n=��R

!!0 : (2.37)

The average number of particles produced for given values
of n and j is

hNR
jni ¼

Z 1

0
d!0j�R

jn;!0 j2

¼
Z 1

0
d!0 Z ðjþ1Þ�

j�

d!1ffiffiffi
�

p

�
Z ðjþ1Þ�

j�

d!2ffiffiffi
�

p e2�ið!1�!2Þn=��R
!1!

0�R�
!2!

0 : (2.38)

This quantity gives the average number of particles that
reach Iþ

R in the frequency range j� � ! � ðjþ 1Þ� and
in the approximate time range ð2�n� �Þ=� � u �
ð2�nþ �Þ=�. It can be used to estimate the average num-
ber of particles that a detector would see in this frequency
range if it was turned on during the above time period
near an event centered at some x and some large v. Thus,

computation of hNjni for a range of values of j and n allows

one to construct the evolution of the spectrum of the
produced particles in time (to the extent allowed by the
uncertainty relation) as it would be seen by a series of
particle detectors spread out over a line of constant but
large v.
Note that one can also estimate the total energy of the

particles produced by multiplying the number of particles
in a given bin by the frequency at the center of that bin,

Eep ¼ X
j;n

�
jþ 1

2

�
�hNjni: (2.39)

This estimate of the energy can be compared to the energy
of particles produced, Eqs, or the total stress-energy flux,

Est, to test the accuracy of the wave packet description of
particle production.

III. TWO PREVIOUSLY STUDIED MIRROR
TRAJECTORIES

In this section we examine two previously studied types
of mirror trajectories. One of these, developed by Carlitz
and Willey [7], consists of a trajectory that has a future
horizon at v ¼ v0 ¼ 0 but no past horizon. The trajectory
is designed to yield a constant stress-energy flux. The
functional form of the trajectory allows many quantities
of interest to be computed analytically. The second type is
the class of trajectories studied by Walker and Davies [22].
For these trajectories, the mirror begins and ends
asymptotically at rest. Thus, the total number of particles
produced is finite. In this case too, a number of quantities
can be obtained analytically. For both of these types of
trajectories, we have extended the analysis by using wave
packets. For the Carlitz-Willey trajectory we use them to
compute the spectrum of created particles and for the
Walker-Davies class of trajectories we use them to inves-
tigate the time dependence of the particle creation.

A. Carlitz-Willey trajectory

In their paper [7] Carlitz and Willey point out that if the
motion of the mirror is specified [in u and v ¼ pðuÞ
coordinates] by taking the ray-tracing function to be

pðuÞ ¼ � 1

�
e��u; (3.1)

then a constant energyflux results. Substitution intoEq. (2.27)
gives the energy flux in terms of the free parameter �,

hTuui ¼ �2

48�
: (3.2)

An implicit functional form of the trajectory in t and
x ¼ zðtÞ coordinates can be obtained by substituting
Eq. (3.1) into Eq. (2.13),

tþ zðtÞ ¼ � 1

�
e��tþ�zðtÞ: (3.3)

Carlitz andWilley did not provide the explicit functional form
for zðtÞ. However, we find that it can be given as
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zðtÞ ¼ �t� 1

�
Wðe�2�tÞ; (3.4)

which involves the Lambert W function (also known as the
product logarithm).Aplot of this trajectory is given inRef. [7]
and is shown also in our Fig. 1. It is not difficult to show
that _z ! �1 in the limits t ! �1 and that z < 0 for all time.
The mirror trajectory begins at past timelike infinity, i�, and
at late times approaches v ¼ 0. Substitution into Eq. (2.29)
gives the proper acceleration,

�ðtÞ ¼ � �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wðe�2�tÞp ; (3.5)

which is not constant, even though the energy flux is.
In Ref. [7] analytic expressions were found for the

Bogolubov coefficients. In particular, it was found that4

�R
!!0 ¼ 1

4�
ffiffiffiffiffiffiffiffiffiffi
!!0p

�
� 2!

�
e��!=2�

�
!0

�

��i!=�
�

�
i!

�

��
:

(3.6)

Thus,

j�R
!!0 j2 ¼ 1

2��!0
1

e2�!=� � 1
; (3.7)

resulting in both infrared and ultraviolet divergences
for the quantity hNR

!i in Eq. (2.21). This is not surprising
given the fact that the acceleration of the mirror, while zero
in the limit t ! �1, is nonzero at any finite time in the
past. The radiation is produced with a thermal spectrum
and propagates to Iþ

R [7].5

It is possible to compute analytically the expectation
value of the wave packet number hNjni. First, substitute
Eq. (3.6) into Eq. (2.38), interchange the order of integra-
tion, and make the variable transformation y ¼ ln!0.
Then integrating over y gives a result that is proportional
to �ð!1 �!2Þ. Next integrating over !2 and setting
!1¼! gives

hNjni ¼ 1

�

Z ðjþ1Þ�

j�
d!

1

e2�!=� � 1

¼ �

2��
ln

�
e
2�ðjþ1Þ�

� � 1

e
2�j�
� � 1

�
� 1: (3.8)

There is a divergence in the particle count in the lowest
frequency bin, j ¼ 0. This result is similar to the infrared
divergence found previously in hNR

!i, and the reason for it
is the same. Physically, of course, one cannot measure
particles of infinite wavelength. Thus, in a real particle
detector, the lowest frequency bin would have a lower limit
cutoff rather than extending all the way to ! ¼ 0.
It is also evident that for this mirror, there is no depen-

dence in hNjni on the parameter n, and accordingly the

average spectrum of particles recorded by a detector would
be independent of time. This is almost certainly related to
the fact that for this trajectory, the energy flux is constant.
To find effects of various frequency ranges � on the

spectrum and to recover the Planck form for the spectrum
in the limit that � ! 0, one can first write the expression in
Eq. (3.8) in terms of!j ¼ ðjþ 1=2Þ� and then expand it in
powers of � with the quantity !j fixed. The result is

hNjni ¼ 1

e2�!j=� � 1

�
�
1þ �2e2�!j=�ð1þ e2�!j=�Þ

6�2ðe2�!j=� � 1Þ2 �2 þOð�4Þ
�
:

(3.9)

With � fixed, the second term approaches �2=ð12!2
j Þ for

small !j and behaves like �2�2=ð6�2Þ for large values of
!j. Thus, for a given frequency width, the deviation of the

FIG. 1. Six analytically known mirror trajectories. In the left
panel, the mirror trajectories are plotted in t and x coordinates.
The right panel depicts the same trajectories in a Penrose
diagram. The Carlitz-Willey trajectory, with � ¼ 1, and the
modified Carlitz-Willey trajectory, with � ¼ 1 and � ¼ 1=3,
are shown as solid curves. The Carlitz-Willey trajectory gives
rise to a horizon at v ¼ 0, while the modified Carlitz-Willey
trajectory ends at future timelike infinity (iþ). The short-dashed
curve indicates the Arctx mirror with � ¼ 1, which is static in
the distant past and future. The long-dashed curve is the Darcx
trajectory with 	 ¼ 1 and asymptotic future velocity � ¼ �1=2.
The Walker-Davies trajectory for A ¼ 2, B ¼ 1 is shown as the
dotted-dashed curve. The Proex trajectory with 
 ¼ 1 is denoted
by the dotted curve. We consider only the region of spacetime to
the right of a mirror. Thus, past null infinity on the left (not
labeled) plays no role in our analysis. Similarly, there is an
abbreviated portion of future null infinity on the left (Iþ

L ), but
only in the case of the Carlitz-Willey trajectory. All of the other
mirror trajectories begin and end at i� and iþ, respectively.

4Here we have adapted the expression given in Ref. [7] to the
conventions we are using.

5This thermal spectrum is, of course, that of a one-dimensional
blackbody. A similar physical manifestation of one-dimensional
thermal radiation is the resistor. Discovered by Nyquist [27] in
1928, a resistor in a lossless transmission line of great length in
equilibrium at temperature T has thermal electric noise that is an
analog of a blackbody in one dimension.
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spectrum from the Planck form becomes more pronounced
for smaller values of the central frequency !j.

B. Walker-Davies trajectory

The Walker-Davies trajectory [22] is given by the
relation

t ¼ �z� A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�2z=B � 1

p
; (3.10)

where A > B and where the plus sign is adopted for t > 0
and the minus sign for t < 0. The trajectory is plotted in

Fig. 1. Note that the curve is C1 in spite of the change in

sign across branches for positive and negative values of t.
The mirror begins at i� at rest with t, z ¼ �1. It accel-

erates to the right and then decelerates back to rest at

t ¼ z ¼ 0. Then it first accelerates and then decelerates

to the left, ending at rest at iþ at t ¼ 1 and z ¼ �1. The

modes to the right of the mirror always end at Iþ
R .

Therefore, we drop the subscript R in what follows.
Walker and Davies [22] calculated the stress tensor and

found that6

hTuui ¼ B

6�

ð
5 þ 1
2 B


4 � 2A2
3 � 3BA2
2 � 3A4
 � 3
2 A

4BÞ
ð
2 þ 2B
 þ A2Þ4 ; (3.11)

where 
 is a parameter related to the null coordinate u by

u ¼ B ln ð
2=A2 þ 1Þ þ 
: (3.12)

By integrating the flux over all u, they found the total
energy to be

Est ¼ B2

48ðA2 � B2Þ3=2 : (3.13)

They also were able to calculate the Bogolubov coeffi-
cients and found that

j�!!0 j2 ¼ 2AB

�2

�
!0

!0 þ!

�
sinh ð�!BÞjKqðrÞj2; (3.14)

where q � � 1
2 þ i!B, r � Að!0 þ!Þ, and KqðrÞ is a

modified Bessel function of the second kind. We have
not found an analytic expression for hN!i in Eq. (2.21)
and therefore also do not have one for Eqs. Furthermore,
we do not have an analytic expression for hNjni in this case
and instead have computed it numerically. We defer until
Sec. V the discussion of these results.

IV. NEW TRAJECTORIES

In this section we consider four new types of trajectories
for which it is possible to analytically compute the
Bogolubov coefficients �!!0 . Having this analytic result
in turn makes it feasible to compute numerically the ex-
pectation value of the particle number hNjni associated

with the wave packets. Trajectories of each type are plotted
in Fig. 1 for specific parameter choices. The functional

form of the trajectories and their corresponding ray-tracing
functions, where known, are summarized in Table I.

A. Arctx mirror trajectory

As seen in the previous section, the Walker and Davies
[22] class is composed of trajectories that begin and end at
rest in the limits t ! �1. They produce a finite number of
particles and a finite amount of energy. Another trajectory
with these features can be devised by taking

zðtÞ ¼ � 1

�
tan�1ðe�tÞ: (4.1)

Here � is a positive constant. Such a mirror starts at rest at
x ¼ 0 in the infinite past and ends at rest at x ¼ ��=2� in
the infinite future. We refer to this trajectory as Arctx,
drawn from ’’arctangent exponential.’’
The functional form of this trajectory is simple enough

that a number of properties can be derived analytically. For
example, the proper acceleration is given by

�ðtÞ ¼ �
4 sechð�tÞ tanh ð�tÞ
½4� sechð�tÞ�3=2 : (4.2)

Starting from zero in the t ! �1 limit, the proper accel-
eration is negative for t < 0. It first increases and then
decreases in magnitude, before reaching zero at t ¼ 0.
For positive values of t, it is positive and again first
increases and then decreases to zero in the limit t ! 1.
A second important quantity, the stress energy, can also be
obtained. Substitution of Eq. (4.1) into Eq. (2.28) gives

hTuui ¼ �2 cosh ½�tmðuÞ�ð�5� 2 cosh ½2�tmðuÞ� þ cosh ½4�tmðuÞ�Þ
3�ð1� 2 cosh ½�tmðuÞ�Þ2ð1þ 2 cosh ½�tmðuÞ�Þ4

: (4.3)

The finite total energy would follow from integrating this flux over u, but it is simpler to substitute Eq. (4.1) into Eq. (2.34)
to find

6Note that there is a misprint in the numerator of their expression.
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Est ¼ �

2592�
ð13 ffiffiffi

3
p

�� 36Þ: (4.4)

Next it proves possible to calculate analytically the
Bogolubov coefficients. Substituting Eq. (4.1) into
Eq. (2.25), we find

�!!0 ¼ g0½g1�ð�mÞ�ð�qÞ � g2�ðmÞ�ðqÞ�; (4.5)

where

q� i

�
ð!0 þ!Þ; (4.6a)

m� 1

2�
ð!0 �!Þ; (4.6b)

g0� ie
i�q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2þq2

p
2��

sinð�mÞ
sin½�ðmþqÞ� ; (4.6c)

g1� 2F1Rð1�m;1�q;1�m�q;�1Þe�i�ðmþqÞ; (4.6d)

g2� 2F1Rð1þm;1þq;1þmþq;�1Þ; (4.6e)

and the 2F1R are regularized hypergeometric functions.

B. Darcx mirror trajectory

Another analytically simple set of trajectories is found
by setting

zðtÞ ¼ ��

	
sinh�1ðe	tÞ; (4.7)

where 	 and � are constants. To maintain future asymptotic
inertial behavior, it is necessary that 0< j�j< 1. In this
case the mirror begins at rest, and in the limit t ! 1, its
velocity approaches��. We refer to this set of trajectories
as Darcx, short for ‘‘drifting arc-hyperbolic sin of an
exponential.’’ A specific example is plotted in Fig. 1.
Remarkably, the Bogolubov coefficients �!!0 and other
relevant quantities for these trajectories can also be calcu-
lated analytically. Since the process of deriving them is
identical to that discussed previously, we simply collect the
results in Table II.

C. Proex mirror trajectory

Another interesting trajectory that is asymptotically
inertial in the past, t ! �1, can be defined using the
Lambert W function,

zðtÞ ¼ � 1



Wðe
tÞ ¼ �tþ 1



lnWðe
tÞ

¼ 1



ln ½e�
tWðe
tÞ�; (4.8)

where the equivalence between the expressions follows
from the property lnWðzÞ ¼ ln z�WðzÞ. We refer to this
trajectory as Proex, which is short for ‘‘productlog expo-
nential.’’ A plot of its behavior is overlaid in Fig. 1. The
late-time behavior of this trajectory is similar to the early
time behavior of the Carlitz-Willey trajectory in that it
approaches the speed of light at timelike infinity while
not producing (in this case) a future horizon. The behavior
is best seen in the Penrose diagram in the right panel of
Fig. 1. Mathematically it can be seen by noting that as
x ! 1, WðxÞ ! 1. Consequently, the value of v for the
mirror at a given time, vmðtÞ, has the behavior vmðtÞ ! 1
as t ! 1. The velocity is

_zðtÞ ¼ ½1þWðe
tÞ��1 � 1; (4.9)

which makes obvious the approach to light speed as
t ! 1. The proper acceleration,

�ðtÞ ¼ �

Wðe
tÞ

½1þ 2Wðe
tÞ�3=2 ; (4.10)

is initially zero, increases with time until it reaches a
maximum magnitude when the trajectory intersects the
null ray v ¼ 0, then decreases with time, vanishing in
the limit t ! 1.
For this trajectory both the ray-tracing function pðuÞ

and its inverse fðvÞ can be computed analytically. The
results are

pðuÞ ¼ u� 1



Wð2e
uÞ; (4.11a)

fðvÞ ¼ 2



e
v þ v: (4.11b)

The Bogolubov coefficients �!!0 can in turn be calculated
analytically, as well as the energy flux. We summarize
these and some other quantities in Table III.

D. Modified Carlitz-Willey trajectory

The final class of trajectories that we consider is a
modification of the Carlitz-Willey trajectory. A term is

TABLE II. Bogolubov coefficients and other useful information for the Darcx trajectories.

Bogolubov coefficient

with bþ � b!þ a!0, aþ � a!þ b!0, !þ � 1
	 ð!þ!0Þ,

a � 1
2	 ð1þ �Þ, and b � 1

2	 ð1� �Þ.

�!!0 ¼ 1
4�

ffiffiffiffiffiffiffi
!!0p ½�2i!þ �

	2
2!0!
bþ

�ð�i!þÞ�ðiaþÞ
�ð�ibþÞ �

j�!!0 j2 ¼ �2

4�	4
!0!

!þaþbþ
cschð�!þÞcschð�aþÞ

cschð�bþÞ

Proper acceleration �ðtÞ ¼ � 	�e	t

½1�ð�2�1Þe2	t�3=2 .

Energy flux hTuui ¼ 	2

12�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2	tm ðuÞþ1

p
e	tm ðuÞ½2ð�2�1Þe2	tm ðuÞþ1�

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2	tm ðuÞþ1

p
þ�e	tm ðuÞÞ2½ð�2�1Þe2	tm ðuÞ�1�2

.

Total energy Est ¼ 	
96� ð3þ�2

2�2
ln 1þ�

1�� � 3þ�ð3þ2�Þ
�ð1þ�Þ Þ.
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added that takes the acceleration to zero at late times. This
causes the trajectory to become inertial in the future rather
than asymptotically null. The final velocity is a free
parameter. The trajectories are

z ¼ � 1� �

1þ �
t� 1

�
W

�
e�2�t=ð1þ�Þ

1þ �

�
; (4.12)

with 0 � � � 1. A particular example is shown in Fig. 1
where one can see the divergence from the Carlitz-Willey
trajectory at late times. For � ¼ 0 the trajectory reduces to
the Carlitz-Willey one (3.4). As before with the other new
trajectories, it proves possible to calculate the Bogolubov
coefficients �!!0 analytically, as well as a set of other
relevant quantities. These are displayed in Table IV.

V. ANALYSIS OF ENERGYAND
PARTICLE PRODUCTION

For each of themirror trajectorieswe consider in this paper,
the renormalized stress energy for the scalar field is known
analytically and can be easily evaluated. Except for the
Carlitz-Willey trajectory, the expectation value of the number
of particles in a wave packet, hNjni, cannot be calculated

analytically, and we instead evaluate this quantity numeri-
cally. To do so accurately, however, it proved important to
have analytic expressions for the Bogulobov coefficients
�!!0 . Thewave packets in turn provide ameans of examining
the time and frequency dependence of the created particles.

A. Time dependence

The correlation (or lack of it) between the number of
particles produced at a given time and the energy flux hTuui
differs markedly from one type of trajectory to the other.
Because the mirror is in flat space, the Bogolubov trans-
formation between the in and out vacuum states tells us

about the average number of particles produced in an
ensemble of identical systems. The energy flux given by
the quantity hTuui gives information about the average flux
of energy produced by the mirror as it accelerates. The
energy flux is due to a combination of particle production
and vacuum polarization effects.
In Fig. 2 the energy flux is shown for the various

trajectories considered in this paper. From Eq. (2.30) one

TABLE IV. Bogolubov coefficients and other useful information for the modified
Carlitz-Willey class of trajectories.

Bogolubov coefficient �!!0 ¼ � 1
2��

ffiffiffiffi
!
!0

p
e��ð!þ�!0Þ=ð2�Þð!0

� Þ�ið!þ�!0Þ=��½ið!þ �!0Þ=��
j�!!0 j2 ¼ !

2��!0ð!þ�!0Þ
1

e2�ð!þ�!0 Þ=��1

Proper acceleration �ðtÞ ¼ �ð1þ�ÞWðe�2�t=ð1þ�Þ=ð1þ�ÞÞ
2½�þð1þ�ÞWðe�2�t=ð1þ�Þ=ð1þ�ÞÞ�3=2

Energy flux hTuui ¼ �2

48�
1�2�e�u

ð�e�uþ1Þ2 .

TABLE III. Bogolubov coefficients and other analytically derived information for the Proex trajectory.

Bogolubov coefficient �!!0 ¼ 1
4�

ffiffiffiffiffiffiffi
!!0p ð2!0


 Þð2!
 Þið!þ!0Þ=
e��ð!þ!0Þ=ð2
Þ�ð�ið!þ!0Þ=
Þ
j�!!0 j2 ¼ !0

2�!
ð!þ!0Þ
1

e2�ð!þ!0 Þ=
�1

Proper acceleration �ðtÞ ¼ �
 Wðe
tÞ
½1þ2Wðe
tÞ�3=2

Spectrum of produced particlesa hN!i ¼ � 1
4�2!

ln ð1� e�2�!=
Þ � 1
2�


P1
m¼1 �ð0; 2�!m=
Þ

Energy flux hTuui ¼ 
2

48�
½2�Wð2e
uÞ�Wð2e
uÞ

½1þWð2e
uÞ�4 .

Total energy Est ¼ 

96�

aHere �ð0; 2�!m=
Þ is an upper incomplete gamma function.

FIG. 2. The energy flux hTuui vs time is plotted for the various
mirror trajectories. The parameters �,�, 	, and 
 have all been set
equal to 1. For the Darcx trajectory, the value � ¼ 1=2was chosen,
and for themodifiedCarlitz-Willey trajectory,� ¼ 1=3waschosen.
For the Walker-Davies trajectory, A ¼ 2 and B ¼ 1 were
chosen. The energy flux in the Carlitz-Willey case is the constant
solid line. The energy flux associated with the modified Carlitz-
Willey trajectory is the solid curve,which coincideswith theCarlitz-
Willey value at early times but then diverges, briefly resulting in a
burst of negative energybefore decaying tozero.Thefluxassociated
with theArctx trajectory is shownas the short-dashed curve, and that
of the Darcx trajectory is indicated by the long-dashed curve. The
flux fromtheProex trajectory isdepictedby thedotted curveand that
of the Walker-Davies case by the dotted-dashed curve.
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can see that the sign of the flux is closely tied with the
change in the proper acceleration of the mirror. In particu-
lar as mentioned in Sec. II, the flux is negative if the change
in the proper acceleration is toward the right and positive
otherwise.

Figures 3 and 4 show the expectation value of the
number of particles produced hNjni as a function of the

time parameter n for the various trajectories we consider.
In Fig. 3 the frequency parameter j is set to one because of
infrared divergences that occur in N0n for the Carlitz-
Willey and modified Carlitz-Willey trajectories. For the
trajectories in Fig. 4, j is set to zero because no such
divergences occur. The packets, of course, sample the
particle production discretely. We draw attention also to
the small level of particle excitation that occurs for j ¼ 1
in Fig. 3 as compared to that which occurs for j ¼ 0 in
Fig. 4. We return to this issue in Sec. VC.

There is a correlation between the number of particles
created during a given time period and the flux of energy
that occurs at that time for the Carlitz-Willey trajectory in
Fig. 3 due to the fact that, as discussed in Sec. III A, the flux
is constant in time and the number of particles hNjni is
independent of the value of the time parameter n. As can be
seen in Figs. 2 and 3, a correlation also occurs for the
modified Carlitz-Willey trajectory at early times. However,
the direct correlation is destroyed by the existence of a
negative flux of energy after the time t ¼ 0 when the
trajectory has deviated significantly from the original
Carlitz-Willey trajectory.

For the trajectories in Fig. 4, there is no direct correla-
tion between the energy flux and the number of particles
created. In fact for the Arctx trajectory, there is something
of an anticorrelation in that at about the time of peak
particle production, the flux is negative and has its greatest

magnitude. This shows clearly the limitations in using the
stress-energy tensor to describe the number of particles
created. Because of vacuum polarization effects, which can
include fluxes of negative energy, it is virtually impossible
to separate out the contribution from the created particles.

B. Frequency spectrum and simultaneous frequency
and time resolution

Wave packets can also be used to measure the frequency
spectrum of the created particles. Good frequency resolu-
tion is obtained by choosing a small value for �. As an
example consider Fig. 5 for the Arctx trajectory with a
wave packet frequency width parameter � ¼ 0:01. The
spectrum is a function of the packet index j, and we have
set n ¼ 0. Clearly good frequency resolution is obtained.

FIG. 3. The particle number as measured by wave packets,
hNjni, is plotted as a function of the packet time parameter n for

the Carlitz-Willey (filled circles) and modified Carlitz-Willey
(open circles) trajectories. In both cases the packet frequency
width parameter � has been set to

ffiffiffi
2

p
�, and the first non-

divergent frequency bin, j ¼ 1, is shown. The parameter � has
been set to one, and for the modified Carlitz-Willey trajectory,
we have taken � ¼ 1=3.

FIG. 4. The particle number as measured by wave packets,
hNjni, is plotted as a function of the packet time parameter n. In

each case the packet frequency width parameter � has been set toffiffiffi
2

p
�, and the lowest frequency bin j ¼ 0 is shown. The parame-

ters�, 	, and 
 have all been set to one. For the Darcx trajectory,
the value � ¼ 1=2 was chosen, and for the Walker-Davies case,
A ¼ 2 and B ¼ 1 were chosen. The value of N0n is denoted by
the open circles for the Arctx trajectory, the triangles for the
Darcx trajectory, the filled circles for the Proex trajectory, and
the pluses for the Walker-Davies trajectory.

FIG. 5. The particle number as measured by wave packets,
hNjni, is plotted as a function of the packet frequency parameter

j, with n ¼ 0 and � ¼ 0:01 for the Arctx trajectory.
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In principle, the wave packet formalism allows particle
production to be simultaneously resolved, within limits, in
both frequency and time. The limits, of course, are set by
the uncertainty relation. For any chosen �, the wave pack-
ets have a width in frequency �! ¼ � and an effective
gating interval (width of time over which the particle
detector is on) of �t ’ 2�=�. Thus, the time-bandwidth
product (for these packets) is 2�. It may be possible to
resolve time-dependent spectra for a process with suffi-
ciently copious particle creation and for which changes in
its spectrum occur over a long enough time interval.
However, for the trajectories studied in this paper, it has
not been possible to resolve the creation process in fre-
quency and time simultaneously, such that a significant
number of particles is found in many frequency and time
bins. Some of the mirror trajectories have confined periods
during which the acceleration peaks and is strong (i.e.,
Walker-Davies, Arctx, Darcx, and Proex). For these trajec-
tories, when we choose a relatively small value of � to
provide good frequency resolution, we find the vast major-
ity of the particles are created in the time bin n ¼ 0. In
contrast, when we choose a relatively large value of � to
gain good time resolution, we find that almost all of the
particles reside in the lowest frequency bin, j ¼ 0.
Furthermore, it is not even possible to find some inter-
mediate value of � for which some time and frequency
resolution is possible. Instead, in picking such an inter-
mediate value of �, we find that the vast majority of
particles lie in the single bin with n ¼ j ¼ 0.

A different behavior occurs for the Carlitz-Willey tra-
jectory. In this case a small � will provide adequate fre-
quency resolution, and yet not all of the particle creation
occurs in a single time bin, such as n ¼ 0. However, we
have not really succeeded in simultaneous time and fre-
quency resolution, since the Carlitz-Willey mirror gives a
spectrum that is completely time independent. This then
brings us to the modified Carlitz-Willey trajectory. The
energy flux in this case is asymptotically constant in the
distant past, but then at some point, the energy flux drops
toward zero as the acceleration falls off, and the mirror
becomes inertial. The particle creation behaves similarly.
One might hope that this trajectory would result in a
creation process that could be simultaneously resolved in
frequency and time. However, here, too, we find that the
acceleration falls off sufficiently rapidly that the transition
from creation to effectively no creation occurs within one
time bin (assuming � has been set to allow good frequency
resolution, i.e., many frequency bins within the transition
or characteristic frequency !c 	 �).

To see what seems to be happening, consider the Arctx
trajectory. In that case the parameter � is dimensionally
the inverse of time and ought to represent a characteristic
frequency !c. In fact, as Fig. 5 shows, we find the peak of
the particle creation spectrum is!c ’ 0:14�. However, the
period � of significant acceleration also depends on � and

is roughly � ’ ��1. The frequency and time scales are thus
related by a single parameter. A related factor is that the
expectation value of the total number of particles created
hNi is a fraction of unity. In other words, in an ensemble of
identically accelerated mirrors, in many cases there will be
no particles produced at all. Similar time scale and fre-
quency scale issues occur with the Darcx, Proex, and
Walker-Davies trajectories.
We speculate that a trajectory might be crafted with two

parameters: an acceleration scale �, with � ’ ��1, and a
duration of acceleration T, which satisfies T 
 �. For such
a trajectory, enough particles may be created for a long
enough period to allow a significant number of particles to
be found in many time and frequency bins, giving good
resolution. A mirror of this sort would undergo a large
change in Lorentz factor over a time 	T, and it would
appear, over that time interval, like a mirror that is
approaching a null horizon. We have not been able so far
to find a trajectory with these properties for which the
Bogolubov coefficients can be calculated analytically.
The challenge of finding significant wave packet exci-

tation that is simultaneously spread across a range of both
time and frequency bins may also lie in the inherent nature
of the time-bandwidth product of our orthonormal wave
packets. The time-bandwidth product of these packets is
2�, while the fundamental limit of the uncertainty princi-
ple is 1=2. This may be a contribution to nonuniformity in
the creation spectra, since by their construction, these
orthonormal wave packets are unable to reach the limits
of the uncertainty principle.
The fact that it is not possible to obtain significant

particle creation in simultaneous bins of both frequency
and time for the trajectories considered may have interest-
ing experimental consequences if a system that was in some
way like one of these trajectories could be studied in the
laboratory. However, the relatively small amount of particle
production that occurs might make this very difficult.

C. Total number of particles produced and their energy

In Sec. II expressions were given that allow one to
compute the total number of particles produced and their
total energy. With some mirror trajectories, we have found
one or both of these quantities to be divergent.
To compute the total number of particles produced, one

can use Eq. (2.22), and to compute their total energy, one
can use either Eq. (2.26) or Eq. (2.31). Comparison of
Eqs. (2.21), (2.22), and (2.26) shows that it is possible to
have a divergent number of particles produced and yet have
a finite total energy, provided that the divergence in the
number of particles is due to an infrared divergence in N!

and that it is not too strong.
Substitution of j�!!0 j2 into Eqs. (2.22) and (2.26) for the

Walker-Davies and Arctx trajectories results in both a finite
number of particles produced and a finite total energy for
those particles. We have evaluated hNi numerically for
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both trajectories. For the Walker-Davies trajectory, hNi
depends on the ratio 0< B=A < 1. As an example, for
B=A ¼ 1=2 we find hNi � 0:0121. For the Arctx trajec-
tory, hNi is independent of the value of the parameter � as
can easily be seen by substituting Eq. (4.5) into Eq. (2.22)
and making variable changes of the form! ¼ �x. We find
hNi � 0:0134. An interesting point is that both of these
values are small compared to unity. Thus, in an ensemble
of identical systems, in most cases there would be no
excitation of any mode, and no particles would be pro-
duced. The total energy produced for the Walker-Davies
trajectory was computed by them and is given in Eq. (3.13).
For the Arctx trajectory, it is given in Eq. (4.4). As dis-
cussed in Sec. II, the energies Est in Eq. (2.31) and Eqs in

Eq. (2.26) are the same. This can be used as a check on the
computations of the Bogolubov coefficients�!!0 . We have
computed Eqs numerically (in specific cases for the

Walker-Davies trajectories and in general for Arctx) and
found the values to be equal to those for Est.

For the other classes of trajectories besides Arctx and
Walker-Davies, the number of particles hNi diverges. For
the Proex trajectory, we have computed hN!i analytically.
Examination of the result, which is shown in Table III,
indicates an infrared divergence of the form

hN!i 	 � ln ð2�!=
Þ
!

: (5.1)

This behavior results in a divergence in the total number of
particles hNi. However, when computing Eqs in Eq. (2.26),

one multiplies hN!i by a factor of ! before integrating
over !. The result is a finite value for Eqs. We have

computed Eqs numerically and found agreement with the

expression for Est, which is given in Table III.
For the Darcx class of trajectories when ! is small, one

can divide the integral in Eq. (2.21) into two parts, one with
an integral from 0 to 	� and a second integral from 	� to1
with 1 
 � 
 !=	. In the first integral, one can evaluate
j�!!0 j2 in the limit that both !=	 and !0=	 are small. The
result is a contribution to hN!i that is proportional to 1=!.
In the second integral, ! � !0, and it is not hard to show
that the integral is finite in the limit ! ! 0. Thus, as with
the Proex class of trajectories, we find that hNi is infinite,
but Eqs is finite. We have numerically computed Eqs for

specific values of the parameter � and shown that its value
is the same as that for Est, which is given in Table II.

For the Carlitz-Willey trajectory, one can see from
the form of j�!!0 j2 that there is both an infrared
and ultraviolet divergence in the integral over !0 in
Eq. (2.21). Thus, there is a divergence in both the particle
number and the energy of the produced particles. The latter
is trivially apparent from the constant flux of energy which
occurs for these trajectories. For the modified Carlitz-
Willey class of trajectories, one can see from the form of
j�!!0 j2 in Table IV that there is still the infrared diver-
gence but no ultraviolet divergence when computing hN!i.

The infrared divergence is strong enough to make hN!i
divergent for all values of !.
One might ask what effect the packets have on those

trajectories with infrared divergences. For the Carlitz-
Willey trajectory, we were able to analytically compute
the packets, and as seen in Eq. (3.8), there is a divergence
for the packets with the lowest frequency range, j ¼ 0.
However, for all other packets, hNjni is finite, so the

divergences are not nearly as strong as for hN!i.
For the modified Carlitz-Willey class of trajectories,

there is also a divergence for packets with j ¼ 0 but not
for those with j > 0. To see this, one can divide the integral
in Eq. (2.38) into two parts such that I1 ¼

R
��
0 d!0 and

I2 ¼
R1
�� d!

0, with 0< � � 1. For the second integral,
which contains only nonzero values of!0, it is not difficult
to see that for �jn;!0 in Eq. (2.37), there are no infrared

divergences resulting from the integral over !. It can also
be seen that �jn;!0 is well enough behaved in the limit

!0 ! 1 that there are no ultraviolet divergences so long as
�> 0. For the first integral, the value of !0=� is small.
Here it is necessary to break the discussion into the cases
j ¼ 0 and j > 0. For j > 0we take a small enough value of
� so that � > !0 for all values of !0 in the first integral.
Then one can expand the function �½ið!þ �!0Þ=�� in the
expression for �!!0 in Table IV in powers of !0=!.
Keeping the leading-order term, one finds that

j�jn;!0 j � 1

2��
ffiffiffiffiffiffiffiffi
!0�

p
��������
Z ðjþ1Þ�

j�
d!

ffiffiffiffi
!

p
e½2�in=���=ð2�Þ�!

� e�ið!=�Þ ln ð!0=�Þ�ði!=�Þ
��������: (5.2)

By repeatedly integrating by parts, one can obtain a series
in inverse powers of ln ð!0=�Þ. Substituting into I1 then
shows that, to leading order, the integrand goes like
1=½!0ðln ð!0=�ÞÞ2�, which when integrated gives no diver-
gence in the limit !0 ! 0.
For j ¼ 0 the situation is different. Here one can divide

the absolute value of the integral in Eq. (2.37) into two

parts, J1 ¼
R��1

0 d! and J2 ¼
R
�
��1

d!. The analysis for

the second integral is exactly the same as for the case j > 0
with � > ��1 and 1 
 �1 
 � > 0. For the first integral,
we choose �1 to be small enough so that j2��n=��
�=2j�1 � 1. Then both !=� and !0=� are small, and

J1 � 1

2��
ffiffiffiffiffiffiffiffi
!0�

p
��������
Z ��1

0
d!

ffiffiffiffi
!

p
e�ið!=�Þ ln ð!0=�Þ �

!þ �!0

��������:

(5.3)

Making the change of variable z ¼ �ð!=�Þ ln ð!0=�Þ, the
upper limit becomes ��1 ln ð!0=�Þ, which for fixed �1

goes to infinity in the limit !0 ! 0. The resulting integral
can be computed analytically in terms of Fresnel

integrals. The result to leading order in !0 is J1 	
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�!0 ln ð!0=�Þp
. This gives a contribution to I1 that
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when integrated results in a divergence at the lower limit
!0 ¼ 0 and thus a divergence in hNjni for j ¼ 0.

For the Darcx and Proex trajectories, it turns out there is
no infrared divergence in hNjni even for j ¼ 0 and even

though hN!i diverges in the limit ! ! 0. This can be
shown by bounding hNjni by computing the absolute

values of each factor in the integrand of Eq. (2.38). The
result is

hNjni � 1

�

Z 1

0
d!0

�Z ðjþ1Þ�

j�
d!j�!!0 j

�
2
: (5.4)

It is not hard to show that for small !0, the integrand is
finite in the limit !0 ! 0 if j > 0 for both trajectories. If
j ¼ 0 then it is useful to again divide the integral over !
into two parts as was done above, except with � ! 	 and

, respectively, for the Darcx and Proex trajectories. Then
as before the analysis for J2 is the same as for j > 0. For J1
both ! and !0 are small, making it possible to expand
the terms in j�!!0 j. When this is done and the integral over
! is computed for the leading-order terms, we find that the
result is finite in the limit!0 ! 0 for the Darcx trajectories.
For the Proex trajectory, we find that to leading order, J1 	
ln!0 so that the integrand for the integral over!0 goes like
ðln!0Þ2, and a finite contribution is made to hN0ni.

As discussed in Sec. II, one can obtain an estimate of the
energy of the created particles using the packet formalism
by multiplying hNjni by the frequency in the middle of the

range for each packet and summing over j and n as in
Eq. (2.39). The resulting energy, Eep, has been computed

for the Arctx trajectory for two different values of �. For
the case shown in Fig. 5 with � ¼ 0:01, the results agreed
with Est in Eq. (4.4) to within about 0.01%. In a separate
calculation, with � ¼ 10, the agreement was at the 1%
level, which is remarkably good given the poor frequency
resolution, which might be expected to drastically skew the
energy summation.

For the Darcx class of trajectories with � ¼ 0:99,
� ¼ 1, and � ¼ 0:001, we find agreement with the values
of Est to within four digits. The result was obtained by
summing packets with n ¼ 0 and values of j ranging from
j ¼ 0 to j ¼ 1175.

For the Proex trajectory with 
 ¼ 1, a numerical com-
putation of Eep for � ¼ 5� 10�5 gave results in agreement

with Est to approximately 0:08%. Energy packets with
n ¼ 0 and with a sum from j ¼ 0 to j ¼ 12000 were
used in that calculation.

VI. CONCLUSION

We have investigated the particle production and the
energy flux that result from a massless, minimally coupled
scalar field in a two-dimensional flat space that contains an
accelerating mirror. Dirichlet boundary conditions are as-
sumed at the mirror and the field is assumed to be in the in
vacuum state. Six different types of trajectories have been

considered, including the one studied previously by Carlitz
and Willey [7] and the one studied by Walker and Davies
[22]. The other four are new and have been introduced for
this study. These trajectories are all asymptotically inertial
in the limit t ! �1, and all but the Carlitz-Willey trajec-
tory are also asymptotically inertial in the limit t ! 1.
For each trajectory it has been possible to obtain analyti-

cally the Bogolubov coefficients �!!0 as well as the proper
acceleration and the energy flux hTuui. As pointed out by
Walker [11], it is very useful to have models in which it is
possible to do analytic calculations. The four new types of
trajectories that we have provided fit this description.
Our main focus has been on the use of wave packets,

which allow the particle production to be time resolved,
and, in principle, might allow significant simultaneous
frequency resolution as well. The packets we use form a
complete orthonormal set, so that no information is lost. By
computing the Bogolubov coefficients for the packets and
integrating over the frequencies of the in modes, it is
possible to obtain the average number of particles reaching
Iþ found in a given frequency range and an approximate
time range (more specifically, a range in the null coordinate
u). Thus, this method of analysis can be thought of as
similar to what a series of particle detectors along a large
v surface would detect if each was turned on for some
relatively short period of time.
In principle, one might expect a correlation between the

time dependence of the particle production and the energy
flux hTuui. However, both vacuum polarization and particle
production effects are combined in the stress-energy ten-
sor, and it is difficult if not impossible to separate them.
The use of the wave packet formalism allows for an
unambiguous description of the time dependence of the
particle production process.
The Carlitz-Willey trajectory was designed to result in a

constant flux of energy and is of a different nature than the
other trajectories in being asymptotically null. We found an
explicit mathematical expression for this trajectory in
terms of the Lambert W function. Because of the constant
flux of energy, the total energy produced is divergent. Not
surprisingly, it is also found that the number of particles
produced per frequency interval hN!i is also divergent.
This trajectory was the only one for which we were able

to compute the number hNjni of particles associated with a
wave packet analytically. Just as the energy flux is con-
stant, we found that hNjni is independent of the value of n
and so is time independent. A divergence occurs for the
case j ¼ 0 but not for larger values of j. This infinity can
be dealt with by simply ignoring the lowest frequency
(j ¼ 0) bin. In a realistic detector, there will always be
an infrared cutoff, since it is impossible to detect particles
of arbitrarily long wavelengths. An exploration of the
effects on the frequency range for the wave packets with
j > 0 was carried out, and it was found that a Planck-type
spectrum is approached in the limit that the frequency
width of the packets vanishes.

GOOD, ANDERSON, AND EVANS PHYSICAL REVIEW D 88, 025023 (2013)

025023-14



The modified Carlitz-Willey trajectory has the same
approximate behavior as the Carlitz-Willey trajectory at
early times but then stops accelerating and approaches a
constant velocity at late times. As with the Carlitz-Willey
trajectory, the number of particles produced per frequency
interval hN!i is divergent for all!. The energy flux hTuui is
approximately constant at early times, and this results in an
infinite amount of total energy Est. Using wave packets we
again find that hNjni is divergent for j ¼ 0 but finite for all

other values of j. For j > 0we find that, as a function of the
time parameter n, hNjni is approximately constant at early

times and decreases to zero at late times as would be
expected for a trajectory that is asymptotically inertial.

The Arctx and Walker-Davies trajectories are the only
ones for which the mirror begins and ends at rest. We find a
finite number of particles hNi is produced for both along
with a finite amount of energy Est. Using wave packets we
have shown that the number of particles produced, hNjni,
increases to a maximum and then decreases over the range
of time that the mirror’s acceleration is first increasing and
then decreasing at a significant rate.

For the Darcx and Proex trajectories, the mirror begins at
rest and is asymptotically inertial in the future. In the
Darcx case, it approaches a constant speed that is less
than that of light, and in the Proex case, it approaches the
speed of light but in such a way that it is not asymptotic to a
null trajectory. For these trajectories there is an infrared
divergence in the number of particles produced but not in
the energy of the produced particles. However, there is no
divergence in hNjni for j ¼ 0. We find that the number of

particles first increases to a maximum and then decreases
during the period when the acceleration is first increasing
and then decreasing at a significant rate.

It is interesting to compare the results for the time-
dependent particle production with the average energy
flux hTuui. Not surprisingly, for the Carlitz-Willey trajec-
tory, both are constant in time, so in that sense there is a
correlation. For the modified Carlitz-Willey class of tra-
jectories, there is a similar correlation at early times. Once
the number of particles produced begins decreasing, the
correlation diminishes and even disappears due to a flux of
negative energy that occurs at intermediate times. For the
other trajectories, probably again because of the fluxes of

negative energy during certain time periods, there is little
or no correlation between the number of particles produced
and the energy flux.
Because the wave packets tile both the time and

frequency domains, it might be expected that one could
obtain time-dependent spectra for the particle produc-
tion. For each type of trajectory (except Carlitz-Willey),
the time and frequency ranges of the bins were varied. It
was found (at least for these trajectories) that simulta-
neous time and frequency resolution with significant
particle buildup in each domain is absent. The mirrors
have a single-dimensional parameter that determines
both the characteristic frequency and duration of crea-
tion, and for this reason the uncertainty principle pre-
vents one from measuring the spectral dynamics. It may
be possible to find mirror trajectories with two character-
istic scales, one that sets the acceleration and character-
istic frequency and one that sets a duration of creation.
This would allow significant particle creation in the
spectral dynamics to be measured by wave packets. We
have not found such a trajectory. Conversely, it may be a
generic feature of the quantum nature of accelerating
mirrors. Our results are in two dimensions, not four.
However, it seems unlikely that this effect of the uncer-
tainty principle is tied to the number of dimensions. If
our results are pointing to a generic effect, then it could
have important observational consequences for any
experiments that might attempt to detect the radiation
produced when a mirror accelerates.
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