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We describe the application of the continuous wavelet transform to calculation of the Green functions in

quantum field theory: scalar �4 theory, quantum electrodynamics, and quantum chromodynamics. The

method of continuous wavelet transform in quantum field theory, presented by Altaisky [Phys. Rev. D 81,

125003 (2010)] for the scalar�4 theory, consists in substitution of the local fields�ðxÞ by those dependent
on both the position x and the resolution a. The substitution of the action S½�ðxÞ� by the action S½�aðxÞ�
makes the local theory into a nonlocal one and implies the causality conditions related to the scale a, the

region causality [J. D. Christensen and L. Crane, J. Math. Phys. (N.Y.) 46, 122502 (2005)]. These

conditions make the Green functions Gðx1; a1; . . . ; xn; anÞ ¼ h�a1 ðx1Þ . . .�an ðxnÞi finite for any given set

of regions by means of an effective cutoff scale A ¼ min ða1; . . . ; anÞ.
DOI: 10.1103/PhysRevD.88.025015 PACS numbers: 03.70.+k, 11.10.�z

I. INTRODUCTION

The fundamental problem of quantum field theory and
statistical mechanics is the problem of divergences of
Feynman integrals emerging in Green functions. The
formal infinities appearing in perturbation expansion of
Feynman integrals are tackled with different regularization
methods, from Pauli-Villars regularization to renormaliza-
tion methods for gauge theories; see, e.g., [1] for a review.
A special class of regularizations are the lattice regulariza-
tions tailored for the precise numerical simulations in
gauge theories [2,3].

There are a few basic ideas connected with those regu-
larizations. First, a certain minimal scale L ¼ 2�

� , where

� is the cutoff momentum, is introduced into the theory,
with all the fields �ðxÞ being substituted by their Fourier
transforms truncated at momentum �. The physical
quantities are then demanded to be independent on the
rescaling of the cutoff parameter �. The second thing is
the Kadanoff blocking procedure [4], which averages the
small-scale fluctuations up to a certain scale—this makes a
kind of effective interaction.

Physically, all these methods imply the self-similarity
assumption: Blocks interact with each other similarly to
the sub-blocks [5]. Similarly, but not necessarily having the
same interaction strength—the latter can be dependent on
scale � ¼ �ðaÞ. However, there is no place for such de-
pendence if the fields are described solely in terms of their
Fourier transform—except for the cutoff momentum de-
pendence. The latter representation, being based on the
representation of the translation group, is rather restrictive:

It determines the effective interaction of all fluctuations up
to a certain scale but says nothing about the interaction of
the fluctuations at a given scale.
That is why the functional methods capable of taking

into account the interaction at a specific scale are required.
Wavelet analysis, the multiscale alternative to the Fourier
transform, emerged in geophysics [6] and is the most
known of such methods. Its application to quantum field
theory has been suggested by many authors [7–11]. The
other side of the problem is that the quantum nature of the
fields considered in quantum field theory is constrained by
the Heisenberg uncertainty principle. To localize a particle
in an interval �x, the measuring device requests a momen-
tum transfer of the order of�p� ℏ=�x. If�x is too small,
the field �ðxÞ at a fixed point x has no experimentally
verifiable meaning. What is meaningful is the vacuum
expectation of the product of fields in a certain region
centered around x, the width of which (�x) is constrained
by the experimental conditions of the measurement [12].
That is why, at least from the physical point of view, any
such field should be designated by the resolution of obser-
vation ��xðxÞ.
In the present paper, we exploit the observation that

quantum field theory models, which yield divergent
Feynman graphs, can be studied analytically if we project
original fields �ðxÞ into the fields �aðxÞ, subscribed
by the scale of measurement a. The Green functions
h�a1ðx1Þ . . .�anðxnÞi become finite under certain causality

assumptions, which stand for the fact that any n-point
correlation function can be dependent only on space-time
regions, rather than points, and thus cannot be infinite [12].
These Green functions describe the effect of propagation of
a perturbation from a region of size a, centered at a point x,
to a region of size a0, centered at a point x0. The standard
quantum field theory models can be reformulated by
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expressing the (point-dependent) local fields �ðxÞ, the
distributions, in terms of the region-dependent fields
�aðxÞ. The integration over all scales a will of course drive
us back to the known divergent results, but the physical
observables are always those measured with finite resolu-
tion, and their correlations are always finite. Therefore, the
idea of wavelet transform of quantum fields, which will be
considered below, is very similar to the idea of the renor-
malization group (this similarity, being studied in the
lattice framework [10,13], is beyond the scope of the
present paper).

The remainder of this paper is organized as follows. In
Sec. II, we recall the basics of the continuous wavelet
transform and its application to the multiresolution analy-
sis of quantum fields. The definitions of scale-dependent
fields and Green functions and the modifications of the
Feynman diagram technique are presented. The �4 scalar
field model examples of calculations are given. Section III
considers the case of operator-valued scale-dependent
fields. The operator ordering and commutation relations
are presented. The relations between the theory of scale-
dependent fields in Euclidean and Minkowski spaces are
discussed. Section IV presents the examples of calculation
of one-loop Feynman graphs in QED and QCD. The con-
clusion gives a few remarks on the perspectives and appli-
cability of the multiscale field theory approach based on
continuous wavelet transform.

II. CONTINUOUS WAVELET TRANSFORM IN
QUANTUM FIELD THEORY

A. Basics of the continuous wavelet transform

Let H be a Hilbert space of states for a quantum field
j�i. Let G be a locally compact Lie group acting transi-
tively on H , with d�ð�Þ, � 2 G being a left-invariant
measure on G. Then, similarly to representation of a
vector j�i in a Hilbert space of states H as a linear
combination of an eigenvectors of momentum operator
j�i ¼ R jpidphpj�i, any j�i 2 H can be decomposed

with respect to a representation Uð�Þ of G in H [14,15]:

j�i ¼ 1

Cg

Z
G
Uð�Þjgid�ð�ÞhgjU�ð�Þj�i; (1)

where jgi 2 H is referred to as an admissible vector, or
basic wavelet, satisfying the admissibility condition

Cg ¼ 1

kgk2
Z
G
jhgjUð�Þjgij2d�ð�Þ<1:

The coefficients hgjU�ð�Þj�i are referred to as wavelet
coefficients.

If the groupG is Abelian, the wavelet transform (1) with
G: x0 ¼ xþ b0 coincides with Fourier transform.

Next to the Abelian group is the group of the affine
transformations of the Euclidean space Rd:

G: x0 ¼ aRð�Þxþ b; x; b 2 Rd;

a 2 Rþ; � 2 SOðdÞ; (2)

where Rð�Þ is the rotation matrix. We define unitary
representation of the affine transform (2) with respect to
the basic wavelet gðxÞ as follows:

Uða; b; �ÞgðxÞ ¼ 1

ad
g

�
R�1ð�Þ x� b

a

�
: (3)

(We use the L1 norm [16,17] instead of the usual L2 to keep
the physical dimension of wavelet coefficients equal to the
dimension of the original fields.)
Thus the wavelet coefficients of the function �ðxÞ 2

L2ðRdÞ with respect to the basic wavelet gðxÞ in Euclidean
space Rd can be written as

�a;�ðbÞ ¼
Z
Rd

1

ad
g

�
R�1ð�Þ x� b

a

�
�ðxÞddx: (4)

The wavelet coefficients (4) represent the result of the
measurement of function �ðxÞ at the point b at the scale
awith an aperture function g rotated by the angle(s) � [18].
The function �ðxÞ can be reconstructed from its wavelet

coefficients (4) by using the formula (1):

�ðxÞ¼ 1

Cg

Z 1

ad
g

�
R�1ð�Þx�b

a

�
�a�ðbÞdad

db

a
d�ð�Þ: (5)

The normalization constant Cg is readily evaluated by

using the Fourier transform:

Cg ¼
Z 1

0
j~gðaR�1ð�ÞkÞj2 da

a
d�ð�Þ

¼
Z

j~gðkÞj2 d
dk

jkjd <1:

For isotropic wavelets

Cg ¼
Z 1

0
j~gðakÞj2 da

a
¼

Z
j~gðkÞj2 ddk

Sdjkjd
;

where Sd ¼ 2�d=2

�ðd=2Þ is the area of the unit sphere in Rd.

B. Resolution-dependent fields

If the ordinary quantum field theory defines the field
function �ðxÞ as a scalar product of the state vector of the
system and the state vector corresponding to the localiza-
tion at the point x:

�ðxÞ � hxj�i; (6)

the modified theory [12,19] should respect the resolution of
the measuring equipment. Namely, we define the
resolution-dependent fields

�a�ðxÞ � hx; �; a;gj�i; (7)

also referred to as the scale components of �, where
hx; �; a;gj is the bra vector corresponding to localization
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of the measuring device around the point x with the spatial
resolution a and the orientation � 2 SOðdÞ; g labels the
apparatus function of the equipment, an aperture [18]. The
field theory of extended objects with the basis g defined on
the spin variables was considered in Refs. [20,21].

The introduction of resolution into the definition of the
field function has a clear physical interpretation. If the
particle, described by the field �ðxÞ, has been initially

prepared in the interval ðx� �x
2 ; xþ �x

2 Þ, the probability

of registering this particle in this interval is generally less
than unity: for the probability of registration depends on
the strength of interaction and the ratio of typical scales of
the measured particle and the measuring equipment. The
maximum probability of registering an object of typical
scale �x by the equipment with typical resolution a is
achieved when these two parameters are comparable. For
this reason, the probability of registering an electron by
visual range photon scattering is much higher than by that
of long radio-frequency waves. As a mathematical general-
ization, we should say that if measuring equipment with a
given spatial resolution a fails to register an object, pre-
pared on a spatial interval of width �x with certainty, then
tuning the equipment to all possible resolutions a0 would
lead to the registration. This certifies the fact of the exis-
tence of the measured object.

In terms of the resolution-dependent field (7), the unit
probability of registering the object� anywhere in space at
any resolution and any orientation of the measuring device
is expressed by normalization:Z

j�a;�ðxÞj2d�ða; �; xÞ ¼ 1; (8)

where d�ða; �; xÞ is an invariant measure on
Rþ � SOðdÞ � Rd, which depends on the position x, the
resolution a, and the orientation � of the aperture g.

If the measuring equipment has the resolution A—i.e.,
all states hg;a � A; xj�i are registered with significant
probability, but those with a < A are not—the regulariza-
tion of the field theory in momentum space with the cutoff
momentum � ¼ 2�=A corresponds to the UV-regularized
functions

�ðAÞðxÞ ¼ 1

Cg

Z
a�A

hxjg; a; bid�ða; bÞhg; a; bj�i: (9)

The regularized n-point Green functions are

GðAÞðx1; . . . ; xnÞ � h�ðAÞðx1Þ; . . . ; �ðAÞðxnÞic.
However, the momentum cutoff is merely a technical

trick: The physical analysis, performed by the renormal-
ization group method [1,22,23], demands the indepen-
dence of physical results from the cutoff at � ! 1.

C. Scalar field example

To illustrate the method, following Refs. [12,19], we
start with Euclidean scalar field theory. The widely known
example which fairly illustrates the problem is the �4

interaction model in Rd (see, e.g., [1,24]), determined by
the generating functional

W½J� ¼ N
Z

e�
R

ddx½12ð@�Þ2þm2

2 �
2þ�

4!�
4�J��D�; (10)

where N is a formal normalization constant. The con-
nected Green functions are given by variational derivatives
of the generating functional:

GðnÞ ¼ �n lnW½J�
�Jðx1Þ . . .�JðxnÞ

��������J¼0
: (11)

In the statistical sense, these functions have the meaning of
the n-point correlation functions [25]. The divergences of
Feynman graphs in the perturbation expansion of the Green
functions (11) with respect to the coupling constant �
emerge at coinciding arguments xi ¼ xk. For instance,
the bare two-point correlation function

Gð2Þ
0 ðx� yÞ ¼

Z ddp

ð2�Þd
e�{pðx�yÞ

p2 þm2
(12)

is divergent at x ¼ y for d � 2.
For simplicity let us assume the basic wavelet g to be

isotropic; i.e., we can drop the rotation matrix Rð�Þ.
Substitution of the continuous wavelet transform (5) into
field theory (10) gives the generating functional for the
scale-dependent fields �aðxÞ [19]:

WW½Ja� ¼ N
Z

D�aðxÞ exp
�
� 1

2

Z
�a1ðx1Þ

�Dða1; a2; x1 � x2Þ�a2ðx2Þ
da1d

dx1
a1

da2d
dx2

a2

� �

4!

Z
Va1;...;a4
x1;...;x4 �a1ðx1Þ . . .�a4ðx4Þ

� da1d
dx1

a1

da2d
dx2

a2

da3d
dx3

a3

da4d
dx4

a4

þ
Z

JaðxÞ�aðxÞdad
dx

a

�
; (13)

with Dða1; a2; x1 � x2Þ and Va1;...;a4
x1;...;x4 denoting the wavelet

images of the inverse propagator and that of the interaction
potential, respectively. The Green functions for scale com-
ponent fields are given by functional derivatives

h�a1ðx1Þ . . .�anðxnÞic ¼
�n lnWW½Ja�

�Ja1ðx1Þ . . .�JanðxnÞ
��������J¼0

:

Surely the integration in (13) over all scale variables
R1
0

dai
ai

turns us back to the divergent theory (10).
This is the point to restrict the functional integration in

(13) only to the field configurations f�aðxÞga�A. The re-
striction is imposed at the level of the Feynman diagram
technique. Indeed, applying the Fourier transform to the
right-hand side of (4) and (5) yields
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�ðxÞ ¼ 1

Cg

Z 1

0

da

a

Z ddk

ð2�Þd e
�{kx~gðakÞ ~�aðkÞ;

~�aðkÞ ¼ ~gðakÞ ~�ðkÞ:
Doing so, we have the following modification of the
Feynman diagram technique [11]:

(i) Each field ~�ðkÞ will be substituted by the scale

component ~�ðkÞ ! ~�aðkÞ ¼ ~gðakÞ ~�ðkÞ.
(ii) Each integration in the momentum variable is

accompanied by a corresponding scale integration:

ddk

ð2�Þd ! ddk

ð2�Þd
da

a
:

(iii) Each interaction vertex is substituted by its wavelet
transform; for theNth power interaction vertex, this

gives multiplication by a factor of
Q

N
i¼1 ~gðaikiÞ .

According to these rules, the bare Green function in wave-
let representation takes the form

Gð2Þ
0 ða1; a2; pÞ ¼ ~gða1pÞ~gð�a2pÞ

p2 þm2
:

The finiteness of the loop integrals is provided by the
following rule: There should be no scales ai in internal
lines smaller than the minimal scale of all external lines.
Therefore the integration in ai variables is performed from
the minimal scale of all external lines up to infinity.

To understand how the method works, one can look at
the one-loop contributions to the two-point Green function

Gð2Þða1; a2; pÞ shown in Fig. 1(a) and to the vertex shown in
Fig. 1(b). The best choice of the wavelet function gðxÞ
would be the apparatus function of the measuring device;
however, any well localized function with ~gð0Þ ¼ 0 will
suit. The tadpole integral, to keep with the notation of
Ref. [19], is written as

Td
1 ðAmÞ¼ 1

C2
g

Z
a3;a4�A

ddq

ð2�Þd
j~gða3qÞj2j~gð�a4qÞj2

q2þm2

da3
a3

da4
a4

¼Sdm
d�2

ð2�Þd
Z 1

0
f2ðAmxÞx

d�1dx

x2þ1
;

where the integration over the scale variables resulted in
the effective cutoff function

fðxÞ � 1

Cg

Z 1

x
j~gðaÞj2 da

a
; fð0Þ ¼ 1; (14)

which depends on the squared modulus of the Fourier
image of the basic wavelet and, thus, is even with respect
to reflections.
In the one-loop contribution to the vertex, shown in

Fig. 1(b), the value of the loop integral is

Xd¼�2

2

1

ð2�Þd
Z ddq

ð2�Þd
f2ðqAÞf2ððq�sÞAÞ

½q2þm2�½ðq�sÞ2þm2� ; (15)

where s ¼ p1 þ p2 and A ¼ min ða1; a2; a3; a4Þ. The inte-
gral (15) can be calculated by symmetrization of loop
momenta q ! qþ s

2 in Fig. 1(b), introducing dimension-

less variable y ¼ q=s; after a simple algebra we get

Xd¼�2

2

Sd�1s
d�4

ð2�Þ2d
Z �

0
d�sind�2�

Z 1

0
dyyd�3

�
f2
�
As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þycos�þ 1

4

q �
f2
�
As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2�ycos�þ 1

4

q �
�
y2þ1

4þm2

s2

y þcos�

��
y2þ1

4þm2

s2

y �cos�

� ;

where � is the angle between the loop momentum q and the
total momentum s. For the simple choice of the basic
wavelet g1 [12,19]

gðxÞ ¼ � xe�x2=2

ð2�Þd=2 ; ~gðkÞ ¼ {ke�k2=2

in four dimensions, we get a finite result

T4
1ð�2Þ ¼ �4�4e2�

2
Ei1ð2�2Þ þ 2�2

64�2�4
m2;

lim
s2�4m2

X4ð�2Þ ¼ �2

256�6

e�2�2

2�2
½e�2 � 1� �2e2�

2
Ei1ð�2Þ

þ 2�2e2�
2
Ei1ð2�2Þ�;

depending on dimensionless scale factor � � Am, where
A is the minimal scale of all external lines.
These results display an evident fact that for the massive

scalar field all length scales are to be measured in units of
inverse mass.

III. CAUSALITYAND COMMUTATION
RELATIONS

A. Operator ordering

Up to now, we have considered the calculation of the
Feynman diagrams for the scale-dependent fields �a;	ðxÞ
treated as c-valued functions. In quantum field theory,
adjusted to high energy physics applications, the fields
�a;	ðxÞ are operator-valued functions. So, as was already

emphasized in the context of the wavelet application to

a1 a1 a1a2 a2 a2

p p

q

p a3 a4
= + + ...

p

= + +

a5 a6

(a)

(b)

2

1 3

4 2

1

4 2

a

a5 a7

6 a8

q

+ permutations + ...

3

4

31

FIG. 1. Feynman diagrams for the Green functions Gð2Þ and
Gð4Þ for the resolution-dependent fields. Redrawn from Ref. [12].
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quantum chromodynamics [9,12], the operator ordering
and the commutation relations are to be defined.

In standard quantum field theory, the operator ordering
is performed according to the nondecreasing of the time
argument in the product of the operator-valued functions
acting on vacuum state

AðtnÞAðtn�1Þ . . .Aðt2ÞAðt1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
tn�tn�1�			�t2�t1

j0i:

In the infinite momentum frame, which simplifies alge-
braic structure of the current algebra, the time ordering is
performed in the proper time argument xþ [26]. The quan-
tization is performed by separating the Fourier transform of
quantum fields into the positive- and the negative-
frequency parts

� ¼ �þðxÞ þ��ðxÞ;
defined as follows:

�ðxÞ ¼
Z ddk

ð2�Þd ½e
{kxuþðkÞ þ e�{kxu�ðkÞ�; (16)

where the operators u
ðkÞ ¼ uð
kÞ�ðk0Þ are subjected to
canonical commutation relations

½uþðkÞ; u�ðk0Þ� ¼ �ðk; k0Þ:
In the case of the scale-dependent fields, because of the
presence of the scale argument in new fields�a;	ðxÞ, where
a and 	 label the size and the shape, respectively, of the
region centered at x, the problem arises how to order the
operators supported by different regions. This problem was
solved in Refs. [12,27] on the base of the region causality
assumption [28]. If two regions ð�x; xÞ and ð�y; yÞ do not
intersect, the standard time ordering procedure is applied.
Alternatively, if one of the regions is inside another (see
Fig. 2), the operator standing for the bigger region acts on
vacuum first [12]. This causal ordering, drawn in Euclidean
space, is presented in Fig. 2. The time ordering in
Euclidean space, as an analytic continuation of time order-
ing in Minkowski space, has been already considered in
Ref. [29]. The diagram in Fig. 2 shows spacelike regions in
Euclidean space. For Minkowski space, corresponding

diagrams can be obtained by analytic continuation of the
Euclidean ball of imaginary radius {� into Minkowski
space, where we can restrict ourselves with forward light
cone t � 0, jxj � t. The disjoint events in Minkowski
space are shown in Fig. 3. The correspondence to the other
case of one Euclidean event inside another, shown in
Fig. 2(b), looks more complex after analytic continuation
to Minkowski space. The forward light-cone part of such
an intersection is shown in Fig. 4.
We consider partial intersection of regions (A \ B ¼ C,

C � A, C � B, C � ;) as unphysical. For this reason,
corresponding ordering of operator-valued fields is not
defined. Since a region is identified with a possibility of
measurement, a simultaneous measurement of a part
within and not within the parent entity is inconsistent.
The ‘‘partial intersection’’ just implies that when doing
the functional integration one has to go to the finer scale, so
that the regions do not intersect. The same happens in
p-adic models of quantum gravity: Two p-adic balls are
either disjoint or one within another [30].
Mathematically, when we make the functional measure

of a Feynman integral into a discrete product of wavelet

fields on a lattice DuaðbÞ !
Q

j;kdd
j
k, we get rid of the

partial intersection, as can be seen in the example of a
binary tree, shown in Table I.
Phenomenologically, the principle ‘‘the coarse acts

first’’ is related to the definition of the measurement
procedure, possibly generalized, where the state of a part
can be measured or affected only after and relative to the

(a)

X ∆X

Y
∆Y

X

∆X

Y

(b)
∆Y

FIG. 2. Causal ordering of scale-dependent fields. Spacelike
regions are drawn in Euclidean space: (a) The event regions do
not intersect; (b) event X is inside event Y.

t

x

X Y

FIG. 3. Disjoint events in (t, x) plane in Minkowski space.

t

x

Y

X

FIG. 4. Nontrivial intersection of two events X � Y in the
(t, x) plane in Minkowski space.
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state of the whole. A similar reason underlies the restriction
on the scales in internal loops by the minimal scales of all
external lines of the Feynman diagram: If we measure a
quantum system from outside, we cannot excite modes
finer than the minimal available scale of measurement.
Thus the functional integration over the trajectories in the
space of square-integrable functions D�ðxÞ is substituted
by functional integration over all causal paths, or tubes of
all different thicknesses, in the space of scale-dependent
functions D�aðxÞ. Referring the reader to the original
works of Refs. [28,31] for the topological aspects of causal
paths, we ought to mention that the Bogolioubov micro-
causality condition holds for causal paths in the same way
as it holds for trajectories [12]. It is also easy to show that,
if the domain Y is inside the domain X, the corresponding
Green function is not singular at coinciding arguments—it
is a projection from a coarser scale to a finer scale:

Gð2Þ
0 ða1; a2; b1 � b2 ¼ 0Þ

¼
Z d4p

ð2�Þ4
~gða1pÞ~gð�a2pÞ

p2 þm2
e�{p	0;

since j~gðpÞj vanish at p ! 1.

B. Commutation relations

In the case of wavelet transform the positive- and
negative-frequency part operators (16) can be expressed
by using wavelet transform:

u
i ðkÞ ¼
1

Cgi

Z 1

�1
d	

Z 1

0

da

a
~giðaM�1ð	ÞkÞu
ia	ðkÞ; (17)

from where we can set [12]

½uþia	ðkÞ; u�ja0	0 ðk0Þ� ¼ �ijCgia�ða� a0Þ�ð	� 	0Þ
� ½uþðkÞ; u�ðk0Þ� (18)

to ensure canonical commutation relations for
½uþðkÞ; u�ðk0Þ�.

C. The Dyson-Schwinger equation

Ordering in the scale argument results in the modifica-
tion of the Dyson-Schwinger equation in the theory of
scale-dependent functions. Let Gðx� y; ax; ayÞ be the

bare field propagator, describing the propagation of
the field from the region ðy; ayÞ to the region ðx; axÞ. Let

Gðx� y; ax; ayÞ be the full propagator for the same re-

gions. The Dyson-Schwinger equation relating the full
propagator with the bare propagator is symbolically drawn
in the diagram

The integral equation depicted in diagram (19) can be
written as

Gðx� y; ax; ayÞ ¼ Gðx� y; ax; ayÞ þ
Z da1

a1

Z da2
a2

�
Z

dx1dx2Gðx� x2; ax; a2Þ
� P ðx2 � x1; a2; a1Þ
� Gðx1 � y; a1; ayÞ; (20)

where the full vertex

denotes the vacuum polarization operator if G is the
massless boson, or the self-energy diagram otherwise.
The Fourier counterpart of Eq. (20) can be written as

~Gax;ayðpÞ ¼ ~Gax;ayðpÞ þ
Z da1

a1

Z da2
a2

~Gax;a2ðpÞ

� ~P a2;a1ðpÞ~Ga1;ayðpÞ:

D. Wavelet transform in Minkowski space

The straightforward application of wavelet transform (4),
defined in Euclidean space Rd, to the Minkowski spaceM4

1

would be the analytic continuation of the results into the
imaginary time x4 ¼ {x0, making the Euclidean rotations
into Lorentz boosts. The construction of such wavelets
with respect to the representations of the Poincaré group
have been studied by several authors [32,33]. From the
physical point of view, there exists a simple and an elegant
way of making the wavelet transform in Minkowski space.
In quantum field theory problems related to relativistic

particle collisions, we can always change the coordinate
frame to the comoving frame of a relativistic projectile
moving at the utmost speed of light. Because of the Lorentz
contraction of the projectile, the longitudinal and the trans-
versal degrees of freedom behave essentially differently in
such a system. Without loss of generality, we can always
assume the projectile to move along the z axis.
The Lorentz contraction, i.e., the hyperbolic rotation in

the ðt; zÞ plane, is determined by the hyperbolic rotation
angle—the rapidity 	. The rotations in the transverse plane
are not affected by the Lorentz contraction and are deter-
mined by the SOð2Þ rotation angle �. If the problem is
axially symmetric, the latter can be dropped.
Therefore, it is convenient to change from the space-

time coordinates ðt; x; y; zÞ to the light-cone coordinates
ðxþ; x�; x; yÞ:

TABLE I. Binary tree of operator-valued functions. Vertical
direction corresponds to the scale variable. The causal sequence
of the operator-valued functions shown in the table is d00, d

1
00,

d101, d
0
1, d

1
10, d

1
11. As shown, the underlined regions of different

scales do not intersect.

d00 d01

d100 d101 d110 d111
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x
 ¼ t
 zffiffiffi
2

p ; x? ¼ ðx; yÞ: (21)

This is the so-called infinite momentum frame. The infinite
momentum frame is not a Lorentzian system but a limit of
that at v ! c. The advantage of the coordinates (21) for the
calculations, say, in QED or QCD, is significant simplifi-
cation of the vacuum structure [26,34]. The metrics in the
light-cone coordinates becomes

g�� ¼

0 1 0 0

1 0 0 0

0 0 �1 0

0 0 0 �1

0
BBBBB@

1
CCCCCA:

The rotation matrix has a block-diagonal form:

Mð	;�Þ ¼

e	 0 0 0

0 e�	 0 0

0 0 cos� sin�

0 0 � sin� cos�

0
BBBBB@

1
CCCCCA;

so that M�1ð	;�Þ ¼ Mð�	;��Þ.
We can define the wavelet transform in light-cone

coordinates in the same way as in Euclidean space by using
the representation of the affine group

x0 ¼ aMð	;�Þxþ b;

defined in L1 norm as

Uða; b; 	;�ÞuðxÞ ¼ 1

a4
u

�
M�1ð	;�Þ x� b

a

�
:

We have the definition of wavelet coefficients of a function
fðxÞ with respect to the basic wavelet g as follows:

Wa;b;	;�½f� ¼
Z

dxþdx�d2x?
1

a4
g

�
M�1ð	;�Þ x� b

a

�
� fðxþ; x�;x?Þ: (22)

In contrast to wavelet transform in Euclidean space, where
the basic wavelet g can be defined globally onRd, the basic
wavelet in Minkowski space is to be defined separately in
four domains impassible by Lorentz rotations:

A1: kþ > 0; k� < 0; A2: kþ < 0; k� > 0;

A3: kþ > 0; k� > 0; A4: kþ < 0; k� < 0;

where k is wave vector k
 ¼ !
kzffiffi
2

p . Hence we have four

separate wavelets in these four domains [35]:

giðxÞ ¼
Z
Ai

e{kx~gðkÞ d4k

ð2�Þ4 : (23)

We assert the following definition of the Fourier transform
in light-cone coordinates:

fðxþ; x�;x?Þ ¼
Z

e{k�xþþ{kþx��{k?x? ~fðk�; kþ;k?Þ

� dkþdk�d2k?
ð2�Þ4 :

Substituting the Fourier images into the definition (22),
we get

Wi
ab	�¼

Z
Ai

e{k�bþþ{kþb��{k?b? ~fðk�;kþ;k?Þ

� �~gðae	k�;ae�	kþ;aR�1ð�Þk?Þdkþdk�d
2k?

ð2�Þ4 :

(24)

In Fourier space the relation between Fourier coefficients
and wavelet coefficients is therefore the same as in Rd:

~W a	�ðkÞ ¼ ~fðkÞ �~gðaM�1ð	;�ÞkÞ:
Similarly, the reconstruction formula is [36]

fðxÞ ¼ X4
i¼1

1

Cgi

Z 1

�1
d	

Z 2�

0
d�

Z 1

0

da

a

Z
M4

1

dbþdb�d2b?
1

a4
gi

�
M�1ð	Þ
� b

a

�
Wi

ab	�

¼ X4
i¼1

1

Cgi

Z 1

�1
d	

Z 2�

0
d�

Z 1

0

da

a

Z
Ai

dkþdk�d2k?
ð2�Þ4 e{k�xþþ{kþx��{k?x? ~Wa	�ðkÞ~gðak�e	; akþe�	; aR�1ð�Þk?Þ:

If the problem is axially symmetric, the azimuthal part of
integration (�) can be dropped. It is also convenient to use
logarithmic scale a ¼ eu to study different rapidity
domains.

E. Choice of the basic wavelet

The choice of the basis of wavelet decomposition is
always a subtle question, especially in quantum field

theory. (The best choice, as was already emphasized in

[12], would be the apparatus function of a classical mea-

suring device interacting with a quantum system.) Some

basis is always tacitly assumed. Even by describing the

massless photons, which are not localized anywhere, by

plane waves, the possibility of photon registration by pho-

tomultiplier implies its interaction with the electron and,

hence, some scale and some localization.
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If the continuous wavelet transform is used in place of
the Fourier transform, the choice of the basic function is
constrained by the feasibility of the analytical integration
in Feynman diagrams, on one hand, and by the possibility
to understand this basic function as a localized (quasi)
particle. The latter has been claimed by some authors to
be important for Minkowski space [37], which seems
questionable for Euclidean space calculations. If the wave-
let transform is performed on a lattice, there is a bias that
only the similarity properties are important rather than the
shape of wavelet [10,13]. The question of whether or not
the basic wavelet should satisfy some equation of motion is
still not clear. We are also not aware of the effect of the
discrete symmetries of the basic wavelet.

To justify our choice of the derivatives of the Gaussian
as the basic wavelets, we present the following heuristic
consideration, inferred from the coherent states theory
[33]. Let us introduce a localized wave packet in Fourier
space:

~gðt; kÞ ¼ e�{tk�k2=2: (25)

If the wave packet is considered in Minkowski space, then
k2 ¼ 0 can be assumed for the photon and the whole
equation (25) turns to be a plane wave. Otherwise, it is a
localized wave. If t is time, the packet (25) is a Gaussian
wave packet at initial time t ¼ 0. At finite but small
instants of time the wave packet can be approximated by
its Taylor expansion

~gðt; kÞ ¼ ~g0ðkÞ þ t

1!
~g1ðkÞ þ t2

2!
~g2ðkÞ þOðt3Þ;

where the expansion coefficients

~g nðkÞ ¼ dn

dtn
~gðt; kÞjt¼0

are responsible for the shape of the packet at the time scales
at which 1, 2, or n excitations are significant. Clearly, gnðxÞ
are the excitations of the harmonic oscillator, with g1 being
the first excitation; see Fig. 5.

IV. GAUGE THEORIES

A. QED

Quantum electrodynamics is the simplest case of gauge
theory. The local Uð1Þ invariance of the fermion field

c ðxÞ ! e�{e�ðxÞc ðxÞ
is accompanied by the gradient invariance of the vector
field A�ðxÞ, the electromagnetic field

A�ðxÞ ! A�ðxÞ þ @��ðxÞ; (26)

to keep the total action Sð �c ; c ; AÞ ¼ R
Ld4x invariant

under the local Uð1Þ transform generated by �ðxÞ. The
interaction of the charged fermion field c with electro-
magnetic field A� is introduced by substitution of ordinary

derivatives @� to covariant derivatives

D� ¼ @� þ {eA�ðxÞ;
with e being the charge of the fermion.
The Lagrangian of QED has the (Euclidean) form

L ¼ �c ðxÞð 6Dþ {mÞc ðxÞ þ 1

4
F��F

�� þ 1

2�
ð@�A�Þ2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

gauge fixing

;

with F�� ¼ @�A� � @�A� (27)

being the field strength tensor of the electromagnetic field
A and �� being the Dirac � matrices.

The straightforward application of the Feynman integral
to the gauge theory with the Lagrangian (27) would be
inefficient, for the integration over the field AðxÞ would
contain an infinite set of physically equivalent field con-
figurations. For this purpose the gauge fixing, which re-
stricts the integration only to gauge-nonequivalent field
configurations, was introduced by Faddeev and Popov [38].
Quantum electrodynamics is the most firmly established

and most verified field theory model in the physics of
elementary particles. The probability amplitude of scatter-
ing obtained at tree level are in fairly good agreement with
classical scattering theory. Starting from one-loop level, the
Feynman integrals are formally divergent, and the physical
results are derived by using the renormalization invariance
of QED. The most accurate tests for the renormalized
calculations of the electron-photon interaction are the
Lamb shift of the hydrogenlike ion energy levels and the
anomalous magnetic momentum of the electron [39–42].

-1

-0.5

 0

 0.5

 1

-4 -2  0  2  4

g1(x)

FIG. 5. Graph of g1 wavelet: g1ðxÞ ¼ �xe�x2=2.
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In one-loop approximation, the radiation corrections in
QED come from three primitive Feynman graphs: fermion
self-energy �ðpÞ, vacuum polarization operator ���ðpÞ,
and the vertex function ��ðp; qÞ. In Euclidean space the

equations for the above three graphs have the following
form:

Electron self-energy

�ðpÞ ¼ �e2
Z d4q

ð2�Þ4 ��

�{

6p� 6qþm
��

���

q2
(28)

gives the corrections to the bare electron massm0 related to
irradiation of virtual photons.

Vacuum polarization diagram

���ðpÞ¼�e2
Z d4q

ð2�Þ4 Sp
�
��

1

6pþ6qþm
��

1

6qþm

�
(29)

could be expected to give the nonzero corrections to the
photon mass, but due to gauge invariance the photon mass
remains zero; instead, the one-loop contribution (29) re-
normalizes the electron charge at small distances and, there-
fore, modifies the Coulomb interaction by screening the bare
electron charge e0 by virtual electron-positron pairs polar-
izing the vacuum at small distances. This diagram contrib-
utes to the Lamb shift of the atom energy levels.

One-loop vertex function

��ðp;qÞ¼�{e3
Z d4f

ð2�Þ4�


1

6pþfþm
��

1

fþ6qþm
��

�
�

f2

(30)

determines the anomalous magnetic moment of the
electron.

All three integrals (28)–(30) are divergent. Their
evaluation involves regularization procedures. The most
common is the dimensional regularization with all inte-
grals taken in formal d ¼ 2! dimension with physical
value ! ¼ 2. In this way the divergences come as poles
in � ¼ 2�!; see, e.g., [22,24,43].

B. One-loop corrections in wavelet-based theory

The evaluation of Feynman diagrams with fermions and
gauge fields in wavelet-based Euclidean theory is similar
to that of scalar theory (15). The evaluation of the one-
loop radiative corrections for the scale-dependent fields
gives finite results by construction with no regularization
procedure required.

1. Electron self-energy

For the scale components of the electron self-energy
diagram, we get

�ðAÞðpÞ
~gðapÞ~gð�a0pÞ¼�{e2

Z d4q

ð2�Þ4
FAðp;qÞ��½6p2�6q�m���

½ðp2�qÞ2þm2�½p2þq�2 ;

(31)

where A is the minimal scale of two external lines shown in
Fig. 6: A ¼ min ða; a0Þ. The regularizing function FAðp; qÞ
is the result of integration over the scales of two internal
lines. For the isotropic basic wavelet g, the regularizing
function is given by (14):

FAðp; qÞ ¼ f2ðAðp=2� qÞÞf2ðAðp=2þ qÞÞ: (32)

Introducing the dimensionless variable y ¼ q=jpj, after
straightforward algebra, we can perform the integration
in Euclidean space:

�ðAÞðpÞ
~gðapÞ~gð�a0pÞ

¼ �{e2
Z d4y

ð2�Þ4 FAðp; jpjyÞ

� 6pþ 4m� 2jpjyh
y2 þ 1

4 � y cos �� m2

p2

ih
y2 þ 1

4 þ y cos�
i ; (33)

where � is the Euclidean angle between the p and the q
directions. In high energy limit p2 � 4m2, the contribu-
tion of the last term in the numerator of (33) vanishes for
the symmetry, and Eq. (33) can be easily integrated in
angle variable (C1):

�ðAÞðpÞ
~gðapÞ~gð�a0pÞ ¼ � {e2

4�2
R1ðpÞð6pþ 4mÞ;

where R1ðpÞ ¼
Z 1

0
dyyFAðp; jpjyÞ

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

�2ðyÞ

s 3
5;

�ðyÞ ¼ yþ 1

4y
:

The integral R1ðpÞ is finite for any wavelet cutoff function
(14). For the g1 wavelet we get

R1ðpÞ ¼ e�A2p2
Z 1

0
dyye�4A2p2y2

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

�2

s 3
5:

After a simple algebra this gives

R1ðpÞ ¼ 1

8A2p2
ð2A2p2Ei1ðA2p2Þ � 4A2p2Ei1ð2A2p2Þ

� e�A2p2 þ 2e�2A2p2Þ: (34)

p/2+q

p/2−qp,a p,a’

FIG. 6. Electron self-energy diagram.
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2. Vacuum polarization diagram

The vacuum polarization diagram in quantum electrodynamics of scale-dependent fields is obtained by integration over
the scale variables of the fermion loop shown in Fig. 7:

�ðAÞ
��ðpÞ

~gðapÞ~gð�a0pÞ ¼ �e2
Z d4q

ð2�Þ4 FAðp; qÞ
Spð��ð6qþ 6p=2�mÞ��ð6q� 6p=2�mÞÞ
½ðqþ p=2Þ2 þm2�½ðq� p=2Þ2 þm2�

¼ �4e2
Z d4q

ð2�Þ4 FAðp; qÞ
2q�q� � 1

2p�p� þ ���ðp2

4 � q2 �m2Þ
½ðqþ p

2Þ2 þm2�½ðq� p
2Þ2 þm2� : (35)

Similarly to the previous diagram, we use the dimensionless variable y and integrate over the angle variable.
The momentum integration in Eq. (35) is straightforward: Having expressed all momenta in units of electron mass m,
we express the loop momentum in terms of the photon momentum and perform the integration over the angle variable:

�ðAÞ
��

~gðapÞ~gð�a0pÞ ¼ � e2

�3
ðm2p2Þ

Z 1

0
dyyFAðmp;mpyÞ

Z �

0
d�sin2�

2y�y� � 1
2

p�p�

p2 þ ���ð14 � y2 � 1
p2Þ�

1
4þy2þ 1

p2

y þ cos �

��
1
4þy2þ 1

p2

y � cos �

� ;

where p is dimensionless, i.e., is expressed in units ofm. Introducing the notation�ðyÞ �
1
4þy2þ 1

p2

y and using the substitution
y�y� ! Ay2��� þ By2

p�p�

p2 , we get

�ðAÞ
��

~gðapÞ~gð�a0pÞ ¼ � e2

�3
ðm2p2Þ

Z 1

0
dyyFAðmp;mpyÞ

Z �

0
d�sin2�

���ðð2A� 1Þy2 þ 1
4 � 1

p2Þ þ p�p�

p2 ð2By2 � 1
2Þ

�2ðyÞ � cos 2�
;

where A and B depend only on the modulus of y, but not on the direction, and can be expressed in terms of angle integrals
(C1).

Finally, writing the polarization operator as a sum of transversal and longitudinal parts, we have the equations

�ðAÞ
��ðpÞ

~gðapÞ~gð�a0pÞ � ����
ðAÞ
T þ p�p�

p2
�ðAÞ

L

¼
�
��� �

p�p�

p2

�
�ðAÞ

T þ XðAÞ p�p�

p2
;

�ðAÞ
T ¼ � e2

3�2
m2p2

Z 1

0
dyyFAðmp;mpyÞ

2
4y2 þ

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
16
þ y4 þ 1

p4 � y2

2
þ 1

2p2 þ 2y2

p2

ð14 þ y2 þ 1
p2Þ2

s 1
A

�
�
5

8
� 4

p2
� 2

p4
� 2y2

�
1þ 2

p2

�
� 2y4

�35;

�ðAÞ
L ¼ � e2

3�2
m2p2

Z 1

0
dyyFAðmp;mpyÞ

2
4�4y2 þ

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
16 þ y4 þ 1

p4 � y2

2 þ 1
2p2 þ 2y2

p2

ð1
4
þ y2 þ 1

p2Þ2

s 1
A

�
�
8y4 þ 2y2

�
1þ 8

p2

�
þ 4

p2
þ 8

p4
� 1

�35; (36)

where

XðAÞ ¼ �ðAÞ
L þ �ðAÞ

T ¼ e2m2p2

�2

Z 1

0
dyyFAðmp;mpyÞ

2
4y2 �

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
16 þ y4 þ 1

p4 � y2

2 þ 1
2p2 þ 2y2

p2

ð14 þ y2 þ 1
p2Þ2

s 1
A�2y4 þ 4

y2

p2
þ 2

p4
� 1

8

�35:

The integrals above are finite and can be easily evaluated in large momenta limit, p2 � 4, introducing the dimensionless
scale a ¼ Am.

As an example we can evaluate the vacuum polarization operator for the g1 wavelet. For the g1 wavelet the regularizing
function
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FAðp; qÞ ¼ exp ð�A2p2 � 4A2q2Þ:
Hence for large p2 � 4 the integral (36) can be evaluated
by substitution y2 ¼ t [19]:

�ðAÞ
T ¼ � e2

6�2
m2p2

�
e�a2p2

8a6p6
ð4a4p4 � a2p2 � 1Þ

þ e�2a2p2

8a6p6
ð1� 4a4p4 þ 2a2p2Þ � 1

2
Ei1ða2p2Þ

þ Ei1ð2a2p2Þ
	
:

Similarly, the longitudinal term XA evaluated with the g1
wavelet in the limit p2 � 4 is equal to

XA ¼ e2m2p2

16�2

e�a2p2ða2p2 � 1þ e�a2p2Þ
a6p6

: (37)

In the limit of small scales ap 
 1, Eq. (37) does not
depend on p: XA / 1

a2
. Therefore the whole equation (36)

is similar to the result obtained by Pauli-Villars regulari-
zation of the vacuum polarization

�M
��ðpÞ ¼ cM2��� þ ðp2��� � p�p�ÞF

�
p2

4m2
;
m

M

�
;

where M ! 1 is a regularizing mass [43]. The gauge
invariance is restored if the multiscale diagram (35) is
integrated over all scales. In this limit the theory can be
subjected to dimensional regularization [12].

3. Vertex function

The one-loop contribution to the QED vertex function
for the theory with scale-dependent matter fields is shown
in Fig. 8. The equation, which corresponds to the vertex
diagram in Fig. 8, can be cast in the form

�{e
�ðAÞ
�;r

~gð�pa0Þ~gð�qrÞ~gðkaÞ ¼ ð�{eÞ3
Z d4l

ð2�Þ4 ��Gðp� fÞ
� ��Gðk� fÞ
� ��D��FAðp� fÞ
� FAðk� fÞFAðfÞ:

The explicit substitution with photon propagator taken in
the Feynman gauge gives

{e
�ðAÞ
�;r

~gð�pa0Þ~gð�qrÞ~gðkaÞ¼ð�{eÞ3
Z d4f

ð2�Þ4��

6p�f�m

ðp�fÞ2þm2

���

6k�f�m

ðk�fÞ2þm2
��

1

f2

�FAðp�fÞFAðk�fÞFAðfÞ:
(38)

By representing the numerator of the latter equation in the
form

A� ¼ ��ð6p� fÞ��ð6k� fÞ��

�m½ð6p� fÞ�� þ ��ð6k� fÞ� þ 2m2��;

it can be seen that the right-hand side of Eq. (38) can be
represented as a linear combination of three finite integrals

ðJð0Þ; Jð1Þ� ; Jð2Þ��Þ presented in Appendix C, in analog to their
divergent counterparts in Minkowski space [44]. After
some algebra, the vertex (38) turns to be

�ðAÞ
�;r

~gð�pa0Þ~gð�qrÞ~gðkaÞ¼e2��½ð6p�� 6k�m 6p���m�� 6kÞJð0Þ

�ð���� 6kþ6p����þ2m���ÞJð1Þ�

þ������J
ð2Þ
�����: (39)

C. Ward-Takahashi identities

The Ward-Takahashi identity in spinor electrodynamics
relates the vertex function to the difference of fermion
propagators:

q���ðp; q; pþ qÞ ¼ G�1ðpþ qÞ �G�1ðpÞ; (40)

where GðpÞ is the complete fermion propagator. The iden-
tity (40) is a helpful constraint which ensures the gauge
invariance of the renormalized QED in any order of per-
turbation theory [45,46]. The constraint (40) makes the
perturbation expansion gauge invariant in the presence of
the gauge-fixing terms in the QED generating functional.
In wavelet-based theory, where the fields explicitly

depend on scale, the divergence does not appear in the
Feynman diagrams, but the evaluation of integrals in

q,r

k−fp−f

f

k,ap,a’

α

µ

β

FIG. 8. One-loop vertex function in scale-dependent QED.

p,a p,a’

q+p/2

q−p/2

FIG. 7. Vacuum polarization diagram in (Euclidean) scale-
dependent QED.
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internal lines with the integration scales constrained by
the minimal scale of external lines may spoil the gauge
invariance of the complete propagator. To prevent this, the
Ward-Takahashi identities are required.

In the absence of gauge-fixing terms in the Lagrangian
(27), the generating functional

e�Z½J; ��;�� ¼
Z

DAD �cDc e�
R

d4xðLðc ; �c ;AÞþJAþ{ ��cþ{ �c�Þ;

(41)

with Lðc ; �c ; AÞ given by Eq. (27), would be invariant
under the gauge transformations (26) if no source term
�R

d4xðJ�A� þ { ��c þ { �c�Þ is present.
In the framework of scale-dependent functions, the

gauge field A�ðxÞ is expressed in terms of its wavelet

coefficients A�aðbÞ:

A�ðxÞ ¼ 1

Cg

Z
Rþ�Rd

1

ad
g

�
x� b

a

�
A�aðbÞ dad

db

a

[with the angular part of wavelet transform (5) dropped for
simplicity]. In view of linearity of the wavelet transform,
we may infer the gauge transform of the scale components
to have the form

A0
�aðxÞ ¼ A�aðxÞ þ @�aðxÞ

@x�
;

where

�aðxÞ ¼
Z
Rd

1

ad
�g

�
y� x

a

�
�ðyÞddy

is the scale component of the gauge function (26). That is,
the gauge transform of the Abelian gauge field A�aðxÞ is a
projection of the (no-scale) gauge field A�ðxÞ onto the

space of resolution a.
Since the free Lagrangian of QED is gauge invariant by

construction, the derivative of the Ward-Takahashi identi-
ties turns into evaluation of the functional overage of the

variation of source and gauge-fixing terms under infinitesi-
mal gauge transform

�A� ¼ @��; �c ¼ �{e�c ; � �c ¼ {e� �c ;

where � ¼ �ðxÞ is considered to be small. Under this
variation the integrand in the functional integral (41), after
integration by parts, acquires a multiplicative factor e�� ,
with

���
Z
ddx

�
� 1

�
@2ð@�A�Þþ@�J�þeð �c�� ��c Þ

�
�ðxÞ:
(42)

Considering �� as small, we can approximate e�� � 1þ
�� and proceed with the derivation procedure from

� ¼ h��i ¼ 0: (43)

The standard procedure of the variation of action with a
gauge-fixing term [47] with respect to �aðxÞ (43) leads to
the equations [48]

q���a4a3a1ðp;q;pþqÞ
¼
Z da2

a2
G�1

a1a2ðpþqÞ ~Ma2a3a4ðpþq;q;pÞ

�
Z da2

a2
~Ma1a3a2ðpþq;q;pÞG�1

a2a4ðpÞ;
where ~Ma1a2a3ðk1;k2;k3Þ

¼ð2�Þd�dðk1�k2�k3Þ �~gða1k1Þ~gða2k2Þ~gða3k3Þ: (44)

Equation (44) is exactly the wavelet transform of the
standard Ward-Takahashi identity (40).

D. QCD example

The same as in QED, we can evaluate the gluon vacuum
polarization operator by using g1 as the basic wavelet. The
corresponding one-loop diagram is shown in Eq. (45):

where

N��ðl; pÞ ¼ 10l�l� þ 5ðl�p� þ l�p�Þ
� 2p�p� þ ðp� lÞ2��� þ ð2pþ lÞ2���

is the tensor structure of the vacuum polarization diagram
(45) in R4 Euclidean space.A is the minimal scale of two
external lines. The regularizing function, if calculated with
the g1 wavelet, has the form (32)

FAðlþ p; lÞ ¼ exp ð�2A2ðlþ pÞ2 � 2A2l2Þ:

Symmetrizing the loop momenta in Eq. (45) by substi-
tution l ¼ q� p

2 , we obtain

�ðAÞ
AB;��ðpÞ ¼ �g2

2
fACDfBDC

Z d4q

ð2�Þ4 FAðp; qÞ

� 10q�q� � 9
2p�p� þ ���ð92p2 þ 2q2Þ

½q2 � p2

4 �2
:

(46)
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For the g1 wavelet the regularizing function FAðp; qÞ is
given by Eq. (32).

The integral (46) can be easily evaluated in the infrared
limit where ordinary QCD is divergent:

�ðA;g1Þ
AB;�� ðp ! 0Þ ¼ �g2fACDfBDC

Z d4q

ð2�Þ4
e�4A2q2

q4

� ½5q�q� þ q2����: (47)

Making use of the isotropy

d4q ! 2�2q3dq; q�q� ! ���

q2

4
;

we get

�ðA;g1Þ
AB;�� ðp ! 0Þ ¼ � 9g2fACDfBDC���

32

Z 1

0
qdqe�4A2q2

¼ � 9g2fACDfBDC���

256A2
:

A similar contribution comes from the ghost loop.

V. CONCLUSION

In this paper, we developed a regularization method for
quantum field theory based on a continuous wavelet trans-
form. Regardless of the significant amount of work devoted
to wavelet-based regularization in different quantum field
theory models [9,10,49], all those are basically the lattice
theories. The novelty of the present approach, developed
by the authors [11,12,50], consists in using continuous
wavelet transform to substitute the local fields �ðxÞ by
the scale-dependent fields �aðxÞ, defined as wavelet coef-
ficients of the physical field. Substitution of such fields into
the action, supplied by appropriate causality assumptions
and operator ordering [12,27,28], results in effective regu-
larization of Feynman graphs, which makes each internal

line decay as an effective factor / e�p2A2
, where A is the

minimal scale of all internal lines and p is momentum.
Regularization factors, that are technically similar to our

approach, were already known in QCD. They are related to
the modification of the gluon vacuum state to the instanton
vacuum, with the parameter A understood as the size of the
instanton [51,52]. The difference between the instanton
vacuum model and our model is that the scattered quark
fields are local fields in the instanton model and only the
interaction with instanton vacuum is smeared. In our ap-
proach, the incident particles are nonlocal wave packets
and only the integration over all scales makes the theory
local.

The physics of using scale-dependent fields �aðxÞ in-
stead of local fields �ðxÞ lies in the fact that no physical
quantity can be measured in a point but in a region of
nonzero size a > 0. Thus, only the finite resolution projec-
tions �aðxÞ of a quantum field � are physically mean-
ingful. The n-point Green functions for such fields

constructed by our method are finite by construction and
do not require regularization. The gauge invariance of the
theory results in appropriate Ward-Takahashi identities,
which are the projections of ordinary Ward-Takahashi
identities onto finite resolution spaces.
The practical applications of our approach can be found

in such physical settings where the separation of the field
from the components of different scales is physically
meaningful. Such models have been presented in QED
calculations of the dependence of the Casimir force on
the size of displacement in measurement [50] and also in
application of quantum field theory methods to the calcu-
lation of correlations of the turbulent velocity fluctuations
of different scales [53]. We strongly hope that, regardless
of the yet unsolved problem of deriving the renormaliza-
tion group equation in the continuous limit of wavelet-
based theory, this method can be also applied for QCD
calculations, where it was originally proposed [9].
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APPENDIX A: DIRAC � MATRICES IN
EUCLIDEAN SPACE

���� þ ���� ¼ �2���; (A1)

���� ¼ �4; �� 6p�� ¼ 2 6p: (A2)

Slashed vectors denote convolution with Dirac gamma
matrices 6k ¼ ��k�, 6k6k ¼ �k2.

APPENDIX B: FEYNMAN RULES IN
EUCLIDEAN SPACE

The photon propagator is taken in the Feynman gauge:

DðkÞ ¼ ���

k2
:

Fermion propagator:

Gð2Þ
E ðpÞ ¼ �{

6pþm
¼ {

6p�m

p2 þm2
:

Electron-fermion vertex:

� {e��:

Besides that, each fermion vertex results in an extra
sign � of the whole diagram.
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APPENDIX C: FUNCTIONS AND INTEGRALS

Exponential integral of the first type:

Ei1ðzÞ ¼
Z 1

1

e�xz

x
dx:

Integrals for angle integration in Euclidean Green
functions [19]:

IkðyÞ �
Z �

0
d�

sin2�cos2k�

�2ðyÞ � cos2�
;

I0ðyÞ ¼ �

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2ðyÞ

q �
;

I1ðyÞ ¼ ��

2
þ �2ðyÞI0ðyÞ; . . .

(C1)

The constants A and B for the vacuum polarization diagram
(35) are given by 4Aþ B ¼ 1 and Aþ B ¼ I1=I0, from
which we get

A ¼ 1

3
þ �

6
I�1
0 ðyÞ � 1

3
�2ðyÞ;

B ¼ � 1

3
� 2�

3
I�1
0 ðyÞ þ 4

3
�2ðyÞ:

Integrals in the one-loop fermion-photon vertex:

Jð0Þ ¼
Z d4f

ð2�Þ4
FAðp�fÞFAðk�fÞFAðfÞ

½ðp�fÞ2þm2�½ðk�fÞ2þm2�f2 ; (C2)

Jð1Þ� ¼
Z d4f

ð2�Þ4
f�FAðp�fÞFAðk�fÞFAðfÞ

½ðp�fÞ2þm2�½ðk�fÞ2þm2�f2 ; (C3)

Jð2Þ�� ¼
Z d4f

ð2�Þ4
f�f�FAðp�fÞFAðk�fÞFAðfÞ
½ðp�fÞ2þm2�½ðk�fÞ2þm2�f2 : (C4)
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