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The autocorrelation of density fluctuations for thermally relativistic fluids is formulated on the basis of

the relativistic Navier-Stokes-Fourier equation under the static equilibrium state. The autocorrelation of

density fluctuations for thermally relativistic fluids, obtained theoretically, is compared with the auto-

correlation of density fluctuations for thermally relativistic fluids, calculated using the stochastic

relativistic Boltzmann equation on the basis of the direct simulation Monte Carlo method. The theoretical

result of the autocorrelation of density fluctuations for thermally relativistic fluids on the basis of the

relativistic Navier-Stokes-Fourier equation gives good agreement with the numerical result of the

autocorrelation of density fluctuations for thermally relativistic fluids in the lowest wave number, because

we calculated the autocorrelation of density fluctuations for thermally relativistic fluids under the

transition regime between the rarefied and continuum regimes.
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I. INTRODUCTION

Recently, hydrodynamic fluctuations of the quark-gluon
plasma (QGP) are focused [1], because the viscosity coef-
ficient of the QGP obtained using experiments at RHIC [2]
and LHC [3] might be explained by hydrodynamic
fluctuations of the QGP on the basis of the fluctuation-
dissipation theorem. In a recent paper by Kapusta et al. [1],
the effect of hydrodynamic fluctuations on the Bjorken
solution was investigated in detail. In this paper, we focus
on the autocorrelation of density fluctuations for thermally
relativistic fluids as an initial study of hydrodynamic fluc-
tuations of the QGP. Here, thermally relativistic fluids are
characterized using the thermally relativistic measure (�)
[4] by 0<� ¼ mc2=ðk�Þ � 100 (m: mass of partons, c:
speed of light, k: Boltzmann constant, �: temperature),
whereas we assume that m is large enough to realize
� ! 0 by not m ! 0 but � ! 1. Additionally, �QCD �
mc2 [5] is assumed. In particular, we categorize the ther-
mally relativistic fluids with � � 1 as the thermally
ultrarelativistic fluids [6]. Provided that k� satisfies
�QCD � k�, the asymptotic freedom of partons allows

us to describe the QGP using the relativistic kinetic equa-
tion, which postulates the short range interaction among
partons owing to the small running coupling constant [5,7].
Here, we use the stochastic relativistic Boltzmann equation
to express a binary collision between two partons, whereas
we must consider the three-body interaction to discuss the
collision gg ! ggg (g: gluon) [8]. In the energy regime of
the asymptotic freedom, the collisional differential cross
section depends on the momentum transferred between
two colliding partons, and the collisional deflection
angle also depends on the momentum, which is transferred
between two colliding partons [5,7], whereas we assume

that the thermally ultrarelativistic fluids are composed of
hard spherical particles, which yield the constant colli-
sional cross section and isotropic deflections of partons
via binary collisions [9], to simplify our discussions. In
this paper, we extend this assumption for thermally ultra-
relativistic fluids to the thermally relativistic fluids, in
which the assumption of the asymptotic freedom might
be invalid. In the past study on the autocorrelation of
density fluctuations for the relativistic fluids [10], ther-
mally relativistic effects on density fluctuations were not
discussed. In this paper, we consider the autocorrelation
of density fluctuations for thermally relativistic fluids,
which is affected by thermally relativistic effects, under
the static equilibrium state in the laboratory frame.
Therefore, the effect via the Lorentz contraction on den-
sity fluctuations is beyond the scope of this paper, and the
Lorentz factor is fixed to unity. The autocorrelation of
density fluctuations for thermally relativistic fluids is
theoretically introduced and compared with the autocor-
relation of density fluctuations for thermally relativistic
fluids, which are obtained by solving the stochastic rela-
tivistic Boltzmann equation on the basis of the direct
simulation Monte Carlo (DSMC) method [11].

II. FORMULATION OFAUTOCORRELATION OF
DENSITY FLUCTUATIONS FOR THERMALLY

RELATIVISTIC FLUIDS

The thermally relativistic Navier-Stokes-Fourier (NSF)
equation with thermal fluctuations is obtained from
Eqs. (A1), (A5), and (A6) in acausal form as follows [4],
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¼ �r � ð�vÞ; (1)
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where � is the density, v ¼ ðv1; v2; v3Þ is the flow velocity,
p is the static pressure, and G � K3ð�Þ=K2ð�Þ, in which
Kn is the nth order modified Bessel function of the second
kind, �ij is the deviatoric stress tensor, Q ¼ ðQ1; Q2; Q3Þ
is the heat flux vector, and cv is the specific heat at the
constant volume. The formal difference between the ther-
mally relativistic NSF equation and nonrelativistic NSF
equation is a term G in Eq. (2). Consequently, the form of
the thermally relativistic NSF equation coincides with the
form of the nonrelativistic NSF equation, when G ¼ 1,
whereas cv is a function of � in the thermally relativistic
fluids [9]. Under the static equilibrium state,�ij andQ are

written as follows [1,12],

�ij ¼ �

�
@vi

@xj
þ @vj
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�
þ
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� � 2

3
�

�
�ij

@vl

@xl
þ ��ij; (4)

Q ¼ ��r�þ �Q; (5)

where � is the viscosity coefficient, � is the bulk viscosity,
and � is the thermal conductivity, calculated for the hard
spherical particles by Cercignani and Kremer [9] on the
basis of Israel-Stewart theory.

In Eqs. (4) and (5), ��ij is the deviatoric stress tensor

generated by thermal fluctuations and �Q is the heat flux
generated by thermal fluctuations. ��ij and �Q yield the

following relations [12]:

h��ijðt; xÞ � ��klðt0; x0Þi
¼ 2k�

�
�ð�ik�jl þ �il�jkÞ þ

�
� � 2

3
�

�
�ij�kl

�

� �ðx� x0Þ�ðt� t0Þ; (6)

h�Qiðt; xÞ � �Qjðt0; x0Þi ¼ 2k��2�ij�ðx� x0Þ�ðt� t0Þ:
(7)

In Eqs. (1)–(3), we express � ¼ �0 þ ��, v ¼ �v, and
� ¼ �0 þ ��, where �0, v0 ¼ 0, and �0 are quantities
under the static equilibrium state. Substituting � ¼ �0 þ
��, v ¼ �v and � ¼ �0 þ �� in Eqs. (1)–(3) and neglect-
ing nonlinear terms, we obtain

@��

@t
¼ ��0ðr � �vÞ; (8)
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3
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�
rðr � �vÞ þ r � ��0; (9)

�0cv
@��

@t
¼ �r2��� p0ðr � �vÞ � r � �Q; (10)

where p0 ¼ �0�k=m, G0 ¼ Gð�0Þ, �0 ¼ �=G0, � 0 ¼
�=G0, and ��0 ¼ ��=G0. Additionally, �p ¼
p0ð��=�0 þ ��=�0Þ. To set variables ��, c ¼ r � �v
and �� as independent variables, we take a divergence of
both sides of Eq. (9) and obtain the following equation:
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3
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þ r � ðr � ��0Þ; (11)

where p0
0 ¼ p0=G0.

Next, we transform ��ðt; xÞ, �c ðt; xÞ, ��ðt; xÞ,
��ðt; xÞ, and �Qðt; xÞ into ��ð!; qÞ, �c ð!; qÞ, ��ð!; qÞ,
��ð!; qÞ, and �Qð!; qÞ using Fourier transform, where !
is the frequency and q is the wave vector. For example,
��ð!; qÞ ¼ R1

0

R
R3 exp f2�ið!t � q � xÞg��ðt; xÞdxdt,

where R3 indicates three-dimensional physical space.
Finally, Eqs. (8), (11), and (10) are rewritten in ð!; qÞ
space as

G�1ð!; qÞ
��ð!; qÞ
�c ð!; qÞ
��ð!; qÞ

0
BB@

1
CCA ¼ Fð!; qÞ; (12)

where the matrix G�1 is the inverse linear response func-
tion, and F ¼ ðF1; F2; F3Þ expresses the random force
vector. G�1 and F are obtained from Eqs. (8), (11), and
(10) as

G�1ð!; qÞ ¼
i! �0 0

� c2sq
2

	�0
ði!þDVq

2Þ c2sq
2

	�0

0 ð	� 1Þ�0 ði!þ 	aTq
2Þ

0
BBB@

1
CCCA;

(13)

Fð!; qÞ ¼ �1

�0

0

qiqj��
0
ijð!; qÞ

iqi�Qið!; qÞ=cv

0
BB@

1
CCA; (14)

where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	Gk�0=m

p
is the speed of sound of thermally

relativistic fluids, DV ¼ ð� 0 þ 4=3�0Þ=�0 is the modified
longitudinal kinematic viscosity of thermally relativistic
fluids, and aT ¼ �=�0cp is the thermal diffusivity, in

which cp is the specific heat at the constant pressure, and

	 ¼ cp=cv.

Multiplying the matrix G in both sides of Eq. (12), we
obtain
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��ð!;qÞ
�c ð!;qÞ
��ð!;qÞ

0
BB@

1
CCA¼

��0ði!þ	aTq
2Þ

i!ði!þ	aTq
2Þ

�i!ð	�1Þ�0

2
664

3
775 F2ð!;qÞ
det½G�1ð!;qÞ�

þ
��0

c2sq
2

	�0

i!�0
c2sq

2

	

c2sq
2

	 �!2þi!DVq
2

2
666664

3
777775

F3ð!;qÞ
det½G�1ð!;qÞ�;

(15)

where det ½G�1ð!; qÞ� can be calculated under two con-
straints, namely, csq � aTq

2 and csq � DVq
2, as

det ½G�1ð!; qÞ� ¼ ði!þ aTq
2Þ½ið!� csqÞ þ �̂sq

2�
� ½ið!þ csqÞ þ �̂sq

2�; (16)

where �̂s ¼ 1
2 ½DV þ ð	� 1ÞaT� is the modified sound

attenuation coefficient of thermally relativistic fluids.
Finally, the autocorrelation between random force in

ð!; qÞ space, namely, hF	

ð!; qÞF�ð!0; q0Þi, is obtained

using the double Fourier transform of Eqs. (6) and (7)
and the relation �0 ¼ �=G0 as

hF	

ð!; qÞF�ð!0; q0Þi ¼ C
�ð2�Þ4�ð!�!0Þ�ðq� q0Þ;

(17)

where C
� (
, � ¼ 1, 2, 3) is the element of the matrix C,

which is formulated as

CðqÞ ¼ 2k�0
�0

0 0 0

0 DVq
4 0

0 0 �0�
�0c

2
v
q2

0
BB@

1
CCA: (18)

The autocorrelation of density fluctuations, namely,
h��	ð!;qÞ��ð!;qÞi¼�0m0Sð!;qÞð2�4Þ�ð!�!0Þ�ðq�q0Þ,
is obtained from Eqs. (15)–(18), where Sð!; qÞ is the
dynamic structure factor of thermally relativistic fluids.
Sð!; qÞ is calculated from Eqs. (15)–(18) as

Sð!;qÞ

¼ 2 k
m�0q

2½ð	�1Þc2saTq4þð!2þ	2a2Tq
4ÞDVq

2�
ð!2þa2Tq

4Þ½ð!�csqÞ2þ�̂2
sq

4�½ð!þcsqÞ2þ�̂2
sq

4�:

(19)

The form of Sð!; qÞ in Eq. (19) coincides with that of the
nonrelativistic fluids, namely, Snrð!; qÞ [13], when G ¼ 1.

Snrð!; qÞ of the nonrelativistic fluids was reduced to Snr ¼
	�1
	

2aTq
2

!2þa2Tq
4 þ 1

	 ½ �̂sq
2

ð!þcsqÞ2þ�̂2
sq

4 þ �̂sq
2

ð!�csqÞ2þ�̂2
sq

4� using two

constraints, namely, csq � aTq
2 and csq � DVq

2, when
the fluid is gas. Similarly, we reduce Sð!; qÞ in Eq. (19)
using these two constraints as

S ¼ 	� 1

	

2aTq
2

!2 þ a2Tq
4
þ 1

	

�
�̂sq

2

ð!þ csqÞ2 þ �̂2
sq

4

þ �̂sq
2

ð!� csqÞ2 þ �̂2
sq

4

�
: (20)

From Eq. (20), the double inverse Fourier transform of
h�	ð!; qÞ � �ð!0; q0Þi to h�	ðt; qÞ � �ðt0; q0Þi yields
h�	ðt; qÞ � �ðt0; q0Þi ¼ �m0Sðq; jt� t0jÞð2�Þ3�ðq� q0Þ;

(21)

Sðq; �Þ ¼ 	� 1

	
exp ð�aTq

2�Þ

þ 1

	
cos ðcsq�Þ exp ð��̂sq

2�Þ: (22)

In this paper, we apply another form of Sðq; �Þ, which was
originally calculated for the nonrelativistic fluids by Boon
and Yip [14], to the thermally relativistic fluids by reducing
Sð!; qÞ in Eq. (19) as follows:

Sðq; �Þ ¼ 	� 1

	
exp ð�aTq

2�Þ

þ 1

	
exp ð��̂sq

2�Þ cos ðcsq�Þ

þ 3�̂s �DV

	2cs
q exp ð��̂sq

2�Þ sin ðcsq�Þ: (23)

III. NUMERICAL ANALYSIS OF
AUTOCORRELATION OF DENSITY
FLUCTUATIONS FOR THERMALLY

RELATIVISTIC FLUIDS

To investigate the autocorrelation of density fluctuations
for thermally relativistic fluids, we solve the stochastic
relativistic Boltzmann equation using the DSMC method.
In previous studies, Garcia and his coworkers [15] calcu-
lated the autocorrelation of density fluctuations for the
nonrelativistic gas and compared h�	ðt; qÞ � �ðt0; q0Þi,
which is obtained using the DSMC method, with h�	ðt; qÞ �
�ðt0; q0Þi, which is theoretically obtained by setting
� ! 1 in Eqs. (21) and (23). In this paper, we compare
h�	ðt; qÞ � �ðt0; q0Þi, which is calculated using the DSMC
method, with h�	ðt; qÞ � �ðt0; q0Þi, which is theoretically
obtained by Eqs. (21) and (23). The algorithm to solve
the stochastic relativistic Boltzmann equation using the
DSMC method is described in our previous papers [6].
As the numerical condition, the system with the length

l1 is set along the x axis, namely, 0 � x � l1, 128 cells,
which have the common volume dV ¼ ðl1=128Þ3, are
equally spaced along the x axis. Kn ¼ 1=ðTn1l1Þ ¼
0:05 (Kn: Knudsen number) corresponds to the transition
regime between the continuum and rarefied regimes, where
T ¼ �d2 (d: diameter of a hard spherical particle) is the
total collisional cross section, n1 ¼ Nc=dV is the number
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density. In our numerical analysis, Nc ¼ 100 particles are
set in a unit cell. The density is calculated using Eckart’s
decomposition [9]. Additionally, physical quantities, such
as the density, spatial coordinate, and time, are normalized
as ~� ¼ �=�1, ~x ¼ x=l1, ~t ¼ t=t1, in which t1 ¼ l1=c.
The time step �~t is set to �~t ¼ 0:005� Kn, and
N ¼ 7:2� 106 samples are used to calculate h~�	ð~t; ~qÞ �
~�ð~tþ ~�; ~qÞi, in which ~q ¼ ql1. In the DSMC method,
h~�	ð~t; 2�Þ � ~�ð~tþ ~�; 2�Þi is calculated using the relation
~q ¼ 2�n (n ¼ 1; 2; 3; . . . ) as [15]

h~�	ð~t;2�nÞ� ~�ð~tþ~�;2�nÞi¼ 1

N

XN
samples

Rð~tÞRð~tþ~�Þ;

Rð~tÞ¼ 1

Mc

XMc

i¼1

~�isinð2�n~xiÞ;
(24)

where ~�i is the normalized density in the ith cell,
Mc ¼ 128 is the number of cells, xi is the coordinate of
the center of the ith cell. In the DSMC method [15], the
theoretical value of h�~�	ðt; qÞ � �~�ðt; qÞi is obtained as
1=ð2McNcÞ ¼ 3:91� 10�5.

A. Numerical results of autocorrelation
of density fluctuations in the lowest wave number

for thermally relativistic fluids

Here, we restrict ourselves to the autocorrelation of
density fluctuations in the lowest wave number, namely,
n ¼ 1 in Eq. (24). As a result, ~q ¼ 2� is considered.

Figure 1 shows h~�	ð~t; 2�Þ � ~�ð~tþ ~�; 2�Þi versus � for
� ¼ 2:9� 10�3, 0.5, 4.79 and 100. As shown in Fig. 1, the
frequency of h~�	ð~t; 2�Þ � ~�ð~tþ ~�; 2�Þi decreases, as � in-
creases. Meanwhile, h~�	ð~t; 2�Þ � ~�ð~tþ ~�; 2�Þi for � ¼
2:9� 10�3 is similar to h~�	ð~t; 2�Þ � ~�ð~tþ ~�; 2�Þi for � ¼
0:5, whereas the damp of h~�	ð~t; 2�Þ � ~�ð~tþ ~�; 2�Þi in a
period for � ¼ 0:5 is larger than that for � ¼ 2:9� 10�3.
As shown in the upper-right frame of Fig. 1, h�~�	ðt; qÞ �
�~�ðt; qÞi ¼ 3:93� 10�5 for � ¼ 2:9� 10�3, 4:02�
10�5 for � ¼ 0:5, and 3:9� 10�5 and 3:92� 10�5 for
� ¼ 100 are similar to the theoretical value 3:91� 10�5.

Figure 2 shows h~�	ð~t; 2�Þ � ~�ð~tþ ~�; 2�Þi=h~�	ð~t; 2�Þ �
~�ð~t; 2�Þið¼ Sð~�; 2�ÞÞ versus � for � ¼ 2:9� 10�3 (top
left), � ¼ 0:5 (top middle), � ¼ 2:11 (top right), � ¼
4:79 (bottom left), � ¼ 24:3 (bottom middle) and � ¼
100 (bottom right), which are obtained using the DSMC
method and theoretical result in Eq. (23). As shown in
Fig. 2, h~�	ð~t; 2�Þ � ~�ð~tþ ~�; 2�Þi=h~�	ð~t; 2�Þ � ~�ð~t; 2�Þi ob-
tained using the DSMC method is similar to h~�	ð~t; 2�Þ �
~�ð~tþ ~�; 2�Þi=h~�	ð~t; 2�Þ � ~�ð~t; 2�Þi obtained by Eq. (23)
in a half period, namely, 0 � 2cs�� � �, in cases
of � ¼ 4:79 and 24.3, whereas h~�	ð~t; 2�Þ � ~�ð~tþ ~�; 2�Þi=
h~�	ð~t; 2�Þ � ~�ð~t; 2�Þi obtained using the DSMC method
is slightly different from h~�	ð~t; 2�Þ � ~�ð~tþ ~�; 2�Þi=
h~�	ð~t; 2�Þ � ~�ð~t; 2�Þi obtained by Eq. (23) at a half period
in cases of � ¼ 2:9� 10�3, 0.5, 2.11, and 100. Table I

shows � versus aT=ðcl1Þ, DV=ðcl1Þ, cs=c, �̂s=ðcl1Þ, and
	. The similarity between h~�	ð~t; 2�Þ � ~�ð~tþ ~�; 2�Þi=
h~�	ð~t; 2�Þ � ~�ð~t; 2�Þi for � ¼ 2:9� 10�3 and that for � ¼
0:5 is described by similarities between aT ,DV , cs, �̂s, and
	 for � ¼ 2:9� 10�3 and those for � ¼ 0:5, as shown in

Table I. aT , �̂s, and DV , which are related to the damping
rate of Sð�; qÞ, decrease as � increases, and cs, which is
related to the frequency of Sð�; qÞ decreases as � increases,
and 1=	, which is related to the amplitude of Sð�; qÞ,
decreases as � increases, as shown in Table I.
As shown in Fig. 2, h~�	ð~t;2�Þ� ~�ð~tþ~�;2�Þi=h~�	ð~t;2�Þ�

~�ð~t;2�Þi obtained using the DSMC method is markedly
different from that obtained by Eq. (23) at a period,
namely, 2�cs� ¼ 2�. Such a marked difference at a period
is also obtained for the nonrelativistic fluids by Bell et al.
[15]. Additionally, the frequency of the h~�	ð~t; 2�Þ�
~�ð~tþ ~�; 2�Þi=h~�	ð~t; 2�Þ � ~�ð~t; 2�Þi obtained using the
DSMC method increases from 2�cs at 2� � 2�cs� for
all the cases of �, as shown in Fig. 2. We, however, can
conclude that Eqs. (21) and (23) accurately reproduce the
autocorrelation of density fluctuations for thermally
relativistic fluids in the lowest wave number, which are
composed of hard spherical particles, whereas the effect of
acausality in Eqs. (2) and (3) or effects of eliminations of
nonlinear terms in Eqs. (A2) and (A3) and the term
�Dq
=c2 in Eq. (A4) on the theoretical result in
Eq. (23) are set to our future study. Finally, we confirmed
that h~�	ð~t;2�Þ� ~�ð~tþ~�;2�Þi=h~�	ð~t;2�Þ� ~�ð~t;2�Þi obtained
by Eq. (22) is quite similar to that obtained by Eq. (23).

B. Numerical results of autocorrelation
of density fluctuations in high wave number

under thermally ultrarelativistic limit

We confirmed that Eqs. (21) and (23) reproduce the
autocorrelation of density fluctuations in the lowest wave
number for thermally relativistic fluids, which is obtained
using the DSMC method, with good accuracy. Here, we
investigate the autocorrelation of density fluctuations in the
high wave number, namely, 1< n in Eq. (24), under
the thermally ultrarelativistic limit, namely, � � 1. The

0 2 4 6 8 10

0

4×10-05 4×10-05

3.95×10-05

3.9×10-05

3×10-05

2×10-05

1×10-05

-1×10-05

χ =4.79

χ=100

χ=0.5

χ =2.9E- 03

τ~

0 0.01 0.02 0.03

FIG. 1 (color online). h~�	ð~t; 2�Þ � ~�ð~tþ ~�; 2�Þi versus ~�.
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autocorrelation of density fluctuations in the lowest wave
number under the thermally ultrarelativistic limit has been
already discussed in the case of � ¼ 2:9� 10�3 in Figs. 1
and 2. The comparison of the theoretical result of the
autocorrelation of density fluctuations in the high wave
number [1< n in Eq. (24)] under the thermally ultrarela-
tivistic limit with the numerical result obtained using the
DSMC method is significant for understanding of the limit
of the accuracy of the theoretical result in Eq. (23) under
the transition regime between rarefied and continuum re-
gimes, namely, Kn ¼ 0:05. We can easily predict that the
autocorrelation of density fluctuations in the higher wave
number must be described using the larger Kn, because
density fluctuations in the higher wave number describe
density fluctuations in the smaller scale. In other words,
fluctuations of the distribution function in the smaller scale
must be described using fluctuations of nonequilibrium

moments beyond 14 moments. Therefore, Garcia and his
coworkers [15] did not compare the theoretical result of
density fluctuations for the nonrelativistic fluids in the high
wave number (1< n) with that obtained using the DSMC
method for the stochastic nonrelativistic Boltzmann
equation [15] under the transition regime. For numerical
comparisons, we calculate the autocorrelation of density
fluctuations under the thermally relativistic limit, namely,
� ¼ 2:9� 10�3 in Eqs. (21) and (23) using transport co-
efficients, which were calculated by Denicol et al. [16],
whereas we used transport coefficients, which were calcu-
lated by Cercignani and Kremer on the basis of Israel-
Stewart theory [9], in the above discussions. Denicol et al.
[16] formulated transport coefficient by expanding the
distribution function with all moments in the relativistic
Boltzmann equation. Consequently, transport coefficients,
which are calculated by Denicol et al., are different

TABLE I. aT=ðcl1Þ, DV=ðcl1Þ, cs=c, �̂s=ðcl1Þ and 	 versus �.

� aT=ðcl1Þ DV=ðcl1Þ cs=c �̂s=ðcl1Þ 	

2:9� 10�3 3:33� 10�2 0.02 0.577 1:55� 10�2 1.33

0.5 3:28� 10�2 1:96� 10�2 0.572 1:54� 10�2 1.34

2.11 2:9� 10�2 1:72� 10�2 0.521 1:45� 10�2 1.41

4.79 2:41� 10�2 1:4� 10�2 0.441 1:28� 10�2 1.48

24.3 1:31� 10�2 7:21� 10�3 0.245 7:61� 10�3 1.65

100 6:81� 10�3 3:81� 10�3 0.127 4:11� 10�3 1.65
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FIG. 2. h~�	ð~t; 2�Þ � ~�ð~tþ ~�; 2�Þi=h~�	ð~t; 2�Þ � ~�ð~t; 2�Þi versus ~� for � ¼ 2:9� 10�3 (top left), � ¼ 0:5 (top middle), � ¼ 2:11 (top
right), � ¼ 4:79 (bottom left), � ¼ 24:3 (bottom middle) and � ¼ 100 (bottom right). Lines express DSMC results and symbols
express theoretical results in Eq. (23).
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from transport coefficients, which were calculated by
Cercignani and Kremer on the basis of Israel-Stewart
theory. Greif et al. [17] calculated the thermal conductivity
of massless hard spherical particles from the heat flow,
which is obtained by solving the relativistic Boltzmann
equation and compared that with thermal conductivities,
which are obtained using Israel-Stewart theory,
N-moments approximation by Denicol et al., and
Chapman-Enskog method by Groot et al. [18].

Here, we use the viscosity coefficient and thermal
conductivity, which were calculated using 14-moments

approximation or 41-moments approximation under the
thermally ultra-relativistic limit (� ! 0) by Denicol
et al. [16], whereas the bulk viscosity, which was calcu-
lated by Cercignani and Kremer [9], is used, because the
bulk viscosity approximates to zero under the thermally
ultra-relativistic limit (� ¼ 2:9� 10�3). Transport coeffi-
cients under the thermally ultrarelativistic limit obtained
using 41-moments approximation by Denicol et al. [16] are
quite similar to those obtained by Groot et al. on the basis
of Chapman-Enskog method [18]. �14 and �41, which
is the viscosity coefficient obtained using 14-moments

TABLE II. aT=ðcl1Þ, DV=ðcl1Þ and �̂s=ðcl1Þ obtained using � and � (Israel-Stewart
theory [9]), �14 and �14 (14-moments approximation by Denicol et al. [16]), and �41 and �41

(41-moments approximation by Denicol et al. [16]) in the case of � ¼ 2:9� 10�3.

Model aT=ðcl1Þ DV=ðcl1Þ �̂s=ðcl1Þ
Israel-Stewart theory 3:33� 10�2 0.02 1:55� 10�2

14-moments approximation by Denicol et al. 5:0� 10�2 2:22� 10�2 1:94� 10�2

41-moments approximation by Denicol et al. 4:26� 10�2 2:11� 10�2 1:77� 10�2
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FIG. 3 (color online). h~�	ð~t; 2�nÞ � ~�ð~tþ ~�; 2�nÞi=h~�	ð~t; 2�nÞ � ~�ð~t; 2�nÞi versus ~�, which are obtained using Israel Stewart theory
(circular symbols), 14-moments approximation by Denicol et al. (delta symbols), 41-moments approximation by Denicol et al.
(gradient symbols), and DSMCmethod (lines) in cases of n ¼ 1 (top left), 2 (top right), 4 (bottom left) and 6 (bottom right) in Eq. (24),
when � ¼ 2:9� 10�3.
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approximation or 41-moments approximation by Denicol
et al. [16], respectively, are related to the viscosity coeffi-
cient obtained using Israel-Stewart theory (�) with �14 ¼
10=9� and �41 ¼ 1:0558� under the thermally ultrarela-
tivistic limit (� ! 0), whereas �14 and �41, which is the
thermal conductivity obtained using 14-moments approxi-
mation or 41-moments approximation by Denicol et al.,
respectively, are related to the thermal conductivity
obtained using Israel-Stewart theory (�) with �14 ¼ 3=2�
and �41 ¼ 1:2768� under the thermally ultrarelativistic
limit (� ! 0). We apply these relations among transport
coefficients under � ! � � 2:9� 10�3 to those under
� ¼ 2:9� 10�3.

Table II shows aT , �̂s, andDV , which are obtained using

�14 and �14 or �41 and �41 together with aT , �̂s, and DV

obtained using � and � in the case of � ¼ 2:9� 10�3, in

which aT , �̂s, and DV are related to the damping rate of
Sð�; qÞ, as shown in Eq. (23). We can easily confirm that

aT , �̂s, and DV in the case of � ¼ 2:9� 10�3 are almost
equal to those in the case of � ! � � 2:9� 10�3. As a
result, the above application of the relation among trans-
port coefficients under � ! � � 2:9� 10�3 to that under
the relation under � ¼ 2:9� 10�3 is correct. Table II
indicates that the damping rate of Sð�; qÞ obtained using
�14 and �14 is the highest, whereas the damping rate of
Sð�; qÞ obtained using � and � is the lowest.

Figure 3 shows h~�	ð~t;2�nÞ� ~�ð~tþ~�;2�nÞi=h~�	ð~t;2�nÞ�
~�ð~t;2�nÞi in cases of n ¼ 1 (top left), n ¼ 2 (top right),
n ¼ 4 (bottom left) and n ¼ 6 (bottom right), which are
obtained using transport coefficients by Israel-Stewart
theory (circular symbols), 14-moments approximation by
Denicol et al. (delta symbols), and 41-moments approxi-
mation by Denicol et al. (gradient symbols). As predicted
from Table II, the damping rate of h~�	ð~t; 2�nÞ�
~�ð~tþ ~�; 2�nÞi=h~�	ð~t; 2�nÞ � ~�ð~t; 2�nÞi obtained using
14-moments approximation by Denicol et al. is the highest
in cases of n ¼ 1, 2, 4, and 6, whereas the damping rate
of h~�	ð~t; 2�nÞ � ~�ð~tþ ~�; 2�nÞi=h~�	ð~t; 2�nÞ � ~�ð~t; 2�nÞi
obtained using Israel-Stewart theory is the lowest in cases
of n ¼ 1, 2, 4, and 6. Meanwhile, the damping rate
of h~�	ð~t; 2�nÞ � ~�ð~tþ ~�; 2�nÞi=h~�	ð~t; 2�nÞ � ~�ð~t; 2�nÞi
obtained using the DSMC method is lower than those
obtained using transport coefficients by Israel-Stewart
theory, 14-moments approximation by Denicol et al., and
41-moments approximation by Denicol et al. in cases of
n ¼ 1, 2, 4 and 6. In particular, such difference between the
damping rate obtained using the DSMC method and
theoretical results in Eq. (23) increases, as n increases.
Consequently, the theoretical result of the autocorrelation
of density fluctuations under the thermally ultrarelativistic
limit in Eq. (23) is insufficient to describe the autocorre-
lation of density fluctuations under the thermally ultra-
relativistic limit, which is obtained using the stochastic
relativistic Boltzmann equation, in the high wave number
(1< n). We, however, note that such an insufficiency of the

theoretical result in Eq. (23) in the high wave number
(1< n) is presumably caused by rarefied effects, which
cannot be expressed by the thermally relativistic NSF
equation in Eqs. (8)–(10). In short, the fluctuation of the
distribution function is not always described in the frame-
work of 14 moments, when the scale of fluctuations is
adequately small, in which the autocorrelation of density
fluctuations is affected by fluctuations of nonequilibrium
moments beyond 14 moments.

IV. DISCUSSION

Numerical results of the autocorrelation of density fluc-
tuations obtained using the DSMCmethod indicate that the
description of the thermal fluctuations in the framework of
the relativistic NSF equation in Eqs. (8)–(10) is accurate
enough to demonstrate the autocorrelation of density fluc-
tuations for massive hard spherical particles under the
static equilibrium state, when we restrict ourselves to the
autocorrelation of density fluctuations in the lowest wave
number. Meanwhile, effects of fluctuations of nonequilib-
rium moments beyond 14 moments are significant for the
autocorrelation of density fluctuations in the high wave
number owing to rarefied effects. Consequently, we con-
sider that our theoretical formulation of the autocorrelation
of density fluctuations for thermally relativistic fluids in
Eqs. (21) and (23) is useful for understanding of the
autocorrelation of density fluctuations for thermally rela-
tivistic fluids, when effects of fluctuations of nonequilib-
rium moments beyond 14 moments on the autocorrelation
of density fluctuations for thermally relativistic fluids
are ignorable even for the high wave number owing to
Kn � 1. On the contrary, the DSMC calculation in the
regime ofKn � 1 is difficult owing to the marked increase
of the number of particles even with the most advanced
supercomputer. Provided that we can calculate the auto-
correlation of density fluctuations for thermally relativistic
fluids under Kn � 1 using the DSMC method, we can
conclude which transport coefficients among those
obtained using Israel-Stewart theory, 14-moment approxi-
mation by Denicol et al. and 41-moment approximation by
Denicol et al. reproduce the autocorrelation of density
fluctuations for thermally relativistic fluids, which is
obtained using the DSMC method, with the best accuracy.
Consequently, we expect that the dynamic structure

factor Sðq; �Þ in Eqs. (22) and (23) can be extended by
changing�, � and � for hard spherical particles to �, � and
�, which are analytically determined or experimentally
obtained for the QGP. Simultaneously, the binary colli-
sional mechanics for hard spherical particles in the
DSMC method must be changed to that for the QGP to
compare the autocorrelation of density fluctuations for the
QGP obtained using Eqs. (1)–(3) with the autocorrelation
of density fluctuations for the QGP obtained using the
DSMC method.
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As a future study, we must investigate the autocorrela-
tion of density fluctuations under v
 c. In this paper, we
can use Eqs. (2) and (3) under the assumption of v � c, as
described in the Appendix. Meanwhile, nonlinear terms,
which are eliminated in Eqs. (2) and (3), are significant to
describe the relativistic NSF equation with thermal fluctu-
ations. In particular, thermal fluctuations under the flow
with v
 c are significant for understanding of the charac-
teristics of thermal fluctuations inside the Mach cone of the
QGP. Of course, the fluctuation-dissipation theorem, which
is formulated under the equilibrium state, must be extended
to the fluctuation-dissipation theorem under the strongly
nonequilibrium state to describe thermal fluctuations
inside the Mach cone [19].

In the above discussion on the autocorrelation of
density fluctuations for thermally relativistic fluids, we
restrict ourselves to flat spacetime. Meanwhile, we must
consider the autocorrelation of density fluctuations for
the thermal relativistic fluids in curved spacetime [20],
when the thermally relativistic fluids in the early epoch
of the universe are addressed. Such an autocorrelation of
density fluctuations for thermally relativistic fluids in the
early epoch of the universe will be investigated by solv-
ing the stochastic general relativistic Boltzmann equa-
tion, which is coupled to Einstein’s equation [21]. Of
course, the development of the robust numerical scheme,
which solves Einstein’s equation with the fluctuating
energy-momentum tensor owing to thermal fluctuations,
might be required.

V. CONCLUDING REMARKS

In this paper, we investigated the autocorrelation of
density fluctuations for thermally relativistic fluids, which
are composed of massive hard spherical particles under the
transition regime, both theoretically and numerically. The
autocorrelation of density fluctuations for thermally rela-
tivistic fluids obtained using the DSMC method indicates
good agreements with the autocorrelation of density
fluctuations for thermally relativistic fluids, which is theo-
retically obtained using the relativistic NSF equation, in
the range of 2:9� 10�3 � � � 100, when we restrict
ourselves to the autocorrelation of density fluctuations in
the lowest wave number. The difference between the
autocorrelation of density fluctuations for thermally rela-
tivistic fluids obtained using the DSMC method and that
obtained using the thermally relativistic NSF equation
increases, as the wave number of the autocorrelation of
density fluctuations increases under the thermally ultra-
relativistic limit, whereas the choice of transport coeffi-
cients in accordance with the kinetic scheme does not make
such a difference between the autocorrelation of density
fluctuations for the thermally relativistic fluids obtained
using the DSMC method and that obtained using the
thermally relativistic NSF equation in the high wave
number. Consequently, we consider that our theoretical

formulation of the autocorrelation of density fluctuations
for the thermally relativistic fluids is useful for understand-
ing of the autocorrelation of density fluctuations for the
QGP by applying transport coefficients of the QGP to our
theoretical formulation of the autocorrelation of density
fluctuations for the thermally relativistic fluids, when
effects of fluctuations of nonequilibrium moments beyond
14 moments on the autocorrelation of density fluctuations
for the thermally relativistic fluids are ignorable even for
the high wave number owing to Kn � 1.
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APPENDIX: DERIVATION OF RELATIVISTIC
NAVIER-STOKES-FOURIER EQUATION

IN EQ. (1)–(3)

Balance equations of the mass, momentum density, and
energy density are written in Eckart’s frame as [9]

Dnþ nr
U
 ¼ 0; (A1)

nhE
c2

DU
 ¼ r
ðpþ�Þ � r��
h
�i þ 1

c2

�
�h
�iDU�

��DU
 �Dq
 � q
r�U
� � q�r�U




� 1

c2
U
q�DU� �U
�h�	ir�U	

�
; (A2)

nDe ¼ �ðpþ�Þ þ �h
�ir�U
 �r
q

 þ 2

c2
q
DU
;

(A3)

where n ¼ �=m is the number density, U
 ¼ 	ðvÞðc; viÞ
(i ¼ 1, 2, 3, 	ðvÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
: Lorentz factor) is the

four flow velocity, D � U
r
 is the convective time
derivative, r
 ¼ �
�@�, in which �
� ¼ ð�
� �
U
U�=c2Þ@�, where �
� ¼ diagð1;�1;�1;�1Þ, is the

projector, e is the energy density, and hE ¼ mc2G is the
enthalpy per particle.
In this paper, we investigate thermal fluctuations

under static state in the laboratory frame. Then we
assume that the product of nonlinear terms, which are

expressed by products of U
 (or U
) and �h
�i, � or q


in Eqs. (A2) and (A3), are negligible owing to �vi � c
(i ¼ 1, 2, 3).
Consequently, linearized balance equations of the

momentum density and energy density are written from
Eqs. (A2) and (A3) by neglecting nonlinear terms as [9]
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nhE
c2

DU
 ¼ r
ðpþ�Þ � r��
h
�i � 1

c2
Dq
; (A4)

nDe ¼ �pr�U
� �r�q

�: (A5)

In Eq. (A4), we assume that the term �Dq
=c2 is negli-
gible and rewrite Eq. (A4) as [22]

nhE
c2

DU
 ¼ r
ðpþ�Þ � r��
h
�i: (A6)

From Eqs. (A1), (A5), and (A6), we readily obtain
Eqs. (1)–(3) using relations De ¼ cvD�, hE ¼ mc2G,
and 	ðvÞ ¼ 1.
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