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We introduce a new background field method for N ¼ 2 superspace. (We treat projective hyperspace,

but similar remarks apply for the harmonic case.) In analogy to N ¼ 1, background gauge fields are in the

real representation, so the lowest-dimension potentials are spinor and the usual nonrenormalization

theorems are manifest. Another consequence is that the R-coordinates disappear from the effective action.
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I. INTRODUCTION

The construction of background field formalism for
N ¼ 2 super-Yang-Mills theory (SYM) in projective hy-

perspace ( ��) [1] is an open problem. Such a formalism is
desirable for any (non)supersymmetric theory as it simpli-
fies (loop) calculations and even intermediate steps respect
gauge covariance. A major obstacle in solving this problem
for the N ¼ 2 case seems to be the lack of knowledge
relating the gauge connections to the tropical hyperfield V,
which describes the SYM multiplet for all practical pur-
poses [2,3].

We note that the closely related [4,5] N ¼ 2 harmonic
superspace ( ) [6] does not encounter this issue as the

hyperfield, VðþþÞ describing the SYM multiplet is itself a
connection, A �y. In fact, background field formalism in

harmonic superspace has quite a straightforward construc-
tion [7]. Although the construction has some subtleties, it
has been refined in a series of papers along with relevant
calculations [8–11].

In this paper, we solve the problem of constructing the
background field formalism in projective superspace
without the need for knowing the connections explicitly
in terms of V. This is possible by choosing the back-
ground fields to be in a ‘‘real’’ representation (Ay ¼ 0)

and the quantum fields to be in the ‘‘analytic’’ represen-
tation (A# ¼ 0). This is reminiscent of the quantum-
chiral but background-real representation used in
N ¼ 1 superspace [12]. What this does is make the
effective action independent of Ay and dependent on

background fields (like A#) with ‘‘dimension’’ greater
than 0 (since the lowest one is a spinor). Nonexistence of
0-dimension background fields (like Ay) is a crucial

requirement for the nonrenormalization theorems to
hold as discussed in [13]. This directly leads to a proof
of finiteness beyond one loop. (A different approach for
proof of finiteness has been discussed in [14].)

The coupling of quantum fields to background fields
comes through the former’s projective constraint alone,

which simplifies the vertex structure a lot. The calculations
are also simplified at 1-hoop as most y integrals turn out to
be trivial since the background fields have trivial y depen-
dence. This means that the y integration effectively van-
ishes from the effective action and as expected from the
supergraph rules, only one � integration survives at the end
of the calculations. We also work in Fermi-Feynman gauge
so there are no IR issues to worry about while evaluating
the super-Feynman graphs.
Another important aspect is the ghost structure of the

theory in this background gauge. Apart from the expected
Faddeev-Popov (fermionic b, c) and Nielsen-Kallosh
(bosonic E) ghosts, we require two more extra ghosts,
namely, real bosonic X and complex fermionic R. This is
in contrast to N ¼ 1 SYM but very similar to the harmonic
treatment of N ¼ 2 theory. Heuristically, we can even see
that such a field content would give a vanishing � function
forN ¼ 4. Moreover, wewill see that the loop contributions
of V and extra ghosts have spurious divergences arising due
to multiple �ðyÞ’s. These are very similar to the ‘‘coinciding
harmonic’’ singularities in the case, which manifest

themselves at one-loop level via the subtleties regarding
regularization of similar looking determinants. However,

in the �� case, we do not encounter such striking similarities.
Only the divergences turn out to be similar, leading to a
cancellation between the vector hyperfield’s contribution
and that of the extra ghosts. The finite pieces in the effective
action are contributed by these extra ghosts only.

II. CONSTRUCTION

This section is mostly built on the ordinary projective
superspace construction of SYM detailed in [2]. We review
it briefly below for the sake of continuity. We also use the
6D notation to simplify some useful identities involving
background-covariant derivatives, and moreover, the re-
sults carry over to N ¼ 1 6D SYM in a trivial manner
with this notation.

A. Projective review

The projective hyperspace comprises of usual spacetime
coordinates (x), four fermionic ones (�), and a complex
coordinate on CP1 (y). The full N ¼ 2 superspace requires
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four more fermionic coordinates (#) in addition to these
projective ones. The supercovariant derivatives corre-
sponding to these extra #’s define a projective hyperfield
(�) via the constraint d#� ¼ 0. The algebra of the cova-
riant derivatives will be given below but we note here that
in the ‘‘real’’ representation (called ‘‘reflective’’ in [2] and
the one we use extensively in this paper) the d#’s are y
dependent. Their anticommutation relation at different y’s
is all that we need here:

fd1#; d2#g � fd#ðy1Þ; d#ðy2Þg ¼ ðy1 � y2Þdx � y12dx:

The scalar hypermultiplet is described by an ‘‘arctic’’
hyperfield (�) that contains only non-negative powers of y
and the vector hypermultiplet by a ‘‘tropical’’ V, which
contains all powers of y. To construct the relevant actions,
the integration over this internal coordinate is defined to be
the usual contour integration, with the contour being a
circle around the origin (for our purposes in this paper).
So, the projective measure simply reads:

R
dw �R

dxd4�
H
dy (with the usual factor of 2� _� being sup-

pressed). Now, we are ready to delve into the details of
the background field formalism.

B. Background—quantum splitting

The gauge-covariant derivatives,r ¼ dþ A, describing
N ¼ 2 SYM satisfy the following (anti)commutation
relations (written in 6D notation):

fra�;rb�g ¼ � _�Cabr��; (2.1)

½ra�;r��� ¼ ������W
�
a ; (2.2)

fra�;W
�
b g ¼ Dab�

�
� � _�

2
Cabf

�
�; (2.3)

½r��;r��� ¼ f½�� ���
� ; (2.4)

½r#�;ry� ¼ r��; ½r��;ry� ¼ 0; (2.5)

where the SU(2) index a ¼ ð#; �Þ,W�
a and f�� are the field

strengths, and Dab are the triplet of auxiliary scalars. The
4D scalar chiral field strength, W �� _�ðr4 � _�r5Þ is re-
lated to the spinor field strength via appropriate spinor
derivatives. We solve the commutation relation for r# by
writing r# ¼ e�d#e

��, where � is an unconstrained
complex hyperfield. We can do a background splitting of
� (similar to N ¼ 1 superspace) such that

r# ¼ e�QD#e
��Q ; (2.6)

with D# being the background-covariant derivative. We
can now choose ‘‘real’’ representation for the background
derivatives independently such that Ay ¼ 0 ) Dy ¼ dy.

This simplifies the y dependence of the connections:

dyA� ¼ 0; dyA# ¼ �A� ) A# ¼ Að0Þ
# � yA�:

Since these connections have simple y dependence, the y
integrals in the effective action can be trivially done.
Moreover, the quantum part of the full covariant deriva-
tives then can be chosen to be in (analytic) representation,
i.e., Ay � 0 and A# ¼ 0.

The projective (analytic) constraint on hyperfields
‘‘lifts’’ to r#� ¼ 0 so we can now define a background

projective hyperfield �̂ð� �̂B þ �̂QÞ as � ¼ e�Q�̂ such

that D#�̂ ¼ 0. Then, the scalar hypermultiplet’s action
reads

S� ¼�
Z

dw ���¼�
Z

dw
�̂
�e

��Qe�Q�̂

��
Z

dw
�̂
�eV�̂: (2.7)

The vector hyperfield V’s action looks the same as in the
ordinary case; the difference being that the V appearing
below is only the quantum piece and is background
projective:

SV ¼ tr

g2

Z
dxd8�

X1
n¼2

ð�1Þn
n

�Yn
i¼1

Z
dyi

�

� ðeV1 � 1Þ � � � ðeVn � 1Þ
y12y23 . . . yn1

: (2.8)

We know from [3] that this action should give an expres-
sion for Ay and hence the (analytic) representation for

quantum hyperfields is a consistent choice. The back-
ground dependence of V comes through the projective
constraint and the background-covariant derivatives only.
The following identities will be useful in showing that and
deriving other results in the following sections:

r4
#

�
1

2
d2y

�
r4

# ¼ 1

2
ĥr4

#

¼
�
1

2
h�W�

#r�;� þD##dy þD�#

�
r4

#;

(2.9)

r4
1#r4

2# ¼
�
y12D## þ 1

2
y212

�hþ 1

2
y312ðr�;�r��r�;�

þW�
�r�;� þ 2D��Þ þ y412r4

2�

�
r4

2#; (2.10)

where h ¼ 1
2r��r�� is the gauge-covariant

d’Alembertian and �h ¼ ĥ� 2D##dy. As the quantum

connections do not appear explicitly in the calculations,
we will drop the usage of curly fonts to denote the back-
ground fields (as has been done above) and also the sub-
script # on W�

# from now on.

C. Quantum

The quantization procedure in the background
gauge proceeds similar to the ordinary case. The ordinary
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derivatives are now background-covariant derivatives soh

gets replaced by ĥ (or �h) everywhere. Moreover, we need
extra ghosts for the theory to be consistent in this formal-
ism as we elaborate further in the following subsections.

1. Scalar and vector

The scalar hypermultiplet is background projective but
the structure of its action is still the same as in the ordinary
case. That means the kinetic operator appearing in the
equations of motion is d2y, i.e., d

2
y� ¼ 0 still holds. So

the derivation of the propagator performed in [2] goes
through after employing these changes: d# ! r# and

h ! ĥ:

h ��ð1Þ�ð2Þi ¼ r4
1#r4

2#

y312

1
1
2 ĥ

�8ð�12Þ�ðx12Þ: (2.11)

The gauge fixing for the vector hypermultiplet leading
to Faddeev-Popov (FP) ghosts is still similar to the

ordinary case and we just quote the results with suitable
modifications:

Sgf ¼ � tr

2�g2

Z
dxd8�dy1dy2V1

�
y1
y321

þ y2
y312

�
V2; (2.12)

SFP ¼ �tr
Z

dxd4�dy

�
�
�bcþ �cbþ ðybþ �bÞV

2

�
cþ �c

y

�
þ � � �

�
: (2.13)

The propagators for the FP ghosts are similar to the scalar
hypermultiplet and will be written down later.
We will always work in Fermi-Feynman gauge (� ¼ 1)

but let us derive the propagator for V with arbitrary � as
this technique will be useful later. We first combine the
terms quadratic in V from the above equation and the
vector hypermultiplet action to get

Sð2Þ
V þ Sð2Þ

gf ¼ � tr

2g2

Z
dxd4�dy1dy2V1

1

y212

�
1þ 1

�

�
y1
y21

þ y2
y12

��
r4

1#V2

¼ � tr

2g2

Z
dxd4�dy1dy2V1

1

y212

�
1þ 1

�

�
�1þ y1 þ y2

2
�ðy12Þ

��
y212

�
1

2
�hþ � � �

�
V2

¼ � tr

2g2

Z
dxd4�dy1dy2V1

�
1þ�1þ y1�ðy12Þ

�

��
1

2
�hþ � � �

�
V2: (2.14)

Then, we add a generic real source J to the quadratic gauge-fixed vector action:

SV�J ¼ � tr

g2

�Z
dxd8�dy1;2V1

�
1þ 1

�

�
y1
y21

þ y2
y12

��
1

2y212
V2 �

Z
dxd8�dy2J2V2

�

¼ � tr

g2

�Z
dxd4�dy1;2V1

�
1þ�1þ y1�ðy12Þ

�

�r4
1#

2y212
V2 �

Z
dxd4�dy2J 2V2

�
: (2.15)

Here, J is now defined to be (background) projective.
Now, equation of motion for V reads

Z
dy1V1

�
1þ�1þ y1�ðy12Þ

�

�r4
2#

y212
¼ J 2; (2.16)

which we can solve to write V in terms of J . This amounts
to inverting the kinetic operator for V as we will see.
Assuming the following ansatz for V:

V1 ¼
Z

dy0
pþ q�ðy01Þ

y201

1

ð12 �hÞ2 J 0r4
1# (2.17)

and demanding it satisfy (2.16), we are led to
p ¼ ð1��Þ

y0y1
&q ¼ �

y0
because

Z
dy1

�ð1� �Þ þ �y1�ðy01Þ
y0y1

��
1þ�1þ y1�ðy12Þ

�

�

¼ �ðy02Þ:

Plugging (2.16) and (2.17) in the action (2.15), we get

SV�J ¼ tr

2g2

Z
dxd4�dy1;2J 1r4

1#

ð1� �Þ þ �y2�ðy12Þ
y1y2y

2
12

� 1

ð12 �hÞ2 J 2;

which leads to the required propagator, first derived
(for the ordinary case) in [15]

hVð1ÞVð2Þi ¼ r4
1#r4

2#

ð1� �Þ þ �y2�ðy12Þ
y1y2y

2
12

� 1

ð12 �hÞ2 �
8ð�12Þ�ðx12Þ: (2.18)

This expression simplifies [2] for � ¼ 1 to

hVð1ÞVð2Þi ¼ r4
1#

�ðy12Þ
y1

1
1
2
�h
�8ð�12Þ�ðx12Þ; (2.19)
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as does the quadratic part of the vector action

Sð2Þ
V ¼ � tr

4g2

Z
dwVðy �hÞV: (2.20)

2. One loop

In background field gauge, the gauge fixing func-
tion leads to additional ghosts apart from the FP ghosts,
which contribute to the one-loop calculations. To see that,
consider the effective action � defined by the following
functional:

e _�� ¼
Z

DVDbDcDfe _�ðSSYMðVÞþSFPðV;b;cÞþSavgðfÞÞ

� �ðVÞ�ðf� VÞ; (2.21)

where �ðVÞ is found by the normalization conditionR
Df�ðVÞe _�SavgðfÞ ¼ 1. It gives

��1 ¼
Z

Dfe
� _�tr2

R
dxd8�dy1;2f1

1
2

�
y1

y3
21

þ y2

y3
12

�
f2

¼
Z

Dfe� _�tr2

R
dx1;2d

8�1;2dy1;2f1Y12f2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðY12Þ

p : (2.22)

So (2.21) simplifies to

e _�� ¼
Z

DVDbDce _�ðSSYMðVÞþSgfðVÞþSFPðV;b;cÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðY12Þ

q
:

We can rewrite the last factor as

1

detY12

¼
Z

D	D
e _�S	


¼
Z

D	D
e _�tr
R

dw1dw2	1Y12
2 ; (2.23)

where ð	; 
Þ are unconstrained hyperfields. Proceeding
similar to the harmonic case [7], we redefine 
 ! d2y


and introduce Nielsen-Kallosh (NK) ghost E to account
for the resulting Jacobian. This means the one-loop con-
tribution for N ¼ 2 SYM coupled to matter simplifies to

_��¼
�
�1

2
lndet

V
ðy �hÞþ1

2
ln det

ð	;
Þ
ðY12d

2
yÞ
�

þ
�
lndet

FP
ðd2yÞ�1

2
lndet

NK
ðd2yÞ

�
�1

2
lndet

�
ðd2yÞ: (2.24)

For N ¼ 4, the scalar hypermultiplet is in adjoint repre-
sentation and its contribution will cancel the joint FP and
NK ghosts contributions. The remaining two terms have
spurious divergences due to multiple �ðyÞ’s but their joint

contribution has to be finite, which will turn out to be the
case as we develop this section further.
To incorporate the effect of ð	; 
Þ fields directly in the

path integral, we choose to introduce a real scalar X and a
complex fermion R as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðY12d

2
yÞ

q
¼

Z
DXDRD �Re _�ðSXþSRÞ; (2.25)

where

SX ¼ tr

2

Z
dw1dw2X1Y12d

2
y2X2;

SR ¼ tr

2

Z
dw1dw2

�R1Y12d
2
y2R2:

(2.26)

So the background field requires three Fermionic ghosts
ðb; c; RÞ and two bosonic ghosts ðE; XÞ and the full quan-
tum action for N ¼ 2 SYM coupled to matter reads

SN¼2 ¼ ½SSYMðVÞ þ SgfðVÞ� þ SFPðV; b; cÞ þ SNKðV; EÞ
þ SXRðV; X; RÞ þ S�ðV;�Þ:

3. Ghosts

The FP and NK ghosts are background projective
hyperfields. The actions for these ghosts look the same
as those in the case of nonbackground gauge. The action
for FP ghosts is given in Eq. (2.13) and that for NK ghost
is similar to the scalar hypermultiplet’s action. That
means their propagators are straightforward generaliza-
tions and read

h �bð1Þcð2Þi ¼ r4
1#r4

2#

y312

1
1
2 ĥ

�8ð�12Þ�ðx12Þ; (2.27)

h �Eð1ÞEð2Þi ¼ r4
1#r4

2#

y312

1
1
2 ĥ

�8ð�12Þ�ðx12Þ: (2.28)

Now, we focus on the new ingredient of the background
field formalism: the eXtRa ghosts. In the same vein as the
vector hypermultiplet, we can simplify the actions of these
ghosts. Let us just concentrate on the scalar ghost action as
the fermionic ghost can be treated similarly:

SX ¼ � tr

4

Z
dxd8�

I
dy1;2X1

��
y1
y321

þ y2
y312

�
d2y2

�
X2

¼ � tr

4

Z
dxd4�

I
dy1;2X1

��
y1
y21

þ y2
y12

�
1

y212
ĥ

�
X2

¼ � tr

4

Z
dxd4�

I
dy1;2X1

��1þ y1�ðy12Þ
y212

ĥ

�
X2:

The X propagator can then be derived in a similar way as
the vector propagator with arbitrary �. Lets add a source
term to the action for X ghost:
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SX�J ¼ � tr

4

Z
dxd8�dy1;2X1

��
y1
y321

þ y2
y312

�
d2y2

�
X2

þ tr
Z

dxd8�dy2J2X2

¼ � tr

4

Z
dxd4�dy1;2X1

��1þ y1�ðy12Þ
y212

�
ĥX2

þ tr
Z

dxd4�dy2J 2X2:

The equation of motion for X now reads

Z
dy1X1

��1þ y1�ðy12Þ
y212

�
ĥ ¼ 2J 2: (2.29)

Adopting an ansatz for X (similar to what was done for V
before),

X1 ¼ d41#

Z
dy0½pþ q�ðy01Þ� 1

1
2 ĥ

2
2J 0;

we find that p ¼ 0 and q ¼ 1
y0
satisfy (2.29). Collecting all

the results, the action reduces to

SX�J ¼ tr

2

Z
dxd4�dy1;2J 1r4

1#

�ðy12Þ
y1

1

ð12 ĥÞ2 J 2;

which leads to the required propagator

hXð1ÞXð2Þi ¼ r4
1#r4

2#

�ðy12Þ
y1

1

ð12 ĥÞ2 �
8ð�12Þ�ðx12Þ: (2.30)

The propagator for the fermionic R ghost has a similar
expression.

III. CALCULATIONS

Given this new construction of the background field
formalism for SYM, we can now employ it to calculate
contributions to the effective action coming from different
hypermultiplets.

A. Feynman rules

The general rules for constructing diagrams in the back-
ground field formalism are similar to the ordinary case
discussed in [2]. However, as expected in this formalism,
the quantum propagators form the internal lines of the
loops and the external lines correspond to the background
fields.

The �h and ĥ operators in the propagators need to be
expanded around h0 (the connection-independent part of
h), which will generate the vertices with the vector con-
nection and background fields. For the extra ghosts, we can
further simplify the naı̈ve rules by noticing that the vertices
have 1

y2
12

factor and the propagator will generate such a

factor in the numerator due to the presence of r4
1#r4

2# .

Thus, we can remove them from the very start and work
with the revised propagator and vertex for the purpose of
calculating diagrams. Let us now collect all the relevant
Feynman rules below.

scalar propagator:
r4

1##r4
2#

y312

�8ð�12Þ
1
2 k

2
;

vector propagator: r4
1#

�ðy12Þ
y1

�8ð�12Þ
1
2 k

2
;

FP&NK ghosts propagator:
r4

1#r4
2#

y312

�8ð�12Þ
1
2 k

2
;

XR ghosts propagator: r4
1#

�ðy12Þ
y1

�8ð�12Þ
1
2 k

2
;

scalar; FP&NK vertex:
Z

d4�dyðĥ�h0Þ
�
use

Z
d4�r4

# ¼
Z

d8�

�
;

vector vertex ðbackgroundÞ:
Z

d4�dyyð �h�h0Þ;

vector vertex ðquantumÞ:
Z

d8�dy1;...;n
ð�1Þn

y12y23 . . . yn1
;

XR ghosts vertex:
Z

d4�
Z

dy1;2½�1þ y1�ðy12Þ�ðĥ�h0Þ:

B. Examples

1. Scalar

The one-loop contribution from the scalar hypermultiplet to the effective action cannot be written in a fully
gauge-covariant form with a projective measure. Thus, the diagrammatic calculation required to get this contribution
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(which includes the UV-divergent piece too) is not accessible via the formalism constructed here. We note that such an
issue appears in theN ¼ 1 background formalism too when the scalar multiplets in complex representation are considered.
The calculations cannot be performed covariantly and explicit gauge fields appear in addition to the connections.

2. Vector

The contribution to one-loop n-point diagrams from vector hypermultiplet running in the loop would be given by the
following:

�ðVÞ
n �

Z
d4k

Z
d4�1;...;n

Z
dy1;...;nr4

1#�
8ð�12Þ�ðy12Þy1

1

k21
y1ðW�ð1Þr�;�þ���Þ � � �r4

n#�
8ð�n1Þ�ðyn1Þyn

1

k2n
ynðW�ðnÞr�;�þ���Þ

�
Z
d4k

Z
d8�1;...;n�1d

4�n
Z
dy1;n�

8ð�12Þ�ðy1nÞ 1
k21
ðW�ð1Þr�;�þ���Þ � � �r4

n#�
8ð�n1Þ�ðyn1Þ 1

k2n
ðW�ðnÞr�;�þ���Þ;

(3.1)

where the numerical subscript on k denotes the external momenta dependence. As usual, to kill the extra �8ð�Þ function, at
least four r� should be available from the vertices and so �ðVÞ

2 ¼ �ðVÞ
3 ¼ 0. The first nonvanishing contribution is from the

4-point diagram:

�ðVÞ
4 ¼ 3cA

2

Z
dy1;4�ðy14Þ�ðy41Þ

Z
d8�1d

4�4Â4�
8ð�14Þ

�Y4
i¼1

1

2
W�ðiÞr�;�

�
r4

4#�
8ð�41Þ

¼ 3cA
32

I dy1
2�y1

Z
d8�1d

4�4Â4�
8ð�14ÞðW�ð1ÞW�ð2ÞW�ð3ÞW�ð4Þ�����r4

�Þr4
4#�

8ð�41Þ

¼ 3cA
32

I dy1
2�y1

Z
d4�Â4�����W

�ð1ÞW�ð2ÞW�ð3ÞW�ð4Þ; (3.2)

where

Â4 �
Z

dk
16

ðk21Þðk22Þðk23Þðk24Þ
:

Too many �ðyÞ’s lead to spurious 1
� singularity, similar to ‘‘coinciding harmonic’’ singularities in . These will cancel

when we take into account the ðX; RÞ ghosts.
3. Extra ghosts

Their combined contribution to one-loop n-point diagrams reads

�ðX;RÞ
n ��

Z
d4k

Z
d4�1;...;n

Z
d2y1;...;nr4

1#�
8ð�12Þ�ðy1a;2aÞy1a

1

k21
½ð�1þ y1a�ðy1a;1bÞÞ�

� ðW�ð1Þr�;� þ � � �Þ � � � r4
n#�

8ð�n1Þ�ðynb;1bÞynb

1

k2n
½ð�1þ yna�ðyna;nbÞÞ�ðW�ðnÞr�;� þ � � �Þ

� �
Z

d4k
Z

d4�n
Z

dy1a;...;1br4
1b#�

8ð�n1Þ ð�1þ y1a�ðy1a;2bÞÞ
y1a

1

k21

� ðW�ð1Þr�;� þ � � �Þ � � � ð�1þ yna�ðynb;1bÞÞ
y1b

1

k2n
ðW�ðnÞr�;� þ � � �Þ: (3.3)

Again, the first nonvanishing contribution is from n ¼ 4 that has the same �ðyÞ2 singularity structure as the vector in (3.2)
leading to a cancellation, in addition to the following finite part:

�4 ¼ � 3cA
32

Z
dy1;2;3;4

�
1

y1y2y3y4
� �ðy12Þ

y2y3y4
þ � � �

�Z
d4�Â4�����W

�ð1ÞW�ð2ÞW�ð3ÞW�ð4Þ

¼ 3cA
32

Z
d4�Â4�����ðW�ð1ÞW�ð2ÞW�ð3ÞW�ð4ÞÞjy¼0: (3.4)
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The last line follows because only y-independent pieces
of W ’s can survive the y integrals. Till here, we have
treated W’s as fields depending on individual external
momenta and Eq. (3.4) is the complete 4-point effective
action. Assuming them to be momentum independent, we
can further simplify this expression in case of the U(1)
gauge group and perform the integral over loop momen-
tum to get

Â4 ¼ 16

24

1

ð4�Þ2
1

ðW �WÞ2 ;

where we used the reduction to 4D for h0 !
h0 � 2W �W. Using this and the fact that W� is related
to D�

#Wð&D _�
#
�WÞ, we get the same nonholomorphic

4-point contribution (with the full superspace measureR
d8�) to N ¼ 4 SYM action rather directly when com-

pared to the calculation done in [16] (for similar calcu-
lations in see, for example, [10]).

4. Two loops

We can also see that there are no UV divergences at
two loops. The proof is similar to that given in the
ordinary case, i.e., absence of sufficient r4

#’s. Only three

diagrams shown in Fig. 1 are supposed to contribute at
two loops. All of them will vanish due to the d algebra
unless we get at least four r�’s from the expansion
of the propagators. This, as we have seen before, brings
in four more h’s making these two loop diagrams
convergent.

Furthermore, we note that the arguments of [13] apply in
our case; since there is no background connection Ay, there

cannot be any divergences at two or more loops from
just power counting. This situation is different than

where such ‘‘0-dimensional’’ connections are present and
arguments similar to the one given above involving the
number of r# ’s have to be used and at higher loops they
can be quite involved [11].

IV. CONCLUSION

We have formulated the background field formalism for
N ¼ 2, 4D projective superspace. The crucial ingredient was

to recognize that different representations for background
and quantum pieces of the hypermultiplets are required.
Choosing real representation for the background fields
allowed nonrenormalization theorems to be applicable
here as the lowest-dimensional fields available were
spinors. The usual choice of analytic representation for
the quantum fields allowed us to make a simple extension
of the existing ‘‘ordinary’’ super-Feynman rules to the
background-covariant rules.
Moreover, there are extra ghosts required (apart from FP

and NK ghosts) to evaluate the full SYM effective action.
These extra ghosts also appear in the harmonic case but in
the projective case, they cancel the spurious ‘‘harmonic’’
divergences coming from vector hypermultiplet in a
straightforward manner and the resultant finite pieces are
as expected for N ¼ 4. The UV-divergent parts come only
from the usual (FP and NK) ghosts and scalar hypermul-
tiplet. However, their contribution cannot be directly cal-
culated in the formalism developed here for reasons
mentioned in Sec. III B. We also gave a diagrammatic
two loops argument for finiteness of N ¼ 2 SYM coupled
with matter. This is easily supplanted by the power count-
ing argument of [13] in general, which directly leads to a
proof for finiteness beyond one loop.
For N ¼ 1 background formalism, there exist improved

rules as showcased in [17,18] and our hope is that such
techniques could be applied to what we have developed in
this paper. That would lead to a further simplification of the
higher-loop calculations while also allowing explicit inclu-
sion of the scalar hypermultiplet’s one-loop contribution.
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