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We review the OSpð1j4Þ-invariant formulation of N ¼ 1, D ¼ 4 supergravity and present its

noncommutative extension, based on a ? product originating from an Abelian twist with deformation

parameter �. After the use of a geometric generalization of the Seiberg-Witten map, we obtain an extended

(higher-derivative) supergravity theory, invariant under usual OSpð1j4Þ gauge transformations. Gauge

fixing breaks the OSpð1j4Þ symmetry to its Lorentz subgroup and yields a Lorentz-invariant extended

theory for which the classical limit � ! 0 is the usual N ¼ 1, D ¼ 4 anti–de Sitter supergravity.
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I. INTRODUCTION

We present a noncommutative (NC) extension of the
OSpð1j4Þ-invariant action of N ¼ 1, D ¼ 4 anti–de
Sitter supergravity, obtained by the use of a twisted ?
product, and a geometric generalization [1] of the
Seiberg-Witten map [2] for Abelian twists. We thus find
a higher-derivative extension of OSpð1j4Þ supergravity
where the higher-order couplings are dictated by the
noncommutative structure of the original NC action. The
resulting extended theory is geometric (diffeomorphic in-
variant) and gauge invariant under usual OSpð1j4Þ gauge
transformations.

Noncommutativity of spacetime coordinates

½x�; x�� ¼ i��� (1.1)

is a recurrent theme in physics, being advocated already
by Heisenberg in the hope that uncertainty relations be-
tween spacetime coordinates could resolve UV divergen-
ces arising in quantum field theory [3]. This motivation
still holds, in particular, for nonrenormalizable theories of
gravity in which finiteness is the only option for consis-
tency. The issue was explored initially by Snyder in
Ref. [4], and since then noncommutative geometry has
found applications in many branches of physics mainly in
the last two decades. Some comprehensive reviews can be
found in Refs. [5–11].

Relations (1.1) provide a (kinematical) way to encode
quantum properties directly in the texture of spacetime.
Field theories on noncommuting spacetime can be refor-
mulated as field theories on ordinary (commuting) space-
time but with a deformed ? product between fields. When
the deformation originates from a twist, as in the present
paper, the resulting ? product is a twisted product,
associative and noncommutative.

This product between fields generates infinitely many
derivatives and introduces a dimensionful noncommutativ-
ity parameter �. The prototypical example of a twisted

product is the Moyal-Groenewold product [12] (histori-
cally arising in phase space after Weyl quantization [13]):

fðxÞ ? gðxÞ � exp

�
i

2
��� @

@x�
@

@y�

�
fðxÞgðyÞjy!x

¼ fðxÞgðxÞ þ i

2
���@�f@�gþ � � �

þ 1

n!

�
i

2

�
n
��1�1 � � � ��n�nð@�1

� � �@�n
fÞ

� ð@�1
� � � @�n

gÞ þ � � � ; (1.2)

with a constant �. Using this deformed product, one finds
x� ? x� � x� ? x� ¼ i���, realizing the commutation
relations (1.1).
A straightforward generalization is provided by the

twisted ? product, in which the partial derivatives in
Eq. (1.2) are replaced by a set of commuting tangent
vectors XA � X�

A @�. Dealing with (super)gravity theories,

it is desirable to extend the twisted ? product to forms. This
can be done simply by replacing the tangent vectors XA,
acting on functions, with Lie derivatives along XA, acting
on forms.
Replacing products between fields with ? products

yields nonlocal actions (called twisted or NC actions),
containing an infinite number of new interactions and
higher-derivative terms. In this way, twisted Yang-Mills
theories in flat space have been constructed (see, for
example, Refs. [14–16]) as well as twisted metric gravity
[11,17]. Noncommutative D ¼ 4 vielbein gravity has been
treated in Refs. [18,19], in which deformations of confor-
mal gravity and complex vielbein gravity were considered,
and in Ref. [20], where a Uð2; 2Þ ?-gauge-invariant NC
action with constraints was proposed as a NC deformation
of Einstein gravity. More recently, twisted vielbein gravity
and its couplings to fermions [21], gauge fields [22], and
scalars [23] have been constructed as well as a NC defor-
mation of D ¼ 4, N ¼ 1 supergravity [24].
These twisted theories are invariant under deformations

of the original symmetries. For example, the NC action for
gauge fields is*leonardo.castellani@unipmn.it
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S ¼ 1

4g2

Z
TrðF�� ? F��Þ; (1.3)

where

F�� ¼ @�A� � @�A� � ðA� ? A� � A� ? A�Þ (1.4)

A� ¼ AI
�TI; TrðTITJÞ ¼ �IJ: (1.5)

The noncommutative gauge transformations

�"A� ¼ @�"� ðA� ? "� " ? A�Þ (1.6)

�"F�� ¼ �ðF�� ? "� " ? F��Þ (1.7)

leave the action invariant because of the cyclicity of the
trace and of the propertyZ

f ? g ¼
Z

g ? f (1.8)

(cyclicity of integral) holding up to boundary terms.
Noncommutativity apparently comes with a price, i.e., a

proliferation of new degrees of freedom. This can be under-
stood by considering the ? deformation of the Yang-Mills
field strength:

FI
��TI ¼ @�A

I
�TI � @�A

I
�TI � ðAI

� ? AJ
� � AI

� ? AJ
�ÞTITJ:

(1.9)

Because of the noncommutativity of the ? product, anti-
commutators as well as commutators of group generators
appear in the right-hand side, and therefore the TI must be a
basis for the whole universal enveloping algebra of G.
Thus, I runs, in principle, on the infinite set of universal
enveloping algebra elements (all symmetrized products
of the original gauge generators), and the number of inde-
pendent AI

� field components increases to infinity. This

proliferation can be drastically reduced by choosing a
specific representation for the generators TI. For example,
if the gauge group is SUð2Þ and we take its generators to be
in the defining 2� 2 representation, these are just the Pauli
matrices, and a basis for the enveloping algebra only
requires an additional matrix proportional to the unit
matrix.

We may get rid even of these additional degrees of
freedom if we use the Seiberg-Witten map, which allows
us to express all the fields appearing in the NC action
(usually called the NC fields) in terms of series expansions
in � containing only the original fields of the undeformed
theory, the so-called classical fields. The map is engineered
so that the classical gauge transformations on the classical
fields induce the NC gauge transformations on the NC
fields. In the SUð2Þ example, the map relates the four
noncommutative fields to the three classical SUð2Þ gauge
fields.

Substituting in the action the NC fields with their
expressions in terms of the classical fields yields an infinite

series in powers of �, for which the zeroth-order term is the
classical action. This higher-derivative action is invariant
under the classical gauge variations since these by con-
struction induce the NC symmetries of the NC action.
Every higher-order term in the � expansion is actually
separately invariant because the classical symmetries do
not involve �.
With this procedure, the NC deformation of vielbein

gravity, found in Ref. [21], has been reexpressed in
Ref. [1] in terms of the classical vielbein and spin connec-
tion, and its Lorentz-invariant (and higher-derivative)
geometric action has been computed up to second order
in the noncommutativity parameter [25]. The Seiberg-
Witten map was also used in Ref. [20] to compute the
first-order correction of the deformed Uð2; 2Þ gauge-
invariant and constrained theory and in Refs. [26–28] for
the MacDowell-Mansouri gauge theory of gravity. We also
mention the NC extension of SOð2; 3Þ anti–de Sitter (AdS)
gravity of Ref. [29], which contains its expansion to order
�2, and Ref. [30], in which the SW map for pure gravity is
examined at second order.
In the present paper, we apply this method to OSpð1j4Þ

supergravity. For reviews on the OSpð1j4Þ formulation
of supergravity, see, for example, Refs. [31–33]. The
classical theory contains the vielbein Va, the spin connec-
tion !ab, the gravitino c , and nondynamical auxiliary
fields (a scalar, a pseudoscalar, a vector, and a spin-1=2
fermion) necessary to ensure the full off-shell invariance
(and closure) under localOSpð1j4Þ gauge transformations.
The auxiliary fields satisfyOSpð1j4Þ-invariant constraints.
The OSpð1j4Þ symmetry can be exploited to reach a gauge
(the soldering gauge) in which the auxiliary fields take
constant values. This gauge choice breaks the supergroup
OSpð1j4Þ to its Lorentz SOð1; 3Þ subgroup and reproduces
the MacDowell-Mansouri action [34], equivalent up to
boundary terms to the action of usual N ¼ 1, D ¼ 4
anti–de Sitter supergravity. For this action, supersymmetry
is not a gauge symmetry any more since it gets broken
along with the translations [the SOð2; 3Þ boosts]. However,
supersymmetry is still ‘‘alive’’ in the gauge fixed theory.
This can be seen in two distinct ways:
(i) by solving the supertorsion constraint and passing to

second-order formalism (expressing the spin con-
nection in terms of the vielbein and the gravitino
fields) [35];

(ii) or, remaining in first-order formalism, by an
appropriate modification of the spin connection
supersymmetry variation [36].

Note that the supersymmetry transformations leaving
the gauge fixed action invariant do not close off-shell
[whereas the OSpð4j1Þ gauge variations close off-shell
by construction].
After ? deforming the product in the OSpð1j4Þ super-

gravity action and using the geometric Seiberg-Witten
map, the resulting higher-derivative theory contains the
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same fields as the classical theory and is invariant under the
same local OSpð1j4Þ symmetries.

The reason we start from the OSpð1j4Þ gauge-invariant
theory resides in that all local symmetries (except general
coordinate invariance) are contained in a gauge super-
group. The derivation of the Seiberg-Witten map in
Ref. [2] is purely algebraic, and nothing changes in the
derivation if groups are replaced by supergroups, connec-
tions by superconnections, etc. In the present paper, we
apply the map to OSpð1j4Þ superconnections and super-
matrix (adjoint) auxiliary fields, containing all the fields of
N ¼ 1, D ¼ 4 supergravity. Thus, we are guaranteed that
supersymmetry [part of the OSpð1j4Þ symmetry] survives
in the extended theory.

By choosing the same gauge as in the classical theory
[the gauge group OSpð1j4Þ is the same], we obtain an
extended theory containing only the vielbein, spin connec-
tion, and gravitino fields, reducing in the commutative
limit to N ¼ 1, D ¼ 4 AdS supergravity.

The ‘‘mother,’’ non-gauge-fixed extended theory is
OSpð1j4Þ invariant and as such is a locally supersymmetric
higher-derivative theory. The price to pay for realizing
this local gauge supersymmetry (closing off-shell) is the
presence of constrained auxiliary fields.

The plan of the paper is as follows. In Sec. II, we briefly
review OSpð1j4Þ supergravity. In Sec. III, we recall its
manifestly OSpð1j4Þ-invariant action. The noncommuta-
tive deformation is presented in Sec. IV. Section V deals
with the geometric Seiberg-Witten map, applied in Sec. VI
to obtain the extended OSpð1j4Þ supergravity action to
second order in �. Section VII contains some conclusions.

II. CLASSICAL OSpð1j4Þ SUPERGRAVITY

A. Geometric MacDowell-Mansouri action

The MacDowell-Mansouri action [34] for N ¼ 1,
D ¼ 4 supergravity can be recast in an index-free form:

S ¼ 2i
Z

TrðR ^ R�5 þ 2� ^ ���5Þ; (2.1)

where the trace is taken on spinor indices, and the two-
form curvatures R (bosonic) and � (fermionic) originate
from the one-form OSpð1j4Þ connection supermatrix:

� � � c

�c 0

 !
; � � 1

4
!ab�ab � i

2
Va�a; (2.2)

for which the corresponding OSpð1j4Þ curvature super-
matrix is

R ¼ d��� ^� � R �
�� 0

 !
: (2.3)

Immediate matrix algebra yields1

R ¼ 1

4
Rab�ab � i

2
Ra�a (2.4)

� ¼ dc � 1

4
!ab�abc þ i

2
Va�ac (2.5)

�� ¼ d �c � 1

4
�c!ab�ab þ i

2
�cVa�a; (2.6)

with

Rab � d!ab �!ac!cb þ VaVb þ 1

2
�c�abc (2.7)

Ra � dVa �!abVb � i

2
�c�ac : (2.8)

We have also used the Fierz identity for one-form
Majorana spinors:

c �c ¼ 1

4

�
�c�ac�a � 1

2
�c�abc�ab

�
(2.9)

(to prove it, just multiply both sides by �c or �cd, and take
the trace on spinor indices). The one-forms Va,!ab, and c
are, respectively, the vielbein, the spin connection, and the
gravitino field (a Majorana spinor, i.e., �c ¼ c TC, for
which C is the charge-conjugation matrix).
Carrying out the spinor trace in the action (2.1) yields the

familiar MacDowell-Mansouri action:

S ¼ 2
Z 1

4
Rab ^ Rcd"abcd � 2i �� ^ �5�: (2.10)

After inserting the curvature definitions, the action takes
the form

S ¼
Z

RabVcVd"abcd þ 4 ���a�5cVa

þ 1

2
ðVaVbVcVd þ 2 �c�abcVcVdÞ�abcd; (2.11)

with

Rab � d!ab�!ac!cb; �� dc � 1

4
!ab�abc �Dc :

(2.12)

We have dropped the topological term RabRcd�abcd
(Euler form) and used the gravitino Bianchi identity,

D� ¼ � 1

4
Rab�ab; (2.13)

and the gamma-matrix identity 2�ab�5 ¼ i�abcd�
cd to

recognize that 1
2R

ab �c�cdc �abcd � 4i ���5� is a total

derivative. Bianchi identities are easily obtained by taking
the exterior derivative of the curvature definitions in
Eq. (2.3) or in Eq. (2.12). The action (2.11) describes
N ¼ 1, D ¼ 4 anti–de Sitter supergravity, the last term
being the supersymmetric cosmological term. After

1We omit wedge products between forms, and all index con-
tractions involve the Minkowski metric �ab.
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rescaling the vielbein and the gravitino as Va ! 	Va, c !ffiffiffiffi
	

p
c and dividing the action by 	2, the usual (Minkowski)

N ¼ 1, D ¼ 4 supergravity is retrieved by taking the limit
	 ! 0. This corresponds to the Inonü-Wigner contraction
of OSpð1j4Þ to the super-Poincaré group.

The action (2.1) can be rewritten even more compactly
using the OSpð1j4Þ curvature supermatrix R:

S ¼ 4
Z

STr

�
R

�
1þ �2

2

�
R�

�
; (2.14)

where STr is the supertrace and � is the following constant
matrix:

� � i�5 0

0 0

 !
: (2.15)

All boldface quantities are 5� 5 supermatrices.

B. OSpð1j4Þ gauge variations
The gauge transformation of the connection �

��� ¼ d����þ ��; (2.16)

where � is the OSpð1j4Þ gauge parameter,

� �
1
4"

ab�ab � i
2"

a�a �

�� 0

 !
; (2.17)

becomes, on the component fields entering �,

�!ab ¼ d"ab �!ac"cb þ!bc"ca � "aVb

þ "bVa � ���abc (2.18)

�Va ¼ d"a �!ab"b þ "abVb þ i ���ac (2.19)

�c ¼ d�� 1

4
!ab�ab�þ i

2
Va�a�

þ 1

4
"ab�abc � i

2
"a�ac : (2.20)

Similarly, from the gauge variation of the curvature R,

��R ¼ �R�þ �R; (2.21)

we find the gauge transformations of the curvature
components:

�Rab ¼ �Rac"cb þ Rbc"ca � "aRb þ "bRa � ���ab�

(2.22)

�Ra ¼ �Rab"b þ "abRb þ i ���a� (2.23)

�� ¼ � 1

4
Rab�ab�þ i

2
Ra�a�þ 1

4
"ab�ab�� i

2
"a�a�:

(2.24)

As is well known, the action (2.14), although a bilinear in
the OSpð1j4Þ curvature, is not invariant under the
OSpð1j4Þ gauge transformations. In fact, it is not a Yang-
Mills action (involving the exterior product of R with its
Hodge dual) nor a topological action of the form

R
RR; the

constant supermatrix � ruins the OSpð1j4Þ gauge invari-
ance, and breaks it to its Lorentz subgroup. This can be
seen easily by noting that the gauge parameter in Eq. (2.17)
commutes with � only when restricted to Lorentz rotations
("a ¼ � ¼ 0) so that Lorentz rotations indeed leave the
action invariant since the supertrace is cyclic. On the
other hand, a gauge parameter supermatrix containing
also translation and/or supersymmetry parameters does
not commute with �, and therefore the action is not
invariant under OSpð1j4Þ translations or supersymmetry
transformations.
However, supersymmetry is still there; to see it, one

needs to modify the !ab supersymmetry transformation.

C. Supersymmetry

The (nonvanishing) variation of the action (2.14) under
gauge supersymmetry can be computed rather quickly by
using �R ¼ ½�;R�with � containing only the off-diagonal
fermionic supersymmetry parameter �. The result is

�S ¼ �4
Z

Ra ���a�5�: (2.25)

Now, consider instead the variation of the action under an
arbitrary variation of the spin connection !ab, i.e., the
variation that defines the !ab field equation. To compute
it with a minimum of algebra, first vary Eq. (2.14) with
respect to �, and then set �Va ¼ �c ¼ 0 in �� as
defined by Eq. (2.2). The result is

�S ¼ 16
Z

RaVb�!cd�abcd: (2.26)

Requesting this variation to vanish for arbitrary �!ab

yields the spin connection field equation Ra ¼ 0.
Thus, if we consider a supersymmetry variation of the

action, where the variation of !ab is modified by an extra
piece (in addition to its gauge variation),

�!ab ¼ �gauge!
ab þ �extra!

ab; (2.27)

the corresponding variation of the action (2.14) will be

�S ¼ �4
Z

Rað ���a�5�� 2�extra!
bcVd�abcdÞ: (2.28)

This variation can be made to vanish in two distinct ways:
(1) The first is by enforcing the constraint Ra ¼ 0,

which is really equivalent to the field equation of
!ab. As is well known, Ra ¼ 0 allows us to express
the spin connection !ab in terms of the vielbein and
gravitino fields. Substituting back !abðV; c Þ in the
action leads to the supersymmetric action of AdS
supergravity in second-order formalism. In this
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formalism, one never needs to vary the fields inside
the ‘‘package’’ !abðV; c Þ since any variation of S
due to �!ab vanishes identically, being proportional
to Ra (then one works in the so-called ‘‘1.5 order
formalism’’).

(2) The second is by choosing �extra!
ab so that

���a�5�� 2�extra!
bcVd�abcd ¼ 0: (2.29)

This equation can be solved for �extra!
ab in the

same way one solves Ra ¼ 0 for !ab. The result is

�extra!
ab ¼ 1

2
�abcdð ��de�c�5�þ ��ec�d�5�

� ��cd�e�5�ÞVe; (2.30)

where ��cd are the components along the vielbein
basis of the gravitino curvature, i.e., �� � ��cdV

cVd.
Thus, the first-order action (2.14) is invariant under the

supersymmetry transformations, given by Eq. (2.20) for the
vielbein and the gravitino,

�Va ¼ �i ���ac ; �c ¼ d�� 1

4
!ab�ab� � D�;

(2.31)

and by the modified rule for !ab:

�!ab ¼ �gauge!
ab þ �extra!

ab

¼ � ���abc þ 1

2
�abcdð ��de�c�5�þ ��ec�d�5�

� ��cd�e�5�ÞVe: (2.32)

More details can be found, for example, in Refs. [32,33].

III. MANIFESTLY OSpð1j4Þ-INVARIANTACTION

Can we reformulate supergravity in an explicit
OSpð1j4Þ-invariant way? The answer is yes [37–40] and
generalizes the SOð2; 3Þ formulation of AdS gravity of
Refs. [40–43]. Indeed, looking at Eq. (2.14), we see that,
promoting the constant matrix � to a field supermatrix �
transforming under OSpð1j4Þ as

�� ¼ ���þ ��; (3.1)

the action S becomes

S ¼
Z

STr

�
R

�
1þ�2

2

�
R�

�
(3.2)

and is manifestly OSpð1j4Þ invariant. By doing so, we are
introducing new, auxiliary fields contained in �. We have
to ensure, however, that a particular gauge choice exists
such that � reduces to the constant supermatrix �; only if
this gauge choice exists, the theory is equivalent to the one
described by Eq. (2.14). To satisfy this requirement, we
choose � in the symmetric (traceless) five-dimensional
representation of OSpð1j4Þ [37]:

�ðxÞ �
1
4
ðxÞ þ i�ðxÞ�5 þ�aðxÞ�a�5 �ðxÞ

� ��ðxÞ 
ðxÞ

 !
: (3.3)

Now, translations and supersymmetries ofOSpð1j4Þ can be
used to set �a and � to zero [37]. Moreover, the
OSpð1j4Þ-invariant constraint

�3 þ� ¼ 0 (3.4)

enforces 
 ¼ 0 and � ¼ �1, reducing � to the con-
stant supermatrix�� (ignoring the trivial solution� ¼ 0.
If we want to exclude it, we can instead impose the
OSpð1j4Þ-invariant constraints STrð�2Þ ¼ 4ðconstÞ2,
STrð�3Þ ¼ 0; see Ref. [38]). The simplest way to imple-
ment the constraint (3.4) is to add a [OSpð1j4Þ-invariant]
Lagrange multiplier term in the action,

S� ¼
Z

STrð��ð�2 þ 1Þ�D�D�D�D�Þ; (3.5)

where the Lagrange multiplier �ðxÞ is proportional to the
unit matrix, i.e., �ðxÞ ¼ 	ðxÞ1, generalizing the analogous
term in the SOð2; 3Þ-invariant formulation of gravity (see,
for example, Refs. [42,43]).
Another interesting possibility is to give dynamics

(cf. Ref. [37]) to the fields 
ðxÞ and �ðxÞ with a potential
admitting a stable minimum for the values 
 ¼ 0 and
� ¼ const. In this paper, the constrained auxiliary fields
are considered as background fields, on the same footing of
the background vector fields that define the ? product (see
the next section). We do not introduce Higgs fields to break
spontaneously the OSpð1j4Þ invariance. The breaking of
OSpð1j4Þ, and contact with AdS D ¼ 4 supergravity, is
made by explicit gauge fixing.
The OSpð1j4Þ gauge-invariant formulation of N ¼ 1,

D ¼ 4 anti–de Sitter supergravity is our starting point for
a noncommutative supersymmetric extension.

IV. NONCOMMUTATIVE OSpð1j4Þ
SUPERGRAVITY

A. NC action

The NC theory is obtained by a ? deformation of the
action in Eq. (3.2):

S ¼
Z

STr

�
R ?

�
1þ� ?�

2

�
^? R ?�

�
; (4.1)

where the curvature two-form R is now

R ¼ d��� ^? �; (4.2)

and the ?-exterior product between forms is defined as
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^? 

0 �X1

n¼0

�
i

2

�
n
�A1B1 � � ��AnBnð‘A1

� ��‘An

Þ

^ ð‘B1
� � �‘Bn


0Þ
¼ 
^
0 þ i

2
�ABð‘A
Þ^ ð‘B
0Þ

þ 1

2!

�
i

2

�
2
�A1B1�A2B2ð‘A1

‘A2

Þ^ ð‘B1

‘B2

0Þþ��� ;

(4.3)

where ‘A are Lie derivatives along commuting vector fields
XA. This noncommutative product is associative due to
½XA; XB� ¼ 0. If the vector fields XA are chosen to coincide
with the partial derivatives @�, and if 
, 
0 are zero-forms,

then 
 ? 
0 reduces to the well-known Moyal-Groenewold
product [12].

The ?-gauge transformations of the NC fields are

��� ¼ d��� ? �þ � ?� (4.4)

��� ¼ �� ? �þ � ?�: (4.5)

Recalling the ?-gauge transformation of the curvature
induced by Eq. (4.4),

��R ¼ �R ? �þ � ?R; (4.6)

and the cyclicity of the supertrace and of the integral,2 the
action (4.1) is manifestly invariant under the ?-gauge
symmetry.

Because of noncommutativity, the ?-symmetry group is
enhanced to Uð1; 3j1Þ so as to contain all enveloping
algebra generators. Thus, the NC one-form connection is
given by

�¼ � c

�c w

 !
;

��1

4
!ab�abþ i!Iþ ~!�5� i

2
Va�a� i

2
~Va�a�5;

(4.7)

and correspondingly the gauge parameter supermatrix �
becomes

� ¼ " �

�� �

 !
;

� � 1

4
"ab�ab þ i"I þ ~"�5 � i

2
"a�a � i

2
~"a�a�5;

(4.8)

containing all the gauge parameters of the superalgebra
Uð1; 3j1Þ.

The curvature supermatrix R,

R � R �
�� r

 !
; (4.9)

defined in Eq. (4.2), is now given by

R ¼ d��� ^? �� c ^?
�c (4.10)

� ¼ dc �� ^? c � c ^? w (4.11)

�� ¼ d �c � �c ^? �� w ^?
�c (4.12)

r ¼ dw� �c ^? c � w ^? w; (4.13)

where R has components along the complete Dirac basis.
As usual in NC theories, the algebra of gauge trans-

formations closes as follows:

½��1 ; ��2� ¼ ��1?�2��2?�1 : (4.14)

Consistency with the ?-gauge transformations requires
for the zero-form � a similar expansion:

�¼ � �

� �� 


 !
;

�� i

4
�ab�ab þ 1

4

Iþ i��5 þ�a�a þ ~�a�a�5:

(4.15)

The crucial difference between the two supermatrix fields
� and � (besides their different form degree) is their
commutative limit. We will see in Sec. VI how the
Seiberg-Witten map ensures that in the � ! 0 limit,
� contains only C-antisymmetric gamma matrices
[cf. Eq. (2.2)] and � only C-symmetric gamma matrices
[cf. Eq. (3.3)].
In analogy with the classical case, we also require the

Uð1; 3j1Þ-invariant constraint,
� ?� ?�þ� ¼ 0; (4.16)

reducing to Eq. (3.4) for � ! 0. In an alternative, we can
require STrð� ?�Þ ¼ 4ðconstÞ2, STrð� ?� ?�Þ ¼ 0.

B. Hermiticity conditions and reality of the NC action

In the expansions (4.7) and (4.15), all fields are taken to
be real. This is equivalent to the relations

�y ¼��0��0; �y ¼ �0��0; �0 �
�0 0

0 �1

 !

(4.17)

due to �ab and �5 being �0 anti-Hermitian (i.e., �y
ab ¼

��0�ab�0, etc.), while 1, �a, and �a�5 are �0-Hermitian.
Noting that �2

0 ¼ 1 and that the �0 anti-Hermiticity of �
implies �0 anti-Hermiticity ofR, one easily proves that the
NC action is real.

C. Charge-conjugation invariance

The NC action is also invariant under substitution of the
fields by their charge conjugates,

2Twisted differential geometry is treated, for example, in
Ref. [11]; see the appendix of Ref. [24] for a summary.
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�c � �C�1�TC ) Rc ¼ �C�1RTC;

�c � C�1�TC; C � C 0

0 1

 !
;

(4.18)

simultaneously changing � into �� in the ? products.
Indeed,

Sc ¼
Z

Str

�
C�1RTC

�
1þ 1

2
C�1�TCC�1�TC

�

�C�1RTCC�1�TC

�
��

¼
Z

Str

�
RT

�
1þ 1

2
�T�T

�
RT�T

�
��

¼
Z

Str

�
�R

�
1þ 1

2
��

�
R

�
T

�

¼
Z

Str

�
R

�
1þ 1

2
��

�
R�

�
T

�
¼ S; (4.19)

using cyclicity of the integral and of the supertrace and
invariance of the supertrace under matrix transposition. We
have defined ðABC . . .Þ� to be the ? (exterior) product
between the forms A; B; C . . . and ðABC . . .Þ�� to be the
same product with opposite �. Note that, for example,
ðABÞT� ¼ �ðBTATÞ�� for AðxÞ, BðxÞ matrix valued fields

(the minus sign when A and B are both forms of odd
degree), i.e., the transposition acts only on the matrix
structure of A and B. To interchange the ordering
of A and B as functions of x, one needs � ! �� since
ðf ? gÞ� ¼ ðg ? fÞ��, as follows from the definition (1.2).

V. GEOMETRIC SEIBERG-WITTEN MAP

The results of this section hold for any gauge group.

Here, we denote by �̂ the NC gauge field and by "̂ the NC

gauge parameter. The Seiberg-Witten map relates �̂ to the
ordinary � and "̂ to the ordinary " so as to satisfy

�̂ð�Þ þ �̂"̂�̂ð�Þ ¼ �̂ð�þ �"�Þ; (5.1)

with

�"�� ¼ @�"þ "�� ���"; (5.2)

�̂"̂�̂� ¼ @�"̂þ "̂ ? �̂� � �̂� ? "̂: (5.3)

In words, the dependence of the noncommutative gauge
field on the ordinary gauge field is fixed by requiring that

ordinary gauge variations of � inside �̂ð�Þ produce the

noncommutative gauge variation of �̂.
Similarly noncommutative ‘‘matter fields’’ are related to

the commutative ones by requiring

�̂ð�;�Þ þ �̂"̂�̂ð�;�Þ ¼ �̂ð�þ�"�;�þ�"�Þ: (5.4)

The conditions (5.1) and (5.4) are satisfied if the
following differential equations in the noncommutativity
parameter �AB hold [1,2]:

@

@�AB
�̂ ¼ i

4
f�̂½A; ‘B��̂þ R̂B�g?; (5.5)

@

@�AB
�̂ ¼ i

4
f�̂½A; LB��̂g?; (5.6)

@

@�AB
"̂ ¼ i

4
f�̂½A; ‘B�"̂g?; (5.7)

where we have the following:

(i) �̂A, R̂A are defined as the contraction iA along

the tangent vector XA of the exterior forms �̂, R̂,

i.e., �̂A � iA�̂, R̂A � iAR̂.
(ii) The bracket ½AB� denotes antisymmetrization of the

indices A and B with weight 1, so that, for example,

�̂½AR̂B� ¼ 1
2 ð�̂AR̂B � �̂BR̂AÞ. The bracket f ; g? is

the usual ? anticommutator, for example,
f�A; RBg? ¼ �A ? RB þ RB ?�A.

(iii) The second differential equation holds for fields
transforming in the adjoint representation. Notice

that �̂ can also be an exterior form. The ‘‘fat’’ Lie
derivative LB is defined by LB � ‘B þ LB where
LB is the covariant Lie derivative along the tangent

vector XB; it acts on the field �̂ as

LB�̂ ¼ ‘B�̂� ½�̂B; �̂�?;
with ½�̂B; �̂�? ¼ �̂B ? �̂� �̂ ? �̂B. In fact, the
covariant Lie derivative LB can be written in Cartan
form:

LB ¼ iBDþDiB; (5.8)

where D is the covariant derivative.
The differential equations (5.5), (5.6), and (5.7) hold for
any Abelian twist defined by arbitrary commuting vector
fields XA [1]. They reduce to the usual Seiberg-Witten
differential equations [2] in the case of a Moyal-
Groenewold twist, i.e., when XA ! @�.

We can solve these differential equations order by order

in � by expanding �̂, "̂, and �̂ in power series of �:

�̂ ¼ �þ�1 þ�2 . . .þ�n . . . (5.9)

"̂ ¼ "þ "1 þ "2 . . .þ "n . . . (5.10)

�̂ ¼ �þ�1 þ�2 . . .þ�n . . . ; (5.11)

where the fields �n, "n, and �n are homogeneous
polynomials in � of order n. By multiplying the
differential equations by �AB and using the identities
�AB @

@�AB
�nþ1 ¼ ðnþ 1Þ�nþ1 and similarly for "nþ1 and

�nþ1, we obtain the recursive relations:

�nþ1 ¼ i�AB

4ðnþ 1Þ f�̂A; ‘B�̂þ R̂Bgn?; (5.12)
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�nþ1 ¼ i�AB

4ðnþ 1Þ f�̂A; LB�̂gn?; (5.13)

"nþ1 ¼ i�AB

4ðnþ 1Þ f�̂A; ‘B"̂gn?; (5.14)

where, for any field P (also composite, as, for example,

f�̂A; LB�̂g?), Pn denotes its component of order n in �.
These recursion relations reduce to the ones found in
Ref. [44] in the special case of a Moyal twist.

In the following, we omit the hat denoting noncommu-
tative fields, the ? and ^? products, and simply write f ; g,
½ ; � for f ; g?, ½ ; �?.

If P and Q are forms in the adjoint representation of the
gauge group (i.e., if �"P ¼ �P"þ "P, etc.), the follow-
ing recursion relation for the product PQ holds [25]:

ðPQÞnþ1 ¼ i�AB

4ðnþ 1Þ ðf�A; LBðPQÞg þ 2LAPLBQÞn:
(5.15)

Some other useful identities are [25]

�ABLALBP ¼ � 1

2
�ABfRAB; Pg (5.16)

�ABLA�B ¼ �ABRAB (5.17)

�AB
Z

Trðf�A; LBðPQÞg þ 2LAPLBQÞ

¼ �AB
Z

TrðfRAB; PgQÞ; (5.18)

where RAB � iBiAR. Finally, using Eq. (5.15), one can find
the recursion relation for the curvature:

Rnþ1 ¼ i�AB

4ðnþ 1Þ ðf�A; LBRg � ½RA; RB�Þn: (5.19)

Some basic formulas of Cartan calculus, used in deriving
the above identities, are listed in Appendix A.

We list below the first-order corrections to the classical
OSpð1j4Þ fields and curvatures, obtained by using the
general recursion formulas (5.12), (5.13), and (5.19) for
n ¼ 0. On the right-hand sides, all products are ordinary
exterior products, and all fields are classical.

A. OSpð1j4Þ fields and curvatures at first order in �

1. � connection components

�1 ¼ i

4
�ABðf�A; ‘B�þ RBg þ c A‘B �c

þ ‘Bc �c A þ c A
��B þ �B

�c AÞ (5.20)

c 1 ¼ i

4
�ABð�A‘Bc þ‘B�c Aþ�A�BþRBc AÞ (5.21)

w1 ¼ i

4
�ABð �c A‘Bc þ‘B �c c Aþ �c A�Bþ ��Bc AÞ: (5.22)

2. � field components

�1 ¼ � 1

4
�ABðf�A; �5�B ��B�5g þ c A

�c B�5Þ
(5.23)

�1 ¼ � 1

4
�ABð2�A�5c B þ �5�Bc AÞ (5.24)


1 ¼ � 1

2
�ABð �c a�5c BÞ: (5.25)

3. R curvature components

R1 ¼ i

4
�ABðf�A; LBRg � ½RA; RB�

þ f�A;�c B
��þ � �c Bg þ c ALB ��þ LB� �c A

� c A
�c BRþ Rc B

�c A � 2�A
��BÞ (5.26)

�1 ¼ i

4
�ABð�AðLB�þ Rc BÞ � c Að �c B�þ ��c BÞ

þ ð� �c B � c B
��Þc A þ LBRc A � 2RA�BÞ (5.27)

r1 ¼ i

4
�ABð �c ALB�þ LB ��c A þ 2 �c ARc B � 2 ��A�BÞ:

(5.28)

VI. EXTENDED OSpð1j4Þ SUPERGRAVITYACTION

We now discuss the � expansion of the NC action (4.1),
where the NC supermatrix fields � and � have been
substituted by their SW expansion in terms of the classical
fields.

A. Action is even in �

We first note that the SW map is such that

�c
� � �C�1�T

�C ¼ ���;

) Rc
� ¼ �C�1RT

�C ¼ R��

(6.1)

�c
� � C�1�T

�C ¼ ���; (6.2)

where the � dependence is explicitly indicated as a sub-
script. The proof by induction, using Eqs. (5.12) and (5.13),
is straightforward. Suppose that relations (6.1) hold up to
order �n. Then,
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�C�1ð�TÞnþ1
� C¼ �i�AB

4ðnþ1Þ ðC
�1�T

�CC
�1ð‘B�þRÞT�C

þC�1ð‘B�þRÞT�CC�1�T
�CÞn

¼ �i�AB

4ðnþ1Þ ð���ð‘B�þRÞ��

þð‘B�þRÞ�����Þn ¼�nþ1�� :

(6.3)

Similarly, one proves Eq. (6.2). Exploiting now the invari-
ance of the NC action S under charge conjugation, proven
in Sec. IV, and using the relations (6.1) and (6.2), one
finally finds

S� ¼ Sc� ¼ S��; (6.4)

i.e., the NC action S is even in �. Therefore, the � expan-
sion of S has the form

S ¼ S0 þ S2 þ S4 þ � � � ; (6.5)

and the first nonvanishing correction to the classical action
S0 is at order �2.

Note that the relations (6.1) and (6.2) imply the follow-
ing conditions on the NC component fields:

!ab
� ¼ !ab��; Va

� ¼ Va��; C �c T
� ¼ c�� (6.6)

!� ¼ �!��; ~!� ¼ � ~!��; ~Va
� ¼ � ~Va

�� (6.7)

and


� ¼ 
��; �� ¼���; ~�a
� ¼ ~�a

��; C ��T� ¼ ���

(6.8)

�ab
� ¼ ��ab

��; �a
� ¼ ��a

��; (6.9)

where the � dependence of the NC fields is indicated with a
subscript. Thus, in the limit � ! 0, we see that only !ab,

Va, and c survive in �, and only 
, �, ~�a, and � survive
in�, in agreement with the classical fields in Eqs. (2.2) and
(3.3). Finally, we recall thatC �c T

� ¼ c�� (and similarly for

�) is the noncommutative definition for a Majorana spinor
[21,24], consistent with the NC gauge transformations and
reducing to the usual definition for � ¼ 0.

B. Action at order �2

We can compute the �2 correction with the help of the
recursion relations (5.15) for composite fields and the
identities at the end of Sec. V. The result reads

S2 ¼ S2RR� þ S2R��R�; (6.10)

with

S2RR� ¼ � 1

16
�AB�CD

Z
STr

�
RABRCDRR�þ 1

2
fRCD; RRgRAB�� 2RACRBDfRR;�g þ fRAB; LCRgLDR�

þ fRAB;�gLCRLDR�þ 2fRAC; LDRg½LBR;�� � fRCD; RARBgR�� fRCD; RgRARB�

� RABfRCRD; Rgf�; RABg þ RABLCðRRÞLD�þ RRLCRABLD�� 2LAðRCRDÞfLBR:�g
þ 2LARðLCLBRÞLD�� LCRALDRBR�� 2RLCðRARBÞLD�� 2RLCRALDRB�

þ 2iAðRCRDÞðfRB; R�g þ ½RB;�R�Þ þ 2RARBLCRLD�þ 4RARBRCRD�

�
; (6.11)

S2R��R� ¼ � 1

16
�AB�CD

Z
STr

��
1

2
fRCD; fRAB; R��gg � fRCD; fRARB�;�gg þ fRCD; LARf�; LB�gg

þ fRCD; RLA�LB�g þ fRCD;�LARLB�g � ffRAC; RBDg; R��g þ ½LCRAB; LDðR��Þ�
þ fRAB; LCRLDð��Þ � RCRD��þ RLC�LD�g � ½LCðRARBÞ; LD�� � fLCRALDRB�;�g
þ f½iAðRCRDÞ; RB��;�g þ LCLAðR�ÞLDLB�þ ððLCLARÞLD�þ fRAC; LDRg�� LAðRCRD�ÞÞLB�

þ LAðR�ÞfRBC; LD�g þ LCRLDLA�LB�þ RfRAC; LD�gLB�þ ½LCðLARLB�Þ; LD��
þ fLCLARLDLB�þ fRAC; LDRgLB�� LAðRCRDÞLB�þ LARfRBC; LD�g;�g

�
R�

þ 2

�
1

2
fRAB; R��g � fRARB�;�g þ LAðR�ÞLB�þ fLARLB�;�g

�
ðLCRLD�� RCRD�Þ

�
: (6.12)

Here, all products are ordinary exterior products
between classical fields. These corrections to the
classical OSpð1j4Þ action are invariant under local (or-
dinary) OSpð1j4Þ gauge variations, as is manifest since

all quantities appearing in S2 are gauge covariant
and transform in the adjoint (i.e., as commutators
with the gauge parameter). The SW map is designed to
ensure this invariance; to find explicitly gauge invariant
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corrections, order by order in �, is a powerful check on
the computations.

To recover the usual N ¼ 1, D ¼ 4 AdS supergravity
(without auxiliary fields) in the � ! 0 limit, one still needs
to break OSpð1j4Þ to its Lorentz subgroup. This is done
exactly as in the classical case by choosing the gauge for
which � becomes the constant supermatrix � defined in
Eq. (2.15) (the constrained auxiliary fields take constant
values). This gauge breaks translations and supersymmetry.
We have seen how supersymmetry can be uncovered in the
classical (� ¼ 0) gauge fixed action. The question whether
a hidden supersymmetry is present also in the gauge fixed
extended (� � 0) action is left to future investigations.

VII. CONCLUSIONS

The fascinating idea that (super)gravity has some kind of
conformal phase, before breaking occurs and dimensionful
constants emerge, is rather old, and the OSpð4j1Þ actions
we have been discussing are part of this idea.

The result we have presented here is a noncommutative
extension of OSpð4j1Þ supergravity, the novelty being on
one side aD ¼ 4 supergravity action S invariant under local
? supersymmetry (part of the supergroup noncommutative
gauge symmetry) and on the other side explicit invariance of
S under diffeomorphisms, thanks to a geometrical formula-
tion of Abelian twists. Previous works have addressed non-
commutative extensions of MacDowell-Mansouri gravity
actions, but without treating their supersymmetric versions.

We have then used a generalization of the Seiberg-Witten
map (adapted to Abelian twists and suitably ‘‘geometrized’’),
obtaining a higher-derivative D ¼ 4 supergravity, with con-
strained auxiliary fields, invariant under the usual gauge trans-
formations of the whole supergroup OSpð1j4Þ. Recursion
formulas for theSWhigher-order correctionshavebeenapplied
to compute the �2 correction to the classicalOSpð1j4Þ action.

In short, noncommutativity has been used as a guide to
construct an extended, locally supersymmetric higher-
derivative theory with the same symmetries of its classical
� ! 0 limit.
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APPENDIX A: CARTAN FORMULAS

The usual Cartan calculus formulas simplify if we
consider commuting vector fields XA and read

‘A ¼ iAdþ diA; LA ¼ iADþDiA (A1)

½‘A; ‘B� ¼ 0; ½LA; LB� ¼ iAiBR (A2)

½‘A; iB� ¼ 0; ½LA; iB� ¼ 0 (A3)

iAiB þ iBiA ¼ 0; d � d ¼ 0; D �D ¼ R: (A4)

APPENDIX B: GAMMA MATRICES IN D ¼ 4

We summarize in this Appendix our gamma-matrix
conventions in D ¼ 4:

�ab ¼ ð1;�1;�1;�1Þ; f�a; �bg ¼ 2�ab;

½�a; �b� ¼ 2�ab;
(B1)

�5 � i�0�1�2�3; �5�5 ¼ 1; "0123 ¼�"0123 ¼ 1;

(B2)

�y
a ¼ �0�a�0; �y

5 ¼ �5 (B3)

�T
a ¼ �C�aC

�1; �T
5 ¼ C�5C

�1;

C2 ¼ �1; Cy ¼ CT ¼ �C:
(B4)

1. Useful identities

�a�b ¼ �ab þ �ab (B5)

�ab�5 ¼ i

2
�abcd�

cd (B6)

�ab�c ¼ �bc�a � �ac�b � i"abcd�5�
d (B7)

�c�ab ¼ �ac�b � �bc�a � i"abcd�5�
d (B8)

�a�b�c ¼ �ab�c þ �bc�a � �ac�b � i"abcd�5�
d (B9)

�ab�cd ¼ �i"abcd�5 � 4�½a
½c�

b�
d� � 2�ab

cd (B10)

Trð�a�
bc�dÞ ¼ 8�bc

ad (B11)

Trð�5�a�bc�dÞ ¼ �4i "abcd; (B12)

where �ab
cd � 1

2ð�a
c�

b
d��b

c�
a
dÞ, �rse

abc� 1
3!ð�r

a�
s
b�

e
cþ5termsÞ,

and indices’ antisymmetrization in square brackets has
total weight 1.

2. Charge conjugation and Majorana condition

Dirac conjugate �c � c y�0 (B13)

Charge conjugate spinor c C ¼ Cð �c ÞT (B14)

Majorana spinor c C ¼ c ) �c ¼ c TC: (B15)
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