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We study non-self-dual classical solutions in the CPN�1 model with ZN twisted boundary conditions on

the spatially compactified cylinder. These solutions have finite, and fractional, classical action and

topological charge, and are ‘‘unstable’’ in the sense that the corresponding fluctuation operator has negative

modes. We propose a physical interpretation of these solutions as saddle point configurations whose

contributions to a resurgent semi-classical analysis of the quantum path integral are imaginary non-

perturbative terms that must be cancelled by infrared renormalon terms generated in the perturbative sector.
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I. INTRODUCTION

Recent work has emphasized the physical significance
of ‘‘bions,’’ topologically trivial vacuum configurations
that are locally molecules of instantons and anti-instantons,
for the study of confinement and chiral symmetry breaking
in QCD and supersymmetric gauge theory [1–6]. These are
extensions of important related early work by Yung [7] and
Rubakov and Shevkov [8]. Using spatial compactification
and the principle of continuity, in gauge theories and
CPN�1 models a correspondence has been demonstrated
between infrared renormalons and certain fractionalized
nonperturbative bion (and bion-molecule) objects [9–12].
Motivated by these results, in this paper we study non-self-
dual classical solutions of the CPN�1 model with twisted
boundary conditions on the spatially compactified cylinder.
These non-self-dual solutions are solutions to the second-
order classical equations of motion, but are not solutions to
the first-order instanton equations. They have finite action,
but are ‘‘unstable’’ in the sense that the fluctuation operator
around these classical solutions has negative modes, and so
these solutions are saddle points of the action rather than
minima. They were found and classified by Din and
Zakrzewski [13,14] for CPN�1 on R2 and S2. Here we
investigate these solutions on the spatially compactified
cylinder, S1

L � R1, with ZN twisted boundary conditions,
and show that the non-self-dual solutions fractionalize with
a rich pattern of actions and charges, which can be identi-
fied locally with fractionalized instantons that occur in
twisted CPN�1 models [15–18].

Our motivation is to propose a new physical interpre-
tation of these ‘unstable’ finite action classical solutions,
in light of recent work on the CPN�1 model using resur-
gent asymptotic analysis [11,12], in which the perturba-
tive infrared renormalons of CPN�1 were identified with
fractionalized multi-instanton configurations [instanton–
anti-instanton bions and bion-molecules] in the non-
perturbative sector. This identification relies crucially
on the spatial compactification, which regularizes the
otherwise-ill-defined (due to the instanton scale modulus
problem) nonperturbative instanton gas description, and

generates ZN twisted boundary conditions, which in turn
lead to the appearance of fractionalized instanton con-
figurations. Certain multi-instanton amplitudes produce
imaginary non perturbative contributions which were
shown to cancel against terms produced by the analysis
of the non-Borel-summable (due to infrared renormalons)
perturbative sector. Taken together, as a resurgent semi-
classical expansion, the imaginary ambiguities in the
perturbative and nonperturbative sectors cancel, render-
ing the theory fully self-consistent. This is a concrete field
theoretic realization of the Bogomolny-Zinn-Justin can-
cellation mechanism of quantum mechanics [19–21].
The analysis of CPN�1 bion amplitudes in [11,12], and

in the related Yang-Mills studies in [9,10], was based on
the standard instanton calculus approach that considers the
interactions amongst the constituents of classical configu-
rations consisting of far-separated instantons and anti-
instantons [7,22–25]. These bions and bion-molecules are
approximate classical solutions, and for certain alignments
and fermion content, the bions or bion-molecules have
unstable negative modes leading to imaginary nonpertur-
bative contributions [9–12]. However, we point out here
that in precisely these two asymptotically free quantum
field theories, 4d Yang-Mills theory and 2d CPN�1, there
exist exact non-self-dual solutions, consisting locally of
combinations of instantons and anti-instantons. These
classical solutions have finite action, but have negative
fluctuation modes. For 4d Yang-Mills theory, there is a
mathematical existence proof for these non-self-dual solu-
tions in suð2Þ [26], explicit ansatz forms [27–29], and
simple embedding constructions for suðNÞ with N � 4
[25], but these Yang-Mills solutions are somewhat un-
wieldy. On the other hand, for CPN�1 there is a simple
construction for generating these solutions on R2 and S2

[13,14], which makes them easy to analyze. While a num-
ber of mathematical properties of these non-self-dual
solutions have been studied [13,14,30], no concrete physi-
cal interpretation has been proposed. Motivated by the
above discussion of resurgent analysis of four-dimensional
Yang-Mills theory and two-dimensional CPN�1 [9–12],
where spatial compactification and ZN twisted boundary
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conditions play key roles, in this paper we study the
unstable non-self-dual classical solutions in CPN�1 with
twisted boundary conditions. The effect of twisted bound-
ary conditions on self-dual instanton solutions has been
studied in detail previously, for CPN�1 [16,17] and Yang-
Mills [31,32]. While the physical interpretation of these
caloron solutions is quite different [11,12], many technical
details are similar.

In this paper we generalize the work of Din and
Zakrzewski on non-self-dual solutions to incorporate
twisted boundary conditions, and show that the solutions
persist, and lead to a rich structure of fractionalized topo-
logical charges. Our ultimate motivation is to identify these
exact saddle-point solutions with a resurgent trans-series
expansion of the field theoretic path integral at weak
coupling,

Z
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Here the sum over k covers all multi-instanton sectors, the
sum over l covers perturbation theory and all perturbative
fluctuations about each multi-instanton sector, and the
log sum encapsulates quasizero mode contributions. This
trans-series structure arises generically from a full semi-
classical expansion around all critical points, both minima
(instantons) and saddle points (non-self-dual classical
solutions). While the dominant nonperturbative contribu-
tions for a given topological charge come from instantons,
the non-self-dual classical solutions are saddle points, so
they produce higher-order contributions. Nevertheless, the
results of [11,12] show that these saddle point contribu-
tions should be included for the semi-classical trans-series
expansion (1.1) to be fully self-consistent. This is because,
due to the appearance of negative fluctuation modes, these
contributions will generically be complex, and for consis-
tency of the theory they must be canceled by imaginary
nonperturbative contributions arising from the non-Borel-
summable nature of the perturbative expansions about the
vacuum and each instanton sector. ‘‘Resurgence’’ is the
statement that these cancellations occur to all orders in
the expansion (1.1), and this has been demonstrated
explicitly for low orders in CPN�1 models [11,12].

II. CLASSICAL SOLUTIONS OF CPN�1

We begin with a brief review of notation and previous
results [13,14].

A. Action and topological charge

The CPN�1 model has classical action

S½n� ¼
Z

d2xðD�nÞyðD�nÞ; (2.1)

where n is a complex N-component vector satisfying
nyn ¼ 1. The CPN�1 model has a global UðNÞ symmetry
and a local Uð1Þ gauge symmetry, for which the covariant
derivative is D� ¼ @� � iA�, with A� ¼ �iny@�n. The
2d manifold over which the integral in (2.1) is taken, and
associated boundary conditions, will be specified below.
The cases of interest here are R2, S2 and S1

L � R1. With a
Bogomolny factorization, the action can be rewritten

S ¼
Z

d2x

�
1

2
jD�n� i���D�nj2 � i���ðD�nÞyD�n

�
;

(2.2)

from which we identify the topological charge

Q ¼
Z

d2xi���ðD�nÞyD�n ¼
Z

d2x���@�A�: (2.3)

Thus, S � jQj, and we note that for finite action solutions
on R2 and S2, Q is an integer multiple of 2�.
Another useful representation of the CPN�1 model is in

terms of the N � N holomorphic projector field, P � nny,
which satisfies P2 ¼ P ¼ Py, and TrP ¼ 1. The action
(2.1) and topological charge (2.3) take the simple form

S ¼ 2
Z

d2xTr½@zP@�zP�; (2.4)

Q ¼ 2
Z

d2xTr½P@ �zP@zP� P@zP@�zP�; (2.5)

where z ¼ x1 þ ix2. This projector representation is par-
ticularly convenient for analyzing non-self-dual solutions.

B. Self-dual (instanton) solutions

From the Bogomolny factorization (2.2), we deduce the
first-order instanton (self-duality) equations:

D�n ¼ �i���D�n: (2.6)

Explicit instanton solutions are simple to construct using
the homogeneous field !, where n � !=j!j, in terms of
which the first-order instanton equations reduce to the
Cauchy-Riemann equations, so that instantons correspond
to holomorphic vectors, ! ¼ !ðzÞ, and anti-instantons
correspond to anti-holomorphic vectors, ! ¼ !ð�zÞ. In the
projector representation, the instanton equations are

@�zPP ¼ 0 ðinstantonÞ;
@zPP ¼ 0 ðanti-instantonÞ:

(2.7)

The instanton equations are solved by the N � N holo-

morphic projectors, P ¼ !!y
!y! , with ! ¼ !ðzÞ.

C. Non-self-dual solutions

The critical points of the action (2.1) are solutions to the
full (second-order) classical equations of motion:
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D�D�n� ðny �D�D�nÞn ¼ 0 or ½@z@�zP;P� ¼ 0:

(2.8)

Note that solutions to the instanton equations (2.6) or (2.7)
are automatically solutions to (2.8), but not vice versa.

Explicit non-self-dual solutions can be generated from
an initial self-dual (instanton) solution by the following
procedure of projection operations [13,14]. We define the
projection operator Zþ acting on a classical solution
!ðz; �zÞ as

Zþ:! ! Zþ! � @z!� ð!y@z!Þ
!y!

!;

Zþ:n ! Zþn � Zþ!
jZþ!j :

(2.9)

It is straightforward to verify using elementary identities
that if! is a classical solution, then Zþ! is also a classical
solution [13,14]. We can therefore generate a tower of
classical solutions by starting with an initial instanton
configuration,! ¼ !ð0ÞðzÞ, and repeatedly acting with Zþ,

!ðkÞðz; �zÞ � Zkþ!ð0ÞðzÞ: (2.10)

Notice that the projection operation (2.9) introduces de-
pendence on �z, due to the adjoint operation, so the pro-
jected solutions are no longer instantons. Nevertheless,
they satisfy the second-order classical equations of motion.
Moreover, the tower of projection operations eventually
truncates, after at most (N � 1) steps in CPN�1, because
eventually the classical solution becomes an anti-instanton,
for which Zþ!ð�zÞ ¼ 0. (Indeed, we could have begun
with an anti-instanton and projected up the ladder in the
other direction; this is equivalent.) Din and Zakrzewski
proved that on R2 and S2, this repeated projection opera-
tion (2.10) produces all finite action non-self-dual classical
solutions [13,14],

!ð0Þ!Zþ
!ð1Þ!Zþ � � � !Zþ

!ðkÞ!Zþ � � �!Zþ
!ðN�1Þ!Zþ

0: (2.11)

In the tower (2.11), the initial solution !ð0Þ is an instanton,

while the final solution !ðN�1Þ is an anti-instanton. Note in
particular that for CP1 we do not generate any non-self-
dual solutions, as the initial instanton maps directly to
an anti-instanton. Thus, we need to consider at least the
N ¼ 3 case: CP2. Explicit examples are presented below.

D. Action and topological charge
of non-self-dual classical solutions

The projector representation is particularly convenient
for describing the action and topological charge of the non-
self-dual solutions. The solution !ðkÞ has action SðkÞ and
topological chargeQðkÞ given by expressions (2.4) and (2.5)
evaluated on the projector

PðkÞ �
!ðkÞ!

y
ðkÞ

!y
ðkÞ!ðkÞ

: (2.12)

Using basic algebraic identities and the result [14] that
for all k,

PðkÞ �@PðkÞ ¼
Xk
j¼0

�@PðjÞ; (2.13)

one can show that

SðkÞ ¼ QðkÞ þ 2
Xk�1

j¼0

QðjÞ: (2.14)

Some useful related identities are listed in the Appendix.
Since the final solution is an anti-instanton, SðN�1Þ ¼
�QðN�1Þ, and therefore we see that SðN�1Þ ¼

P
N�2
j¼0 QðjÞ.

For example, for CP2 (N ¼ 3) we have

Sð0Þ ¼ Qð0Þ;

Sð1Þ ¼ 2Qð0Þ þQð1Þ;

Sð2Þ ¼ Qð0Þ þQð1Þ:
(2.15)

In particular, if the intermediate non-self-dual solution has
Qð1Þ ¼ 0, then Sð1Þ ¼ 2Qð0Þ, andQð2Þ ¼ �Qð0Þ. ForCPN�1

on R2 and S2, all SðkÞ and QðkÞ are integer multiples of 2�.
We show below that with twisted boundary conditions on
the spatially compactified cylinder, S1

L � R1, there is a
much richer set of actions and charges.

E. Fluctuation modes

The non-self-dual classical solutions are ‘unstable’ in
the sense that the fluctuation operator about the solution
has at least one negative mode. A systematic characteriza-
tion of the negative modes, and even their number, has not
yet been fully performed (see comments in [13,14,30]), but
the following physical argument illustrates the point.
Consider for example a non-self-dual solution with zero
net topological charge, Q ¼ 0, consisting locally of two
instantons and two anti-instantons. This is the simplest
such non-self-dual configuration. In CPN�1 a single
instanton is characterized by 2N parameters, and so has
2N zero modes. Therefore, this non-self-dual configuration
would have a total of 8N zero modes in the infinite sepa-
ration limit. However, the exact solution at finite separation
is constructed by applying projection operators to an initial
Q ¼ 2 instanton, which has just 4N zero modes. Thus, the
exact non-self-dual solution only has 4N zero modes. So,
half the zero modes at infinite separation become non-zero-
modes, either positive or negative, at finite separation.
Depending on the parameters, such as orientations, the
lifted zero modes may become negative modes or positive
modes. As an example, consider the fluctuation
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n ! ~n ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��y�

q
þ�;

� ¼ Dzn;

�y � n ¼ 0;

(2.16)

forwhich the change in the action ismanifestly negative [13],

�S ¼ �
Z

d2xðTr½ðDznÞyDznðD �znÞyD �zn�
þ Tr½ðD�znÞyDznðDznÞyD�zn�Þ: (2.17)

In Fig. 1 we plot the change in the action as a function of
separation, showing how a zero mode at large separation
becomes a negative mode at finite separation. This
example is for CP2 (N ¼ 3). The action and charge of
the corresponding configuration is shown in the second row
of Fig. 2.

III. EXPLICIT EXAMPLES ON R2 AND S2

As Zakrzewski and Din have shown, non-self-dual so-
lutions exist on R2 (and correspondingly on compactified
S2) for theCPN�1 model whenN � 3. These solutions are
characterized by a number of parameters that dictate the
location, orientation and profile of the configurations and
their subcomponents. The simplest example occurs for
CP2 (N ¼ 3) on R2, beginning with a two-instanton.
This is illustrated in Fig. 2, using the two-instanton ansatz,

!ð0Þ ¼ ð1; �ei�1ðz� aÞ; �ei�2ðz2 � b2ÞÞ: (3.1)

This self-dual configuration !ð0Þ has total action Sð0Þ ¼ 2,
and total topological charge Qð0Þ ¼ 2 (as multiples of 2�),
and the parameters �;� > 0, a; b 2 C and �1; �2 2
½0; 2�Þ govern the size, location, and phase orientation of
each component single-instanton. After one step, the map-
ping (2.9) produces a non-self-dual configuration !ð1Þ,

whose action and topological charge densities are shown
in the second row of Fig. 2. A second projection produces a
configuration !ð2Þ which is anti-self-dual, comprising two

anti-instantons, as shown in the third row of Fig. 2. When
a ¼ 0, the original solution !ð0Þ and mapped solutions,

!ð1Þ and !ð2Þ, correspond to symmetric configurations

whose individual components are equally spaced, as seen
in Fig. 2. The non-self-dual configuration !ð1Þ in the

second line of Fig. 2 consists of two instantons and two
anti-instantons, each of action one, leading to a total action
of Sð1Þ ¼ 4, and zero total topological charge, Qð1Þ ¼ 0.
The final mapping generates a configuration that consists
of two anti-instantons of charge�1. So we can summarize
the action and topological charge values of the tower of
solutions as

ðSð0Þ; Qð0ÞÞ ¼ ð2; 2Þ!ZþðSð1Þ; Qð1ÞÞ ¼ ð4; 0Þ
!ZþðSð2Þ; Qð2ÞÞ ¼ ð2;�2Þ: (3.2)

Note the consistency with the relations in (2.15).

IV. EXPLICIT EXAMPLES ON S1
L � R1

As in [11,12], we impose ZN twisted boundary condi-
tions in the compactified spatial direction:

nðx1; x2 þ LÞ ¼ �nðx1; x2Þ;
� ¼ diagð1; e�2�i=N; . . . ; e�2�iðN�1Þ=NÞ: (4.1)

This corresponds to the same condition on the homoge-
neous field !ðx1; x2Þ, and we see from (2.9) that if the
initial instanton solution!ð0Þ satisfies ZN twisted boundary

conditions, then all subsequent projected solutions in (2.9),
(in particular, the non-self-dual ones), also satisfy ZN

twisted boundary conditions.
For self-dual solutions, the fractionalization arises

because of an interplay between the twisted boundary
condition, which could be imposed by phase factors in
the compactified x2 direction, and the holomorphicity
condition for an instanton. Thus for an instanton, the
twists must arise from factors expressed in terms of the
holomorphic variable z ¼ x1 þ ix2, and so the twists in
the compact x2 direction necessarily also affect the form of
the solution in the noncompact x1 direction [11,12,16,17].
For non-self-dual solutions, the fractionalization is inher-
ited from the fractionalization of the initial self-dual
solution !ð0Þ.
We illustrate the effect of twisted boundary conditions

on some non-self-dual configurations in CP2, for which
N ¼ 3. The first example demonstrates a configuration
analogous to that in Fig. 2 on R2, while the second dem-
onstrates a new effect not seen on R2. These examples also
serve to demonstrate the diversity of non-self-dual solu-
tions that are possible with twisted boundary conditions in
CP2 on S1

L � R1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2.5

2.0

1.5

1.0

0.5

0.0

r

S

FIG. 1 (color online). The change (2.17) in the action under the
fluctuation (2.16), for the Q ¼ 0 non-self-dual configuration
plotted below in the second row of Fig. 2. The horizontal axis
denotes the (symmetric) distance of each object from the center.
Notice that at large separation this fluctuation is a zero mode,
while at finite separation it becomes a negative mode.

ROBERT DABROWSKI AND GERALD V. DUNNE PHYSICAL REVIEW D 88, 025020 (2013)

025020-4



FIG. 2 (color online). The action and charge density configurations due to successive mappings from the ansatz solution (3.1) in
CP2 on R2:!ð0Þ ¼ ð1; �ei�1 ðz� aÞ; �ei�2 ðz2 � b2ÞÞ where a ¼ a1 þ ia2 and b ¼ b1 þ ib2, and plotted for: �,� ¼ 2, a1, a2 ¼ 0, b1,

b2 ¼ 4,8 �1, �2 2 ½0; 2�Þ. The initial configuration !ð0Þ corresponds to two instantons, while !ð1Þ corresponds to two instantons and
two anti-instantons, and !ð2Þ corresponds to two anti-instantons. These are all exact solutions to the classical equations of motion, but

!ð1Þ is non-self-dual.
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FIG. 3 (color online). The action and charge density configurations due to successive mappings from the ansatz solution (4.2) in CP2

on S1
L � R1: !ð0Þ ¼ ð1; �ei�1e�2�z=3; �ei�2e�4�z=3Þ where � ¼ 4000, � ¼ 1, 8 �1, �2 2 ½0; 2�Þ. The initial configuration !ð0Þ

corresponds to two fractionalized instantons each of charge 1=3, while !ð1Þ corresponds to one fractionalized instanton of charge 2=3

and two fractionalized anti-instantons each of charge �1=3, and !ð2Þ corresponds to a fractionalized anti-instanton of charge �2=3.

These are all exact solutions to the classical equations of motion, but !ð1Þ is non-self-dual.
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FIG. 4 (color online). The action and charge density configurations due to successive mappings from the ansatz solution (4.4) in CP2

on S1
L � R1: !ð0Þ ¼ ð1; �ei�1e�2�z=3 þ�ei�2e�8�z=3; �ei�3e�4�z=3Þ where � ¼ 104, � ¼ 10�2, � ¼ 104, �1 ¼ �, �2 ¼ 0, 8 �3 2

½0; 2�Þ. The initial configuration !ð0Þ corresponds to two fractionalized instantons each of charge 1=3 and another fractionalized

instanton of charge 2=3, while !ð1Þ corresponds to one instanton of charge 2=3 and another of charge 1 (marked by the black oval) and

two anti-instantons each of charge �1=3 and another anti-instanton of charge �2=3, and !ð2Þ corresponds to an anti-instanton of

charge �2=3 and an anti-instanton of charge �1 (marked by the black oval). Notice the appearance of very sharp instanton and anti-
instanton peaks in the third, fourth, fifth and sixth plots, marked by the black oval shape, as discussed in the text. These peaks are so
sharp that they do not show up on the same scale, but their cross sections are plotted in Fig. 5. Note that !ð0Þ, !ð1Þ and!ð2Þ are all exact
solutions to the classical equations of motion, but !ð1Þ is non-self-dual.
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Example 1: Figure 3 shows the simplest non-self-dual
solution, manifest in CP2, on S1

L � R1 with Z3 twisted
boundary conditions.We take an initial two-instanton ansatz,

!ð0Þ ¼ ð1; �ei�1e�2�z=3; �ei�2e�4�z=3Þ; (4.2)

where�,�> 0,�1,�2 2 ½0; 2�Þ. This solution is self-dual,
with action and chargeSð0Þ ¼ Qð0Þ ¼ 2=3, consisting of two
separate fractionalized instantons of charge 1=3. After one
application of the mapping (2.9) we obtain a non-self-dual
configuration!ð1Þ with zero net topological chargeQð1Þ¼0,
and action Sð1Þ ¼ 4=3, as shown in the second row of Fig. 3.

We can identify this configuration as consisting of a
double-instanton of charge 2=3 at the midpoint of the
original instanton components, with two anti-instantons
each of charge �1=3, located near the positions of the
original instanton components. Note the difference from the
example on R2 in Fig. 2. After one further application of
the mapping (2.9) we obtain an anti-self-dual configuration
!ð2Þ, which for this choice of parameters looks like a

double (fractionalized) anti-instanton configuration, with
total charge �2=3. So we can summarize the action and
topological charge values of the tower of solutions as

ðSð0Þ; Qð0ÞÞ ¼
�
2

3
;
2

3

�
!ZþðSð1Þ; Qð1ÞÞ ¼

�
4

3
; 0

�

!ZþðSð2Þ; Qð2ÞÞ ¼
�
2

3
;� 2

3

�
: (4.3)

Note the consistency with the relations in (2.15).
Example 2: Figure 4 shows a nontrivial non-self-dual

solution in CP2 on S1
L � R1 with Z3 twisted boundary

conditions. We begin with the initial instanton ansatz

!ð0Þ ¼ ð1; �ei�1e�2�z=3 þ�ei�2e�8�z=3; �ei�3e�4�z=3Þ;
(4.4)

where �;�; � > 0, �1; �2; �3 2 ½0; 2�Þ. This starting
configuration consists of three instantons of topological
charge 2=3, 1=3 and 1=3, respectively, producing
Sð0Þ ¼ Qð0Þ ¼ 4=3. On comparison with (4.2) and Fig. 3,

we note that the inclusion of the extra Z3 twist preserving
term exp ½�8�z=3� directly contributes the extra charge 2=3
instanton in the starting configuration, and imbues greater
structure to the subsequent non-self-dual solution. At first
sight, the non-self-dual configuration !ð1Þ plotted in the

second row of Fig. 4 appears to consist of one instanton of
charge 2=3, and three anti-instantons, two of charge �1=3,
and one of charge�2=3. This would suggest a net charge of
�2=3 and net action equal to 2. However, there is another
instanton, of net chargeþ1, which for these parameters is not
fractionalized, that is a very sharp peak that can not be seen on
the scale of the figure. It is marked by the black oval in the
plots in the second line of Fig. 4. Amagnified cross section of
this extra instanton is shown in Fig. 5. Thus, the actual assign-
ment of action and charge, which is easily verified by numeri-
cal integration, is Sð1Þ ¼ 3, and Qð1Þ ¼ 1=3. It is interesting
to see that for this non-self-dual configuration some sub-
components are clearly fractionalized,while there is a distinct
lump that is not. This demonstrates a richer structure when
compared to the non-self-dual solutions onR2 (andS2). The
unresolved sharp peaks in the configurations of Fig. 4,marked
by a black oval shape, correspond to this highly localized
nonfractionalized instanton and anti-instanton, and have the
resolved form shown in Fig. 5. In addition, the extra twist
preserving term also affects the final mapped configuration
!ð2Þ, with further structure when compared to Fig. 3. Thus,

while at first sight, it looks like the final configuration!ð2Þ has
Sð2Þ ¼ �Qð2Þ ¼ 2=3, in fact there is a very sharply peaked

anti-instanton at the location marked by the black oval, lead-
ing to the net result: Sð2Þ ¼ �Qð2Þ ¼ 5=3. Observe that,

unlike the R2 examples, the total action and topological
charge of the final solution !ð0Þ need not be equal to those

of the starting solution!ð2Þ. So we summarize the action and

topological charge values of this tower of solutions as

ðSð0Þ; Qð0ÞÞ ¼
�
4

3
;
4

3

�
!ZþðSð1Þ; Qð1ÞÞ ¼

�
3;
1

3

�

!ZþðSð2Þ; Qð2ÞÞ ¼
�
5

3
;� 5

3

�
: (4.5)
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FIG. 5 (color online). A magnified cross section of the charge density of the highly localized charge-1 instanton and anti-instanton
that appear in the fourth and sixth plots in Fig. 4. Both are plotted with the same parameters used in Fig. 4.
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Note again the consistency with the relations in (2.15). With
the inclusion of further twist preserving terms, an even richer
set of solutions develop that are unique to twisted boundary
conditions on S1

L � R1, generating all multiples of 1=3 for
the charge of the non-self-dual solution !ð1Þ.

V. CONCLUSION

In this paper we have shown that Din and Zakrzewski’s
construction of non-self-dual classical solutions in the
CPN�1 model on R2 and S2 extends naturally to non-
self-dual classical solutions on S1

L � R1, with ZN twisted
boundary conditions. As occurs for the self-dual instantons,
the non-self-dual solutions fractionalize into sub-component
objects, which we can identity locally as fractionalized
instantons and anti-instantons. This leads to a much richer
spectrum of actions and charges, generically in integer units
of 1=N for CPN�1. We furthermore propose that the physi-
cal significance of these ‘‘unstable’’ non-self-dual solutions
is not associated with unstable vacuum decay, but rather that
in a semi-classical saddle point analysis of the path integral
they produce imaginary nonperturbative terms that match
(and cancel against) imaginary nonperturbative terms
arising in the perturbative sector due to the infrared-
renormalon-induced non-Borel summability of perturbation
theory for CPN�1. This suggests that it would be worth-
while to classify and analyze more systematically the nega-
tive modes corresponding to these exact non-self-dual
solutions. Technically, in CPN�1 we see that these negative
modes arise as some would-be zero-modes associated with
an approximate non-self-dual configuration of infinitely-far-
separated instantons and anti-instantons, become negative
modes as these sub-components approach one another;
the exact non-self-dual solution has fewer zero-modes than

its sub-components would suggest, because it inherits these
zero-modes from the parameters of the simpler initial
self-dual configuration !ð0Þ. We expect similar behavior in

twisted Yang-Mills theory, although the CPN�1 case is
simpler and more explicit. Finally, we note that similar
effects should also occur in other 2d sigma models.
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APPENDIX

In this Appendix we list some useful identities concern-
ing the non-self-dual configurations generated by the
mapping (2.10). For all classical solutions generated by
(2.10), we have

!y
ðkÞ!ðlÞ ¼ 0 if k � l (A1a)

@�z!ðkÞ ¼ �!ðk�1Þ
j!ðkÞj2
j!ðk�1Þj2

(A1b)

@z

�
!ðk�1Þ
j!ðk�1Þj2

�
¼ !ðkÞ

j!ðk�1Þj2
(A1c)

!ðNÞ ¼ Zþ!ðN�1Þ ¼ 0: (A1d)

In terms of the projectors,

!ðkþ1Þ / @zPðkÞ!ðkÞ; !ðk�1Þ / @�zPðkÞ!ðkÞ: (A2)

The following projector identities are useful in determining
(2.14) and are general for all Grassmanians:

PðiÞPðjÞ ¼ PðiÞ�ij (A3a)

PðiÞ@zPðiÞPðiÞ ¼ 0 8 i (A3b)

PðiÞ@zPðjÞ ¼ 0 if j ¼ iþ 1 or ji� jj � 2 (A3c)

@zPðiÞPðjÞ ¼ 0 if j ¼ iþ 1 or ji� jj � 2 (A3d)

@zPðiÞ@zPðjÞ ¼ 0 if j ¼ iþ 1 or j ¼ iþ 2 or ji� jj � 3 (A3e)

@zPðiÞ@�zPðjÞ ¼ 0 if ji� jj � 2: (A3f)

Additional identities are found by taking the Hermitian conjugate since ð@zPðiÞÞy ¼ @�zPðiÞ.
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