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We present the mechanism of the dynamical supersymmetry breaking at the metastable vacuum

recently uncovered in the N ¼ 1 UðNÞ supersymmetric gauge theory that contains adjoint superfields

and that is specified by Kähler and noncanonical gauge kinetic functions and a superpotential whose tree

vacua preserve N ¼ 1 supersymmetry. The overall Uð1Þ serves as the hidden sector, and no messenger

superfield is required. The dynamical supersymmetry breaking is triggered by the nonvanishing D term

coupled to the observable sector and is realized by the self-consistent Hartree-Fock approximation of the

Nambu-Jona-Lasinio type while it eventually brings us the nonvanishing F term as well. It is shown that

theoretical analysis is resolved as a variational problem of the effective potential for three kinds of

background fields, namely, the complex scalar, and the two order parameters D and F of supersymmetry,

the last one being treated perturbatively. We determine the stationary point and numerically check the

consistency of such treatment as well as the local stability of the scalar potential. The coupling to the

N ¼ 1 supergravity is given, and the gravitino mass formula is derived.

DOI: 10.1103/PhysRevD.88.025012 PACS numbers: 11.30.Pb

I. INTRODUCTION

Spontaneous breaking of rigid supersymmetry occurs
much less frequently compared with that of internal sym-
metry in quantum field theory and has attracted much
interest [1,2] of theorists for over the three decades. Mass
hierarchy in elementary particle physics indicates that it is
most desirable to break N ¼ 1 supersymmetry dynami-
cally. In fact, under the nonrenormalization theorem [3], no
holomorphic operator is generated in perturbation theory,
and instanton generated nonperturbative superpotentials
have been the major source of dynamical supersymmetry
breaking (DSB).

In this paper, we focus our attention on general rigid
N ¼ 1 theory in four spacetime dimensions consisting of
vector superfields and chiral superfields in the adjoint
representation which permits a noncanonical gauge kinetic
function �ab (that may follow from the second derivative of
the prepotential) and hence the D term-gaugino-matter
fermion (or D term-Dirac gauginos) nonrenormalizable
coupling. It has recently been shown in Refs. [4,5] that,
in this general situation, supersymmetry is dynamically
broken in the metastable vacuum. The mechanism that
triggers the DSB is the condensate of the Dirac bilinear
above, forcing one of the order parameters D of supersym-
metry to be nonvanishing. This is very much reminiscent of
the Nambu-Jona-Lasinio (NJL) theory [6,7] of broken
chiral symmetry and hence the BCS superconductivity
[8,9], being formulated in terms of the effective action of

the auxiliary field whose stationary value is the order
parameter. The method of approximation employed is the
self-consistent Hartree-Fock approximation where the tree
and the one-loop contributions are regarded as comparable.
Once this mechanism operates, a nonvanishing F term is
shown to be induced and contributes, for instance, to the
mass of the fermions. The mechanism requires massive
adjoint scalars, in particular, the scalar gluons, and,
together with the feature that theD term triggers the break-
ing, is quite distinct from the previous proposals [10–14] of
DSB both from theoretical and experimental perspectives.
The overall Uð1Þ where the nonvanishing D and the
Nambu-Goldstone (NG) fermion reside serves as the
hidden sector, and no messenger field is necessary [4] as
nonvanishing third prepotential derivatives connect the
Uð1Þ sector with the observable SUðNÞ sector [15,16].
While our treatment of the theory bears much resem-

blance with that of the NJL theory, there is one important
complexity which has no counterpart in the NJL and which
we did not emphasize in Ref. [4]. In NJL, aside from the
pseudoscalar auxiliary massless singlet field commonly
denoted by �, there is only one singlet auxiliary scalar
field denoted by � in the effective action, which is the
order parameter of chiral symmetry. (See Appendix A.)
In other words, the stationary condition of energy with
respect to the scalar is at the same time the stationarity
with respect to the order parameter (the gap equation). This
is not the case here. After treating the UðNÞ singlet real
auxiliary field F as perturbation, we have two kinds of
background fields in the effective potential: these are the
singlet complex scalar ’ and the singlet auxiliary field D.
The stationarity of energy with respect to the scalar and
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that with respect to the order parameter are one and the
other, and both must be imposed simultaneously. In this
paper, we will mainly deal with such a multivariable varia-
tional problem in depth and present the solution which is
the local minimum of the scalar potential. We will also
include a few other materials which have phenomenologi-
cal implications. We work in the unbroken phase of UðNÞ
and invoke UðNÞ invariance of the expectation values to
suppress indices often.

In the next section, we start out from exhibiting the
component action from that of the superspace, state the
set of assumptions we have made in Refs. [4,5] and in this
paper, and give the Noether current associated with N ¼
1 rigid supersymmetry. We review the original reasoning
that has led us to the D-term triggered dynamical super-
symmetry breaking. We set up the background field for-
malism to be used in the subsequent sections, separating
the three kinds of background from the fluctuations. The
action can be coupled to N ¼ 1 supergravity, and we
derive the gravitino mass formula via the super-Higgs
mechanism associated with the nonvanishing D-term.
The action contains a sequence of special cases in which
the gauge coupling function and the superpotential are
related in a specific form, including the one where the rigid
N ¼ 2 supersymmetry is partially broken to N ¼ 1 at
the tree level [15,17]. In section three, we elaborate upon
our treatment of the effective potential with the three kinds
of background fields as well as the point of the Hartree-
Fock approximation in Refs. [4,5]. Section IV is the main
thrust of this paper. We present our variational analyses of
the effective potential in full detail. Treating one of the
order parameters F as an induced perturbation, we dem-
onstrate that the stationary values ðD�; ’�; �’�Þ are deter-
mined by the intersection of the two real curves, namely,
the simultaneous solution to the gap equation and
the equation of ’ stationarity (the energy condition).
Numerical analysis is provided that demonstrates the ex-
istence of such a solution as well as the self-consistency of
our analysis. The second variation of the scalar potential is
computed, and the local stability of the vacuum is
shown from the numerical data. We finish our paper with

a summary and brief comments on the issue of regulariza-
tion and subtraction schemes.
In two of the appendices on rudimentary materials to be

referred to in the text, we take a brief look at the NJL
effective action and recall a formula of the second variation
of a multivariable function. Phenomenological applica-
tions of our finding and the estimate of the longevity of
our metastable vacuum have been given in Refs. [4,5],
which we do not repeat in this paper.

II. ACTION, ASSUMPTIONS, AND
SOME PROPERTIES

The action we work with in this paper is the general
N ¼ 1 supersymmetric action consisting of chiral super-
field �a in the adjoint representation and the vector
superfield Va with three input functions, the Kähler

potential Kð�a; ��aÞ with its gauging, the gauge kinetic
superfield �abð�aÞ that follows from the second derivatives
of a generic holomorphic function F ð�aÞ, and the
superpotential Wð�aÞ,

L ¼
Z

d4�Kð�a; ��aÞ þ ðgaugingÞ

þ
Z

d2� Im
1

2
�abð�aÞW �aW b

�

þ
�Z

d2�Wð�aÞ þ c:c:

�
: (2.1)

The gauge group is taken to be UðNÞ, and, for simplicity,
we assume that the theory is in the unbroken phase of the
entire gauge group, which can be accomplished by tuning
the superpotential. We also assume that third derivatives of
F ð�aÞ at the scalar vacuum expectation values (vev’s) are
nonvanishing.

A. Action and component expansion

The component Lagrangian of Eq. (2.1) reads

LUðNÞ ¼ LK€ahler þLgauge þLsup ; (2.2)

where

LK€ahler ¼ gabD��
aD� ��b � i

2
gabc

a��D0
�
�c b þ i

2
gabD0

�c
a�� �c b þ gabF

a �Fb � 1

2
gab; �cF

a �c b �c c

� 1

2
gbc;a �F

cc ac b þ 1ffiffiffi
2

p gabð�cc ak�bc þ ��c �c bkc
aÞ þ 1

2
DaDa; (2.3)

Lgauge ¼ � 1

2
F ab�

a��D�
��b � 1

2
�F abD��

a�� ��b � 1

4
ð=F ÞabFa

�	F
b�	 � 1

8
ð<F Þab
�	��Fa

�	F
b
��

�
ffiffiffi
2

p
i

8
ðF abcc

c�	 ����a � �F abc
��a ����	 �c cÞFb

�	 þ 1

2
ð=F ÞabDaDb þ

ffiffiffi
2

p
4

ðF abcc
c�a þ �F abc

�c c ��aÞDb

þ i

4
F abcF

c�a�b � i

4
�F abc

�Fc ��a ��b � i

8
F abcdc

cc d�a�b þ i

8
�F abcd

�c c �c d ��a ��b; (2.4)
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L sup ¼ Fa@aW � 1

2
@a@bWc ac b þ c:c:; (2.5)

where

D a ¼ � 1

2
ðF bf

b
ac

��c þ �F bf
b
ac�

cÞ (2.6)

and fbac is the structure constant of SUðNÞ. Note that an
equation of motion for Fa is Fa ¼ �gab@bW þ fermions.
We also assume hFaitree ¼ �hgab@bWitree ¼ 0 at the tree
level. At the lowest order in perturbation theory, there is no
source which gives vev’s to the auxiliary field D0:
hD0itree ¼ 0. The UðNÞ gaugino is massless at the tree
level while the fermionic partner of the scalar gluon re-
ceives the tree-level mass ma ¼ m0 ¼ hg00@0@0Witree.

B. Assumptions

While we have already stated, it is useful to recapitulate
here a set of assumptions made in order to address better
the question of dynamical supersymmetry breaking within
our framework:

(1) A general N ¼ 1 supersymmetric action of chiral
superfield �a in the adjoint representation and the
vector superfield Va with the three input functions,

namely, the Kähler potential Kð�a; ��aÞ with its
gauging, the gauge kinetic superfield �abð�aÞ that
follows from the second derivatives of a generic
holomorphic function F ð�aÞ, and the superpoten-
tial Wð�aÞ.

(2) Third derivatives of F ð�aÞ at the scalar vev’s are
nonvanishing.

(3) The superpotential at tree level preserves N ¼ 1
supersymmetry.

(4) The gauge group isUðNÞ and the vacuum is taken to
be in the unbroken phase of UðNÞ. It is in principle
straightforward to extend this to the (partially) bro-
ken cases where UðNÞ is broken into the product
groups. The variational analyses we carry out in
Sec. IV, however, become more complex, and we
will not address this in this paper, See the comment
at Eq. (3.22).

C. Supercurrent

We give here an off-shell form of the N ¼ 1 super-
current:

�1Sð1Þ�¼ ffiffiffi
2

p
gab�1�

	 ���c aD	
��bþ ffiffiffi

2
p

igab�1�
� �c aFb

� iF ab�1�	
��aF�	bþ1

2
F ab


�	��1�	
��aF�b

� i

2
�F ab�1�

� ��aDbþ
ffiffiffi
2

p
4
ðF abcc

c�	 ����b

� �F abc
��c ����	 �c bÞ�1�	

��a: (2.7)

Equations of motion for auxiliary fields are

Da ¼�1

2
gabDb� 1

2
ffiffiffi
2

p gabðF bcdc
d�cþ �F bcd

�c d ��cÞ;

Fa ¼�gab@bW� i

4
gabðF bcdc

cc d� �F bcd
��c ��dÞ: (2.8)

Once the UðNÞ invariant components of the auxiliary
fields, D0 and F0, receive nonvanishing vev’s together
with UðNÞ invariant scalar vev’s, the second and the fifth
terms of the rhs of Eq. (2.7) at these vev’s clearly develop a
one-body fermionic operator nonvanishing at zero momen-
tum [18–20]: this particular combination of �c 0 and ��0

creates the one-particle state which is identified with the
Nambu-Goldstone fermion [19].

D. Original reasoning of D-term triggered dynamical
supersymmetry breaking (DDSB)

In Ref. [4], it was shown that the vacuum state of the
theory, albeit being metastable, develops a nonvanishing
vev of an auxiliary field D0 in the Hartree-Fock approxi-
mation. The theory, therefore, realizes the D-term dynami-
cal supersymmetry breaking. The relatively simple
estimate has shown that the vacuum can be made long
lived. Let us recall a few more key aspects.
The part of the Lagrangian which produces the fermion

mass matrix of size 2N is

�1

2
ð�a;c aÞ 0 �

ffiffi
2

p
4 F abcD

b

�
ffiffi
2

p
4 F abcD

b @a@cW

0
@

1
A �c

c c

 !
þðc:c:Þ:

(2.9)

It was observed that the auxiliary Da field, which is an
order parameter of N ¼ 1 supersymmetry, couples to the
fermionic (but not bosonic) bilinears through the third
prepotential derivatives: the nonvanishing vev of D0 im-
mediately gives a Dirac mass to the fermions.
Equation (2.8) implies

hD0i ¼ � 1

2
ffiffiffi
2

p hg00ðF 0cdc
d�c þ �F 0cd

�c d ��cÞi; (2.10)

telling us that the condensation of the Dirac bilinear is
responsible for hD0i � 0.
We diagonalize the holomorphic part of the mass matrix:

MFa �
0 �

ffiffi
2

p
4 hF 0aaD

0i
�

ffiffi
2

p
4 hF 0aaD

0i h@a@aWi

0
@

1
A: (2.11)

Note that the nonvanishing third prepotential derivatives
are F 0aa where a refers to the generators of the unbroken
gauge group. By an orthogonal transformation, we obtain
the two eigenvalues of Eq. (2.11) for each generator, which
are mixed Majorana-Dirac type :

�ð�Þ
a11 ¼

1

2
h@a@aWi

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hF 0aaD

0i2
2h@a@aWi2

s 1
A: (2.12)

Introducing

D-TERM TRIGGERED DYNAMICAL SUPERSYMMETRY . . . PHYSICAL REVIEW D 88, 025012 (2013)

025012-3



�ð�Þ
a11 �

1

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2

11

q �
; �2

a11 �
hF 0aaD

0i2
2h@a@aWi2 ; (2.13)

we obtain

j�ð�Þ
a11j2 ¼ jh@a@aWijj�ð�Þ

a11j2: (2.14)

It was also shown in Ref. [4] that the nonvanishing F0

term is induced by the consistency of our procedure of
computation. (See also Refs. [21,22].) This is because the
stationary value of the scalar fields gets shifted upon the
variation (the vacuum condition). The final mass formula
for the SUðNÞ fermions is to be read off from

LðholoÞ
mass ¼ � 1

2
hg0a;aih �F0ic ac a þ i

4
hF 0aaihF0i�a�a

� 1

2
h@a@aWic ac a þ

ffiffiffi
2

p
4

hF 0aaic a�ahD0i

� � 1

2

XN2�1

a¼1

�ðxÞatMa;a�
aðxÞ;

�aðxÞ ¼ �aðxÞ
c aðxÞ

 !
: (2.15)

We will write down the explicit form in the next subsec-
tion. See Eqs. (2.17), (2.18), (2.19), and (2.20). A main
remaining point is how to establish the procedure in which
the stationary values of the scalar fields, D0 and F0 per-
turbatively induced are determined, which we will resolve
in this paper.

E. Quadratic part of the quantum action

In this subsection, we write down parts of the action
with the background fields for the computation of the
one-loop determinant in the next section. The linear terms
that arise upon separation into quantum fields and back-
ground fields are dropped as they always cancel with
source terms in �1PI.

1. Fermionic part

Let us extract the fermion bilinears from Eqs. (2.3),
(2.4), and (2.5) which are needed for our analysis in what
follows. Rescaling the fermion fields so that their kinetic
terms become canonical, we obtain

LF ¼ � i

2
c a��@� �c a þ i

2
ð@�c aÞ�� �c a � i

2
�a��@� ��a þ i

2
ð@��aÞ�� ��a � 1

2
ðgbbg0b; �bF0Þ �c b �c b

� 1

2
ðgbbg0b;b �F0Þc bc b þ

ffiffiffi
2

p
4

�
F 0aa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gaa ImF aa

p
D0
�
c a�a þ

ffiffiffi
2

p
4

�
�F 0aa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gaa ImF aa

p
D0
�
�c a ��a

þ i

4
ðF 0aag

aaF0Þ�a�a � i

4
ð �F 0aag

aa �F0Þ ��a ��a � 1

2
ðgaa@a@aWÞc ac a � 1

2
ðgaa@a@aWÞ �c a �c a: (2.16)

Here the fermion fields c a, �c a, �a, ��a are to be integrated to make a part of the effective potential, while the gauge kinetic
function F aa, the Kähler metric gaa, and their derivatives are functions of the UðNÞ singlet c-number background scalar
field ’0. The order parameters of supersymmetry F0, �F0, and D0 are taken as background fields as well.

From the Lagrangian LF, the holomorphic part of the mass matrix is read off as

Ma ¼
� i

2g
aaF 0aaF

0; �
ffiffi
2

p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gaaðImF Þaap

F 0aaD
0

�
ffiffi
2

p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gaaðImF Þaap

F 0aaD
0; gaa@a@aW þ gaag0a;a �F

0

0
@

1
A ¼ ma

�� ma
�c

ma
c� ma

c c

 !
: (2.17)

We parametrize this matrix such that, in the case of F0 ¼
�F0 ¼ 0, its form reduces to that of Refs. [4,5]. The quan-
tities having multiple indices such as F 0aa receive UðNÞ
invariant expectation values: hF 0aai ¼ hF 000i, etc. See,
for instance, Ref. [16]. We suppress the indices as we
work with the unbroken UðNÞ phase in this paper,

� � � 2m�c

mc c

; f � 2im��

trM
: (2.18)

The two eigenvalues of the holomorphic mass matrix are
written as

�ð�Þ � ðtrMÞ�ð�Þ; (2.19)

where

�ð�Þ ¼ 1

2

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ifÞ2 þ

�
1þ i

2
f

�
2
�2

s 1
A: (2.20)

These provide the masses for the two species of SUðNÞ
fermions once the stationary values are determined.

2. Bosonic part

Likewise, we extract the bosonic quantum bilinears from
Eqs. (2.3), (2.4), and (2.5). Let

�a ¼ a
0’

0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gaað’Þ

q
~’a; (2.21)

Aa
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðImF Þaa

p
~Aa
�; (2.22)
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Fa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gaað’Þ

q
~Fa; (2.23)

Da ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðImF Þaa

p
~Da; (2.24)

where ’0 are the background c-number field while ~’a, ~Aa
�,

~Fa, and ~Da are the quantum scalar, vector, and auxiliary
fields, respectively.

We obtain

Lð1Þ
B ¼ @� ~’a@� ~’�a � 1

4
~Fa
�	

~Fa�	 þ ~Fa~�F
a þ 1

2
~Da ~Da

þ ~Faðð ffiffiffiffiffiffiffi
gaa

p
@aWÞ þ ðgaa@a@aWÞ~’aÞ

þ ~�F
aðð ffiffiffiffiffiffiffi

gaa
p

@aWÞ þ ðgaa@a@aWÞ~’a�Þ: (2.25)

We have also ignored � 1
8 ðReF Þab
�	��Fa

�	F
b
�� as we

eventually set ’a to be constant in our analysis, and this
term becomes a total derivative.

F. Coupling to N ¼ 1 supergravity and the
super-Higgs mechanism

If Eq. (2.1) couples to N ¼ 1 supergravity, the
Lagrangian is augmented to become the following one
[23]:

L ¼
Z

d2�2E
�
3

8
ð �D �D�8RÞ exp

�
� 1

3
½Kð�;�yÞ

þ �ð�;�y; VÞ�
�
þ 1

16g2
�abð�ÞW�aWb

� þWð�Þ
	

þ H:c: (2.26)

The fermionic part of the Lagrangian relevant to the super-
Higgs mechanism is given by

e�1Lfermionic ¼ �i �c a ��
� ~D�c

a þ 
�	�� �c � ��	
~D�c � � i

2
½�a�

� ~D�
��a þ ��a ��

� ~D��
a� � i

2
ffiffiffi
2

p g@c�abD
ac c�b

þ i

2
ffiffiffi
2

p g@c��
�
abD

a �c c ��a � 1

2
gDac ��

� ��a þ 1

2
gDa

�c � ����a � eK=2

�
W�c ��

�	c 	 þW �c � ���	 �c 	

þ iffiffiffi
2

p DaWc a�� �c � þ iffiffiffi
2

p Da�W
� �c a ���c � þ 1

2
DaDbWc ac b þ 1

2
Da�Db�W

� �c a �c b

� 1

4
gab

�
Db�W

�@a�cd�c�d � 1

4
gab

�
DaW@b��

�
cd

��c ��d

	
; (2.27)

where e is the determinant of the vierbein and the covariant
derivatives of several kinds are defined as follows:

~D�c 	 ¼ @�c 	 þ!�c 	 þ 1

4
ð@aK ~D��

a

� @a�K
~D��

a�Þc 	 þ i

2
gAa

� ImFac 	; (2.28)

~D��
a ¼ @��

a þ!��
a � gfabcAb

��
c þ 1

4
ð@bK ~D��

b

� @b�K
~D��

b�Þ�a þ i

2
gAb

� ImFb�
a; (2.29)

DaW ¼ @aW þ ð@aKÞW; (2.30)

DaDbW ¼ @a@bW þ ð@a@bKÞW þ 2ð@aKÞDbW

� ð@aKÞð@bKÞW: (2.31)

Now, we focus on the gravitino mass terms to discuss the
super-Higgs mechanism associated with Eq. (2.26),

e�1Lgravitino mass

¼ �eK=2W�c ��
�	c 	

þ iffiffiffi
2

p c ��
�

�
i
gffiffiffi
2

p Da
��a þ eK=2DaW

� �c a

	
þ H:c:

(2.32)

The field redefinition of the gravitino

c 0
�¼ c �þ i

ffiffiffi
2

p

6W�eK=2
�� �c NGþ

ffiffiffi
2

p
3W�2eK

@� �c NG (2.33)

eliminates the mixing terms of the gravitino with the
gaugino � and the adjoint fermion c :

e�1Lgravitino mass ¼ �eK=2W�c 0
��

�	c 0
	

þ 1

2W�eK=2
�c 2
NG þ H:c:; (2.34)

where the NG fermion c NG absorbed in the massive grav-
itino is read

�c NG � i
gffiffiffi
2

p Da
��a þ eK=2Da�W

� �c a: (2.35)

Equation (2.34) tells us that the gravitino mass is given by
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m3=2 ¼ ehKi=2 hWi
M2

P

: (2.36)

Requiring the cosmological constant to be almost
vanishing

0 ’ hVi ¼ g2

2
ðDaÞ2 þ eK

�
jDaWj2 � 3

M2
P

jWj2
	
; (2.37)

the gravitino mass can be expressed in terms of the vev’s of
the auxiliary fields

m3=2 ’ ehKi=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhDaWij2 þ g2

2 hDai2
q

ffiffiffi
3

p
MP

: (2.38)

G. Special cases

As is mentioned in the introduction, the theory permits a
sequence of interesting limiting cases. If we demand the
Kähler function K to be special Kähler, K are expressible
in terms of F as

K ¼ ImTr ��
@F ð�Þ
@�

; (2.39)

gab ¼ ImF ab, etc.. If we further demand such that the
action possesses the rigid N ¼ 2 supersymmetry with
one input function by choosing the superpotential to be a
particular form, the tree vacua are shown to break N ¼ 2
supersymmetry toN ¼ 1 spontaneously [15–17,24].1 We
list the transformation laws for the doublet of fermions in
this special case,


�a

c a

 !
¼ Fa

�	�
�	

�1

�2

 !
� i

ffiffiffi
2

p
��

��2

� ��1

 !
D��

a

þ iDa � ffiffiffi
2

p
~Faffiffiffi

2
p

Fa i ~Da

 !
�1

�2

 !
; (2.40)

where

~Da ¼ � 1

2
gabDb þ 1

2
ffiffiffi
2

p gabðF bcdc
d�c þ �F bcd

�c d ��cÞ;
~Fa ¼ � ffiffiffiffiffiffiffi

2N
p

gabðe0
b þm �F 0bÞ

� i

4
gabðF bcd�

c�d � �F bcd
�c c �c dÞ: (2.41)

H. Connection with the previous work

We here stop shortly to address the connection of
Ref. [4] with the previous work. Models of dynamical

supersymmetry breaking with nonvanishing F andD terms
have been previously proposed: they are, for instance, the
3-2 model [12] and the 4-1 model in Ref. [21].2 In these
models, supersymmetry is unbroken at the tree level and is
broken by the nonvanishing vev of the F-term through
instanton generated superpotentials. A nonvanishing vev
of the D term is also induced but is much smaller than that
of the F term.
In our mechanism, supersymmetry is unbroken at the

tree level and is broken in a self-consistent Hartree-Fock
approximation of the NJL type that produces a nonvanish-
ing vev for the D term. A nonvanishing vev for the F term
is induced in our Hartree-Fock vacuum that shifts the tree
vacuum, and we explore the region of the parameter space
in which the F-term vev is treated perturbatively.
We should mention that the way in which the two kinds

of gauginos (or the gaugino and the adjoint matter fermion)
receive masses is an extension of that proposed in
Ref. [30]: the pure Dirac-type gaugino mass is generated
in Ref. [30],3 while the mixed Majorana-Dirac–type gau-
gino masse is generated in our case, the Majorana part
being given by the second derivative of the superpotential.
In Ref. [30], the dynamical origin of the nonvanishing
D-term vev was not addressed.
As for the application to dynamical chiral symmetry

breaking, a supersymmetric NJL-type model has been
considered [45–48]. Chiral symmetry is not spontaneously
broken in a supersymmetric case. Even in softly broken
supersymmetric theories, the chiral symmetry broken
phases are degenerate with the chirally symmetric ones.
Thus, in supersymmetric theories, the phase with broken
chiral symmetry is no longer the energetically preferred
ground state.

III. EFFECTIVE POTENTIAL IN THE
HARTREE-FOCK APPROXIMATION

The goal of this section is to determine the effective
potential to the leading order in the Hartree-Fock approxi-
mation. We will regulate the one-loop integral by the
dimensional reduction [49]. We prepare a supersymmetric
counterterm, setting the normalization condition. We make
brief comments on regularization and subtraction schemes
in the end of Sec. IV. We also change the notation for
expectation values in general from h. . .i to . . .� as our main
thrust of this paper is the determination of the stationary
values from the variational analysis.

A. Point of the approximation

In the Hartree-Fock approximation, one begins with
considering the situation where one-loop corrections in

1This superpotential consists of the terms referred to as the
electric and magnetic Fayet-Iliopoulos terms. This N ¼ 2
Fayet-Iliopoulos term is very special in the sense that, by the
SUð2ÞR rigid rotation, it can be represented as a part of the
superpotential. In this way, it avoids the difficulty (see, for
instance, Ref. [25] for a recent discussion) of coupling the
system to N ¼ 2 supergravity [26,27].

2For the application of these models to the mediation mecha-
nism; see, for example, Refs. [22,28,29].

3Attention has been paid to Dirac gaugino in many papers
[28,29,31–44].
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the original expansion in ℏ become large and are compa-
rable to the tree contribution. The optimal configuration of
the effective potential to this order is found by matching
the tree against one loop, varying with respect to the
auxiliary fields. In this section, we start the analysis of
this kind for our effective potential. There are three con-
stant background fields as arguments of the effective
potential: ’ � ’0 (complex), UðNÞ invariant background
scalar, D � D0 (real) and F � F0 (complex). The latter
two are the order parameters of N ¼ 1 supersymmetry.

We vary our effective potential with respect to all these
constant fields and examine the stationary conditions.
We also examine a second derivative at the stationary point
along the constraints of the auxiliary fields to understand
better the Hartree-Fock corrected mass of the scalar glu-
ons. Let us denote our effective potential by V. It consists
of three parts:

V ¼ Vtree þ Vc:t: þ V1-loop: (3.1)

The first term is the tree contributions, the second one is the
counterterm, and the last one is the one-loop contributions.
After the elimination of the auxiliary fields, the effective
potential is referred to as the scalar potential so as to be
distinguished from the original V.

B. Tree part

To begin with, let us write down the tree part and find a
parametrization by two complex and one real parameters.
We also introduce simplifying notation g00ð’; �’Þ �
gð’; �’Þ, ðImF ð’ÞÞ00 � ImF 00ð’Þ, @0Wð’Þ ¼ W 0ð’Þ,
g00;0 � @g, etc.,

VtreeðD;F; �F;’; �’Þ¼�gF �F�1

2
ðImF 00ÞD2�FW 0 � �F �W 0:

(3.2)

As a warm up, let us determine the vacuum configuration
by a set of stationary conditions at the tree level:

@V tree

@D
¼ 0; (3.3)

@V tree

@F
¼ 0; as well as its complex conjugate; (3.4)

@V tree

@’
¼ 0; as well as its complex conjugate: (3.5)

Equation (3.3) determines the stationary value of D:

D ¼ 0 � D�; (3.6)

while from Eq. (3.4), we obtain

F ¼ �g�1ð’; �’Þ �W 0ð �’Þ � F�ð’; �’Þ: (3.7)

Equation (3.5) together with these two gives

W 0ð’�Þ ¼ 0 and therefore F�ð’; �’Þ ¼ 0 (3.8)

as well as

V tree
scalarð’; �’Þ
� V treeð’; �’;D� ¼ 0; F ¼ F�ð’; �’Þ; �F ¼ F�ð’; �’ÞÞ
¼ g�1ð’; �’ÞjW 0ð’Þj2: (3.9)

The negative coefficients of the rhs of Eq. (3.2) imply that
both D and F profiles of the potential have a maximum for
a given ’. These signs are, of course, the right signs for the
stability of the scalar potential as is clear by completing the
square. This is a trivial comment to make here but will
become less trivial later. The mass of the scalar gluons at
tree level jms�j2 is read off from the second derivative at the
stationary point:

@2V treeð’; �’Þ
@’@ �’









’�; �’�
¼ g�1ð’�; �’�ÞjW 00ð’�Þj2; (3.10)

msð’; �’Þ � g�1ð’; �’ÞW 00ð’Þ; (3.11)

ms� ¼ msð’�; �’�Þ: (3.12)

As we have already introduced in Eq. (2.18), � and r are
defined by

���2
m�c

mc c

¼
ffiffiffi
2

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�1ðImF 00Þ�1

p
F 000

g�1W 00 þg�1@g �F
D� rð’; �’;F; �FÞD:

(3.13)

Recall that we have suppressed the indices, invoking the
UðNÞ invariance of the expectation values. Also

f3 � g�1F 000F
g�1W 00 þ g�1@g �F

; (3.14)

where f3 differs from f in Eq. (2.18) by

ðg�1W 00 þ g�1@g �FÞf3
¼
�
g�1W 00 þ g�1@g �F� i

2
g�1F 000F

�
f: (3.15)

We obtain

F¼ ms

g�1F 000"; �F¼ �ms

g�1 �F 000"; "¼
f3þ �ms

ms

g�1@g

g�1 �F 000 jf3j2
1�jg�1@gf3

g�1F 000 j2
:

(3.16)

While we will not make exploit in this paper, Vtree can be
written as a function of ’ complex, j�j real, f3 complex:

V tree¼�








 �msþ g�1 �@g

g�1F 000ms"









2jF 000j�2g2ðg�1ðImF 00Þj�j2

þgjf3j2Þ� ms

g�1F 000"W
0 � �ms

g�1 �F 000 �" �W 0; (3.17)
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where ms, ", g, F (and their derivatives) are the functions
listed above and undergo the variations to be carried out in
the subsequent subsections. We also see that the mass
scales of the problem are set by ms�, the scalar gluon

mass and g�1 �F 000� , the third prepotential derivative (and
g�1@g), once the stationary value of the scalar is
determined.

C. Treatment of UV infinity

In the NJL theory [6,7], there is only one coupling
constant carrying dimension �1, and the dimensionless
quantity is naturally formed by combining it with the
relativistic cutoff, which is interpreted as the onset of UV
physics. In the theory under our concern, UV physics is
specified by the three input functions,K,F ,W, and the UV
scales and infinities reside in some of the coefficients. Our
supersymmetric counterterm [4,5] is

Vc:t: ¼�1

2
Im

Z
d2��W 0�W 0� ¼�1

2
ðIm�ÞD2: (3.18)

It is a counterterm associated with ImF 00. We set up a
renormalization condition,

1

N2

@2V

ð@DÞ2








D¼0;’¼’�; �’¼ �’�

¼ 2c; (3.19)

and relate (or transmute) the original infinity of the dimen-
sional reduction scheme with that of ImF 00. We have
indicated that this condition is set up at D ¼ 0 and the
stationary point of the scalar which we will determine. We
stress again that the entire scheme is supersymmetric.

D. One-loop part

The entire contribution of all particles in the theory to
i � [the one-particle irreducible part (1PI) to one-loop] �
i�1-loop is easy to compute, knowing Eqs. (2.19) and (2.20),

and (2). It is given by

i�1-loop ¼
�Z

d4x

�X
a

Z d4k

ð2�Þ4

� ln

�ðj�ðþÞ
a j2 � k2 � i"Þðj�ð�Þ

a j2 � k2 � i"Þ
ðjms;aj2 � k2 � i"Þð�k2 � i"Þ

�
:

(3.20)

In the unbroken UðNÞ phase, it is legitimate to replace
P

a

by N2 and drop the index a as we have said before.4 We
obtain

V1-loop � ð�iÞ 1

ðRd4xÞ�1-loop (3.21)

¼ �N2jtrMj4
Z d4l�

ð2�Þ4i
� ln

�ðj�ðþÞj2 � l2 � i"Þðj�ð�Þj2 � l2 � i"Þ
ðj ms

trM j2 � l2 � i"Þð�l2 � i"Þ
�

� N2jtrMj4J: (3.22)

Note that jmsj2, whose stationary value gives the tree mass
squared of the scalar gluon, differ from jtrMj2:

jtrMj2 ¼








ms � i

2
ðg�1F 000ÞFþ ðg�1@gÞ �F









2

: (3.23)

To evaluate the integral in d dimensions, we just quote

Iðx2Þ � �
Z d4l�

ð2�Þ4i log ðx
2 � l2 � i"Þ; (3.24)

Iðx2Þ� Ið0Þ¼ 1

32�2
½Að";�Þðx2Þ2�ðx2Þ2 log ðx2Þ�; (3.25)

where

Að"; �Þ ¼ 1

2
� �þ 1

"
; " ¼ 2� d

2
: (3.26)

We obtain

V1-loop¼N2jtrMj4
32�2

�
Að";�Þ

�
j�ðþÞj4þj�ð�Þj4�









 ms

trM









4
�

�j�ðþÞj4 logj�ðþÞj2�j�ð�Þj4 logj�ð�Þj2

þ








 ms

trM









4

log









 ms

trM









4
	
: (3.27)

This again depends upon �, f, and ’.

IV. STATIONARY CONDITIONS
AND GAP EQUATION

A. Variational analyses

Now we turn to our variational problem. It is stated as in
the tree case as

@V

@D
¼ 0; (4.1)

@V

@F
¼ 0 and its complex conjugate; (4.2)

@V

@’
¼ 0 and its complex conjugate: (4.3)

We will regard the solution to be obtained by considering
Eqs. (4.1) and (4.3) first and solving D and ’ for F and �F:

D¼D�ðF; �FÞ; ’¼’�ðF; �FÞ; �’¼ �’�ðF; �FÞ: (4.4)

Equation (4.2) is then

4In those cases where the UðNÞ is broken to the product groupQ
n
�¼1 UðN�Þ, we need not only replace

P
a � � � by

P
� � � �� but

also must treat the N ¼ 1 multiplet of the broken generators
that receives the mass by the Higgs mechanism [16].
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@VðD ¼ D�ðF; �FÞ; ’ ¼ ’�ðF; �FÞ; �’ ¼ �’�ðF; �FÞ; F; �FÞ
@F









D;’; �’; �F fixed
¼ 0 (4.5)

and its complex conjugate. These will determine F ¼ F�,
�F ¼ �F�.
In this paper, we are going to work in the region where

the strength kF�k is small and can be treated perturbatively.
This means that, in the leading order, the problem posed by
Eq. (4.1) and (4.3) becomes

@VðD;’; �’;F ¼ 0; �F ¼ 0Þ
@D

¼ 0; (4.6)

@VðD;’; �’;F ¼ 0; �F ¼ 0Þ
@’

¼ @VðD;’; �’;F ¼ 0; �F ¼ 0Þ
@ �’

¼ 0; (4.7)

and this problem does not involve the tree potential
Eq. (3.2) except the last D2 term, as F and �F are set
zero. Equation (4.6) is nothing but the gap equation given
in Refs. [4,5], while Eq. (4.7) is the stationary conditions
for the scalar. This is the variational problem which is
analyzed in this paper. A set of stationary values
ðD�; ’�; �’�Þ is determined as the solution.

B. Analysis in the region F� � 0

Let us first determine VðD;’; �’;F ¼ 0; �F ¼ 0Þ
explicitly. We need to solve the normalization condition,

2cN2 ¼ @2V

ð@DÞ2








D¼0;�

¼ �ðImF 00� Þ � ðIm�Þ þ N2jtrMj4 @2J

ð@DÞ2








D¼0

;

(4.8)

where J has been introduced in Eq. (3.22). At F, �F ! 0,

�!�0 � r0ð’; �’ÞD; where r0 ¼
ffiffiffi
2

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�1ðImF 00Þ�1

p
F 000

g�1W 00 ;

(4.9)

�ð�Þ ! �ð�Þ
0 ¼ 1

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2

0

q
Þ; (4.10)

where

�ðþÞ
0 þ �ð�Þ

0 ¼ 1; �ðþÞ
0 �ð�Þ

0 ¼ � 1

4
�2

0;

�ðþÞ
0 � �ð�Þ

0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

0

q
; (4.11)

ms

trM
! 1; (4.12)

J ! J0 � 1

32�2

�
Að";�Þ

�
1

2

�
1þ 1

2
�2

0

��
1þ 1

2
��2
0

�

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��2

0

q
� 1

�
� j�ðþÞ

0 j4 log j�ðþÞ
0 j2

� j�ð�Þ
0 j4 log j�ð�Þ

0 j2
	
; (4.13)

essentially reducing the situation to that of Refs. [4,5].
Note, however, that r and � (or r0, �0) are complex in

general except those special cases which include the case
of the rigid N ¼ 2 supersymmetry partially broken to
N ¼ 1 at the tree vacua. For j�0j 	 1,

J0 � 1

32�2

�
Að"; �Þ 1

2
ð�2

0 þ ��2
0Þ �

1

4
ð�2

0 þ ��2
0Þ

þOðj�0j4�"Þ
	
: (4.14)

We solve the normalization condition for the number A to
obtain

A ¼ 1

2
þ 32�2

jms�j4ðr20� þ �r20�Þ
�
2cþ ImF 00�

N2
þ Im�

N2

�
� ~Aðc;�; ’�; �’�Þ: (4.15)

We obtain

V0 ¼ VðD;’; �’;F¼ 0; �F¼ 0Þ
¼ �1

2
ImF 00D2 � 1

2
ðIm�ÞD2

þN2jmsj4
32�2

�
~Aðc;�;’�; �’�Þ

�
1

2

�
1þ 1

2
�2

0

��
1þ 1

2
��2
0

�

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��2

0

q
� 1

�
� j�ðþÞ

0 j4 log j�ðþÞ
0 j2

� j�ð�Þ
0 j4 log j�ð�Þ

0 j2
	
: (4.16)

After some calculation, this is found to be expressible as

V0

N2jmsj4
¼
�

1

64�2
þ ~c� ~ð’; �’Þ

��
�0þ ��0

2

�
2

þ 1

32�2
~A

�
1

8
j�0j4þfð�0; ��0Þ

�

� 1

32�2
ðj�ðþÞ

0 j4 log j�ðþÞ
0 j2þj�ð�Þ

0 j4 log j�ð�Þ
0 j2Þ;
(4.17)
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where

~c ¼ c

jms�j4
�
r2
0�þ �r2

0�
2

� ; (4.18)

~ð’; �’Þ ¼ 1

2

0
@ ImF 00�

N2 þ Im�
N2

ðr2
0�þ�r2

0�Þ
2 jms�j4

1
A
2
6664

ImF 00=N2þIm�=N2

ImF 00�=N2þIm�=N2

jmsj4
jms�j4

ðr0þ�r0
2 Þ2�

r2
0�þ�r2

0�
2

� � 1

3
7775;

(4.19)

fð�0; ��0Þ ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��2

0

q
� j�0j2 � 1

�
: (4.20)

Note that

~� � ~ð’�; �’�Þ � 0; (4.21)

and

jfð�0; ��0Þj 
 const for j�0j � 1: (4.22)

If r0 (and �0) is real, this is rewritten as

V0

N2jmsj4
¼
��
c0þ 1

64�2

�
�

�
�2

0

þ 1

32�2

� ~A
8
�4

0��ðþÞ4
0 log�ðþÞ2

0 ��ð�Þ4
0 log�ð�Þ2

0

	
;

(4.23)

where c0 � c
r2
0�jms�j4 is the rescaled number, and

ð’; �’Þ � 1

2

0
@ImF 00�

N2 þ Im�
N2

r20�jms�j4
1
A
2
4ImF 00=N2þIm�=N2

ImF 00�=N2þIm�=N2

r2
0
jmsj4

r2
0�jms�j4

� 1

3
5 (4.24)

and msð’; �’Þ ¼ g�1W 00 are the functions of ’, �’. Clearly,
there are two scales in our current problem jr0�j�1=2 and
jms�j, which are controlled by the second superpotential
derivative and the third prepotential derivative at the
stationary value ’�.
Let us turn to the gap equation

@V0

@D









’; �’
¼ 0: (4.25)

For Eq. (4.17), scaling out jr0j2, we obtain

0 ¼ D

��
1

64�2
þ ~c� ~

�
ð1þ cos 2�Þ þ

~A

32�2

�
1

2
j�0j2 � ð1� cos 2ð�� �0ÞÞ

�

� 1

32�2

8<
:ð2 log j�ðþÞ

0 j2 þ 1Þ 1
2

0
@ e2i� ��ðþÞ

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

0

q þ e�2i��ðþÞ
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ��2
0

q
1
Aj�ðþÞ

0 j2

� ð2 log j�ð�Þ
0 j2 þ 1Þ 1

2

0
@ e2i� ��ð�Þ

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2

0

q þ e�2i��ð�Þ
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ��2
0

q
1
Aj�ð�Þ

0 j2
9=
;
3
5; (4.26)

where

�0 ¼ j�0jei�; r0 ¼ jr0je{�; tan 2�0 ¼ j�0j2 sin 2�
1þ j�0j2 cos 2�

: (4.27)

Note that j1� cos 2ð�� �0Þj ! 0 in the region �� 0 or j�0j � 1.
On the other hand, for Eq. (4.23) with �0 being real, N2jmsj4 is scaled out, and it is simply given by the �0 derivative:

0 ¼ �0

�
2

��
c0 þ 1

64�2

�
� 

�
þ 1

32�2

� ~A
2
�2

0 þ
1

�0

d

d�0

ð��ðþÞ4
0 log�ðþÞ2

0 � �ð�Þ4
0 log�ð�Þ2

0 Þ
�	

¼ �0

2
42��c0 þ 1

64�2

�
� 

�
þ 1

32�2

8<
: ~A

2
�2

0 �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
0

q ð�ðþÞ3
0 ð2 log�ðþÞ2

0 þ 1Þ � �ð�Þ3
0 ð2 log�ð�Þ2

0 þ 1ÞÞ
9=
;
3
5; (4.28)

which is our original gap equation.5 In both cases, the solutions are given by the extremum of the potential V0ðD;’; �’Þ in
its D profile. We stress again that the D profile is not a direct stability criterion of the vacua, which is to be discussed with
regard to the scalar potential V0ðD�ð’; �’Þ; ’; �’Þ.

5We have introduced ð’; �’Þ such that its stationary value ð’�; �’�Þ ¼ 0, which can therefore be ignored in analyzing Eq. (4.28).
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We next examine @V0

@’ jD; �’ ¼ 0 and its complex conju-

gate. For Eq. (4.17), we obtain

2
@

@’
ðln jmsj2Þ V0

N2jmsj4

¼
�
@~

@’

��
�0 þ ��0

2

�
2

�D

�
@ ln r0
@’









 �’
þ@ ln �r0

@ �’









’

	
@

@D

�
V0

N2jmsj4
�

�DP̂
�

V0

N2jmsj4
�
and its complex conjugate;

(4.29)

where

P̂ ¼ i

�
@�

@’

��
r0

@

@�0

� �r0
@

@ ��0

�
: (4.30)

The second term of the rhs of Eq. (4.29) is proportional to
the gap equation, Eq. (4.26). As for the third term, after
some calculation, we obtain

�P̂ ð V0

N2jmsj4Þ
ð@�@’Þj�jjr0j

¼
�

1

64�2
þ ~c� ~

�
sin2�þ 1

32�2
~Asin2ð���0Þ

� 1

32�2

1

2

�
sinð2���0Þ
j1þ�2

0j1=2
þ sin2ð���0Þ

�

�j�ðþÞ
0 j2ð2log j�ðþÞ

0 j2þ1Þ

þ 1

32�2

1

2

�
sinð2���0Þ
j1þ�2

0j1=2
� sin2ð���0Þ

�

�j�ð�Þ
0 j2ð2log j�ð�Þ

0 j2þ1Þ
�Cð�;j�0jÞ: (4.31)

In the rhs of Eqs. (4.29) and (4.31), we have regarded �0,
��0, ’, and �’ as independent variables.
For Eq. (4.23), with �0 real, we obtain

2@ðln jmsj2Þ V0

N2jmsj4
¼
�
@

@’

�
�2

0 �
@�0

@’

@

@�0

�
V0

N2jmsj4
�

(4.32)

and its complex conjugate. Here in the last term of the rhs,
we have regarded �0, ’, �’ as independent variables.

Finally the stationary values ðD�; ’�; �’�Þ are determined
by Eqs. (4.26) and (4.29) or by Eqs. (4.28) and (4.32). Let
us discuss the latter case first. As the second term of the rhs
in Eq. (4.32) is nothing but the gap equation, Eqs. (4.28)
and (4.32) can be safely replaced by

V0

N2jmsj4
¼

@
@’

2@ðln jmsj2Þ
�2

0; (4.33)

’ being real. The solution to Eq. (4.33) in the �0 profile is
determined as the point of intersection of the potential with

the quadratic term having ’ ¼ �’ dependent coefficients.
Actually, it is a real curve in the full (�0, ’ ¼ �’) plane.
Likewise, the solution to the gap equation, Eq. (4.28), the
condition of the �0 extremum of the potential, provides us
with another real curve in the (�0,’ ¼ �’) plane. Thevalues
(�0�, ’� ¼ �’�) are the intersection of these two. The sche-
matic figure of the intersection is displayed in Fig. 1. By
tuning our original input functions, it is possible to arrange
such intersection. Conversely, as an inverse problem, for
given �0� and the height of the �0 profile, one can always
find the values of the coefficients in Eq. (4.28) and the
coefficient function in Eq. (4.33) that accomplish this.
Dynamical supersymmetry breaking has been realized.
As for the former case, as in the latter case, we can safely

replace Eq. (4.29) by

V0

N2jmsj4
¼ ð@ ~@’Þ

2@ðln jmsj2Þ
�
�0 þ ��0

2

�
2 þ ð@�@’Þj�0j2

2@ðln jmsj2Þ
C:

(4.34)

The values ð�0�; ��0�; ’�; �’�Þ can be determined by the
intersection of Eqs. (4.26) and (4.34). We will not carry out
the (numerical) analysis for this case further in this paper.

C. Determination of F�
Let us now turn to the analysis of the remaining equation

of our variational problem, Eq. (4.2). In our current
treatment,

F¼� 1

g
�W 0 þ 1

g

@

@ �F
V1-loop �� 1

g
�W 0 þ 1

g

@

@ �F
V1-loop









F¼0
:

(4.35)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1 (color online). The schematic picture of the intersection
of the two curves which represent the solution to the gap
equation (the straight one) and the ’ flat condition (the curved
one). The horizontal axis is denoted by ’=M and the vertical one
by �0. The values at the stationary point (�0�, ’� ¼ �’�) are read
off from the intersection point.
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As the stationary values ðD�; ’�; �’�Þ are already deter-
mined, this equation and its complex conjugate determine
F� and �F�:

F� ¼ 1

gð’�; �’�Þ
�
� �W 0ð’�; �’�Þ

þ @

@ �F
V1-loopðD�; ’�; �’�; F; �FÞ









F¼ �F¼0

�
: (4.36)

Note that, knowing V1-loop explicitly in Eq. (3.27), the rhs

can be evaluated. We can check the consistency of our
treatment through f3 in Eq. (3.14) by jf3j 	 1.

D. Numerical study of the gap equation

In this subsection, we study some numerical solutions to
the gap equation, Eq. (4.28), and the stationary condition
for ’, Eq. (4.33), in the real �0 case. The equations we
should study are

0 ¼ 2

�
c0 þ 1

64�2

�

þ 1

32�2

8<
: ~A

2
�2

0� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
0�

q ð�ðþÞ3
0 ð2 log�ðþÞ2

0 þ 1Þ

� �ð�Þ3
0 ð2 log�ð�Þ2

0 þ 1ÞÞ











�0¼�0�

9=
;; (4.37)

V0

N2jms�j4
¼

@ð’; �’Þ
@’ j’�; �’�

2@ðln jms�j2Þ
�2

0�; (4.38)

where we note that ð’; �’Þ in the gap equation (4.28)
vanishes at the stationary point in the real �0 case. By
using Eqs. (4.23) and (4.24), the second condition can be
rewritten after dividing by �2

0� as�
c0 þ 1

64�2

�
þ 1

32�2

� ~A
8
�2

0� �
1

�2
0�
ðj�ðþÞ

0 j4 log j�ðþÞ
0 j2

� j�ð�Þ
0 j4 log j�ð�Þ

0 j2Þ








�0¼�0�

	

¼ 1

4N2@ ln jms�j2
ImðF 00� þ�Þ
r20�jms�j4

�
@ ln ImðF 00 þ�Þj’�; �’�

� @ðr0jmsj2Þ2j�
ðr20�jms�j4Þ2

	
: (4.39)

The nontrivial solution �0� � 0 to the gap equation (4.37)

is found by some region of the parameters c0 and ~A, which
was already done in Ref. [4]. This solution fixes the lhs of
Eq. (4.39) and ’� is determined by solving Eq. (4.39) in
principle. In order to find ’� explicitly, the form of the
prepotential F and that of the superpotential W must be
specified. Here, we take a simple prepotential and a super-
potential of the following type (with some abuse of the
notation):

F ¼ c

2N
tr’2 þ 1

3!MN
tr’3 � 1

2
c’2 þ 1

3!M
’3; (4.40)

W ¼ m2

N
tr’þ d

3!N
tr’3 � m2’þ d

3!
’3; (4.41)

where c, d are dimensionless constants while m, M carry
dimensions. In particular,M is a cutoff scale of the theory.
This prepotential is minimal for DDSB. As for the super-
potential, at least two terms are required to be supersym-
metric at tree level. We can take a quadratic term ’2

instead of the cubic one, but in that case, the rhs of
Eq. (4.39) becomes singular because of @ ln jmsj2 ¼ 0.
Substituting these F and W into Eq. (4.39), we obtain

�
c0 þ 1

64�2

�
þ 1

32�2

� ~A
8
�2

0� �
1

�2
0�
ðj�ðþÞ

0 j4 log j�ðþÞ
0 j2

� j�ð�Þ
0 j4 log j�ð�Þ

0 j2Þ








�0¼�0�

	

¼ � Imðcþ�ÞðImcÞ4
N2

1

ðd’�=MÞ2 ; (4.42)

where we used the fact that 1=M, d, ’� are real and c is

pure imaginary, which are necessary for �0 ¼ ��0. If we
take the coefficients c ¼ i, d ¼ 1 for further simplifica-
tion, we can easily obtain a solution by tuning N and Im�.
We note 0 
 ’�=M 
 1 for our effective theory to be
valid. In our analysis carried out in this paper, we consider
the region where the magnitude of the F term is smaller
compared to that of the D term. Therefore, we need to
check whether our solutions satisfy this property consis-
tently. Let us consider the ratio of the auxiliary fields:









F�
D�









 ¼








�g�1 �W 0ð �’�Þ þ g�1 @

@ �F
V1-loopðD�; ’�; �’�; F; �FÞjF¼ �F¼0

�0�=r0�










¼








 1ffiffiffi

2
p

�0�
’�
M

��
m

M

�
2 þ 1

2

�
’�
M

�
2
	
þ i

N2ffiffiffi
2

p
�0�

�
’�
M

�
2
� ~A

128�2
�2

0� �
1

32�2
ðj�þ

0�j4 log j�þ
0�j2 þ j��

0�j4 log j��
0�j2 þ 1Þ

þ 1þ �2
0�
2

32�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

0�
q �

ð�þ
0�Þ3

�
log j�þ

0�j2 þ
1

2

�
� ð��

0�Þ3
�
log j��

0�j2 þ
1

2

��	







; (4.43)
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where the form of the prepotential and that of the super-
potential in Eqs. (4.40) and (4.66) are assumed and we have
put c ¼ i, d ¼ 1 in the second equality.

Now, the numerical solutions to the gap equation and the
stationary condition for ’ are listed in Table I. In these

examples, we have taken some values of � N2

Imðiþ�Þ and m

just for an illustration, and the ratio jF�=D�j and jf3�j are
evaluated. We can find that the F term is smaller than theD
term in some of these examples.

E. Second variation of the potential and the mass
of the scalar gluons

We now turn to the question of the second variations of
the scalar potential

Vscalar ¼ VðD ¼ D�ð’; �’Þ; F ¼ F�ð’; �’Þ � 0;

�F ¼ �F�ð’; �’Þ � 0; ’; �’Þ (4.44)

at the stationary point ðD�ð’�; �’�Þ; 0; 0; ’�; �’�Þ. It is con-
venient to separate VðD;F; �F;’; �’Þ into two parts:

V ¼ V þ V0: (4.45)

Here

V ðF; �F;’; �’Þ � �gF �F� FW 0 � �F �W 0 þ ð@FV1-loopÞ�F
þ ð@ �FV1-loopÞ� �Fþ 1

2
ð@2FV1-loopÞ�F2

þ 1

2
ð@2�FV1-loopÞ� �F2 þ ð@F@ �FV1-loopÞ�F �F;

(4.46)

and

V0ðD;’; �’Þ ¼ VðD;’; �’;F ¼ 0; �F ¼ 0Þ: (4.47)

In Eq. (4.46), we have extracted the F, �F dependence of
V1-loop [Eq. (3.27)] as series, and � indicates that they are

evaluated at ðD�; ’�; �’�; 0; 0Þ after the derivatives are
taken. Equation (4.47) has been computed in Eqs. (4.16)

and (4.23). We will compute the second partial derivatives
and the second variations of Vscalar, using the formula in the
appendix.
For V , ~yL ¼ ðF; �FÞ, ~yR ¼ ð’; �’Þ,

MRR� �
@2V ; @ �@V
�@@V ; �@2V

 !
�
� 0; (4.48)

MRL� �
@@FV ; @@ �FV
�@@FV ; �@@ �FV

 !
�

� �W 00 þ ð@@FV1-loopÞ; ð@@ �FV1-loopÞ
ð �@@FV1-loopÞ; � �W 00 þ ð �@@ �FV1-loopÞ

 !
�
;

(4.49)

MLR� ¼ Mt
RL� ; (4.50)

MLL� �
@2FV ; @F@ �FV

@ �F@FV ; @2�FV

 !
�

� ð@2FV1-loopÞ; �gþ ð@F@ �FV1-loopÞ
�gþ ð@ �F@FV1-loopÞ; ð@2�FV1-loopÞ

 !
�
:

(4.51)

Here we have denoted by � that the derivatives are eval-
uated at the stationary point.
We obtain, after some computation,

2V � � 1

2
~ytRMRL� ð�M�1

LL� ÞMLR�~yR

� 1

2
~yyR

M’ �’ M’’

M �’ �’ M �’’

 !
�
~yR: (4.52)

Here

TABLE I. Samples of numerical solutions for the gap equation and the stationary condition for ’. The ratio jF�=D�j and jf3�j are
also evaluated for a consistency check.

c0 þ 1
64�2

~A=ð4 � 32�2Þ �0� ’�=Mð� N2

Imðiþ�ÞÞ jF�=D�j jf3�j
0.002 0.0001 0.477 0.707 (10,000) 2.621 (m ¼ M) 1.77

0.002 0.0001 0.477 0.707 (10,000) 0.524 (m 	 M) 0.35

0.002 0.0001 0.477 0.707 (10,000) 0.860 (m ¼ 0:4M) 0.58

0.003 0.001 1.3623 0.8639 (2000) 0.825 (m ¼ M) >1

0.003 0.001 1.3623 0.8639 (2000) 0.224 (m 	 M) 0.43

0.003 0.001 1.3623 0.5464 (5000) 1.092 (m ¼ M) >1

0.003 0.001 1.3623 0.5464 (5000) 0.142 (m 	 M) 0.27

0.003 0.001 1.3623 0.5464 (5000) 0.911 (m ¼ 0:9M) 1.76

0.003 0.001 1.3623 0.3863 (10,000) 1.444 (m ¼ M) >1

0.003 0.001 1.3623 0.3863 (10,000) 0.100 (m 	 M) 0.19

0.003 0.001 1.3623 0.3863 (10,000) 0.960 (m ¼ 0:8M) 1.85
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M’ �’ ¼ 1

gðG2 � jCj2Þ ðGðjAj
2 þ jBj2Þ þ CA �Bþ �C �ABÞ;

(4.53)

M’’ ¼ 1

gðG2 � jCj2Þ ð2GABþ CA2 þ �CB2Þ; (4.54)

G � 1� @F@ �FV1-loop

g
; C � @2�FV1-loop

g
;

A � W 00 � @@FV1-loop; B � �@@ �FV1-loop:
(4.55)

Here in the last line of Eq. (4.52), we have changed the real
quadratic form into the complex one. We see that in the
region jð@F@ �FVÞ0j�; jð@2FVÞ0j�;	 g�, the matrix M� is
well approximated by

M� � 1

g

jAj2 þ jBj2; 2AB

2 �A �B; jAj2 þ jBj2
 !

�
: (4.56)

The two eigenvalues are

1

g
ðjAj � jBjÞ2� ¼ 1

g
ðjW 00 � ð@@FV1-loopÞj � jð@@ �FV1-loopÞjÞ2�;

(4.57)

respectively, ensuring the positivity of Eq. (4.52).
For V0, yL ¼ D, ~yR ¼ ð’; �’Þ,

MRR� ¼
@2V0; @ �@V0

�@@V0; �@2V0

 !
�
; MRL� ¼

@@DV0

�@@DV0

 !
�
; (4.58)

MLR� ¼ M�
RL; MLL� ¼ @2DV0�: (4.59)

We know that the D profile of V0ðD;’; �’Þ near the
stationary point is convex to the top, and we fit this by

V0 ¼ Vhð’; �’Þ � �ð’; �’Þ
2

ðD�D�ð’; �’ÞÞ2

þOððD�D�ð’; �’ÞÞ4Þ: (4.60)

Here � is a positive real function of ’, �’ and Vhð’; �’Þ ¼
V0ðD�ð’; �’Þ; ’; �’Þ. One can check

�MRL�M
�1
LL�MLR� ¼ ��

@D�
�@D�

 !
�
ðð@D�Þ; ð �@D�ÞÞ�; (4.61)

while

MRR� ¼
@2Vh @ �@Vh

�@@Vh
�@2Vh

 !
�
� �

ð@D�Þ2 j@D�j2
j@D�j2 ð �@D�Þ2

 !
�
(4.62)

and

2V0� ¼ 1

2
~yRðMRR� �MRL�M�1

LL�MLR�Þ�~yR

¼ ~yyR
@ �@Vh @2Vh

�@2Vh @ �@Vh

 !
�
~yR � ~yyRMh� ~yR: (4.63)

The entire contribution of the second variation 2V� ¼
2V � þ 2V0� to the leading order in the Hartree-Fock
approximation is given by Eqs. (4.52) and (4.63). The mass
of the scalar gluons squared is obtained by multiplying the
combined mass matrix by g�1� :

g�1� ðM� þMh�Þ; (4.64)

generalizing the tree formula. In practice, we just need a
well-approximated formula valid in the region we work
with, and one can invoke theUð1Þ invariance to ensure that
the two eigenvalues of the complex scalar gluons are
degenerate. Let us, therefore, use the expression

1

g
jW 00 � ð@@FV1-loopÞj2� þ @ �@Vh� ¼
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’�
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�
c0 þ 1

64�2

�
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þ 2

32�2

� ~A
8
� ð�þ

0�Þ4 log ð�þ
0�Þ � ð��

0�Þ4 log ð��
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þ Imðiþ�Þ

N2

1

’�=M

	
M2 (4.65)

to check the local stability of the potential and the mass.
The above expression is obtained for our simple example
of F and W,

F ¼ i

2
’2 þ 1

3!M
’3; W ¼ m2’þ 1

3!
’3; (4.66)

and the real case �0 ¼ ��0 is applied. Using the numerical
analyses carried out in the last subsection, we have made a

list of data on Eq. (4.65). Except for the last case in
Table II, the scalar gluon masses squared are found to be
positive for any N, which implies that our stationary points
are locally stable. Even in the last case, the stability is
ensured for small N. In these data, we have checked that
the inequalities jð@F@ �FV1-loopÞj�, jð@2FV1-loopÞj� 	 g� are in
fact satisfied. As a summary of our understanding, a sche-
matic figure is drawn in Fig. 2, which illustrates the local
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stability of the scalar potential at the vacuum of dynami-
cally broken supersymmetry in comparison with the
well-known NJL potential.

F. Summary and choice of regularization
and subtraction scheme

In this paper, we have considered the theory specified by
the generalN ¼ 1 supersymmetric Lagrangian, Eq. (2.1);
have regularized the theory by the supersymmetric dimen-
sional regularization (dimensional reduction); and have
subtracted the part of the 1=ð
Þ poles of the regularized
one-loop effective action in Eq. (3.27) by the supersym-
metric subtraction scheme defined by the condition (3.19).
The upshot is an effective potential, Eqs. (4.17) and (4.23),
as a function of the background constant scalar and the
order parameter D of supersymmetry, with another order
parameter F of supersymmetry being induced and treated
perturbatively. Supersymmetry is dynamically broken as is
represented by the nonvanishing value of the order parame-
ters at the stationary point. The original infinity is trans-
muted into the infinite constant � which is the coefficient
of the counterterm, and the effective potential has been
recast to describe the behavior of the theory well below
the UV cutoff residing in the prepotential function. As the
theory is perturbatively nonrenormalizable, � is still
present in our final expressions of the effective potential,
and we regard it to take a large value.

We now make brief comments on other regularizations
and subtraction schemes which we did not employ in this
paper. The relativistic momentum cutoff is a natural choice
of the NJL theory as we mentioned earlier, but regularizing
the integral Eq. (3.20) by the momentum cuoff leads us to a
rather unwieldy expression. See Ref. [5]. Unlike super-
symmetric dimensional reduction [49], the momentum

cutoff per se, while preserving the equality between the
Bose and Fermi degrees of freedom, does not have a firm
basis on the regularized action which the supersymmetry
algebra acts on. Moreover, as is clear from Eq. (A.1) of
Ref. [5], the result violates the positivity of the effective
potential in the vicinity of the origin in the � profile. This
violation is a necessity in the broken chiral symmetry of
the NJL theory, but here it contradicts with the positive
semidefiniteness of energy that the rigid supersymmetric
theory possesses. Turning to the choice of the subtraction
scheme, one might also like to apply the ‘‘(modified)
minimal subtraction scheme’’ in our one-loop integral,
Eq. (3.27). While we do not know how to justify this
prescription here, the subsequent analyses proceed almost
in the same way, and the main features of the equations
obtained from our variational analyses and the conclusions
are unchanged.
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APPENDIX A: NJL EFFECTIVE ACTION

In this appendix, we briefly recall a few aspects of the
SUðNÞ Nambu-Jona-Lasinio model,

LNJL ¼ ��i6@�þ �=N

2
½ð ���Þ2 þ ð ��i�5�Þ2�: (A1)

The equivalent Lagrangian is

L¼LNJL� 1

2

1

�=N

��
�þ �

N
���

�
2þ

�
�þ �

N
��i�5�

�
2
	

¼�1

2

1

�=N
�2� 1

2

1

�=N
�2þ ��ði6@��� i�5�Þ�:

(A2)

The 1PI vertex function (or the effective action) �1PI½�;��
to one-loop (or leading order in 1=N) reads

TABLE II. Samples of numerical values for the scalar gluon masses.

c0 þ 1
64�2

~A=ð4 � 32�2Þ �0� ’�=Mð� N2

Imðiþ�ÞÞ Scalar gluon mass

0.002 0.0001 0.477 0.707 (10,000) 0:4998þ 0:0056N2 þ 8:607� 10�7N4

0.003 0.001 1.3623 0.8639 (2000) 0:7463þ 0:0106N2 þ 2:653� 10�4N4

0.003 0.001 1.3623 0.5464 (5000) 0:2986þ 0:0008N2 þ 4:694� 10�5N4

0.003 0.001 1.3623 0.3863 (10,000) 0:1492� 0:0024N2 þ 7:235� 10�5N4

FIG. 2. Comparison of Vscalar around the stationary value
ðD�; ’�Þ with VNJL.
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i�1PI½�;�� ¼ � i

2

1

�=N

Z
d4xð�2 þ �2Þ

þ N ln det ði6@� �ðxÞ � i�5�ðxÞÞ: (A3)

The gap equation is

0 ¼ i�1PI

�ðxÞ








�ðxÞ¼h�i¼�0;�ðxÞ¼0

¼ �i
1

�=N
�0 � N

Z d4k

ð2�Þ4 Tr
1

6k� �0

¼ �0

�
�i

1

�=N
� 4N

Z d4k

ð2�Þ4 �
ð�1Þ

k2 � �2
0

�
: (A4)

APPENDIX B: FORMULA FOR THE SECOND
VARIATION

In this appendix, we recall the formula for the
second variation of a multivariable function subject
to a set of stationary constraints. Let V be the function

of two sets of variables: ffy1; . . . ; unðLÞgg ¼ DL,

ffynðLÞþ1; . . . ; ynðLÞþnðRÞgg ¼ DR. Namely,

V ¼ Vðy1; . . . ; ynðLÞ; ynðLÞþ1; . . . ; ynðLÞþnðRÞÞ (B1)

under

@V

@yi
¼ 0; i ¼ 1; . . . ; nðLÞ: (B2)

Let the second variation of V be

2V � 1

2

X
yi;yj2DL[DR

@2V

@yi@yj
yiyj; (B3)

but yi 2 DL are not independent variations.

It is convenient to introduce a new vector notation:

~yL ¼ ðy1; . . . ; ynðLÞÞt;
~yR ¼ ðynðLÞþ1; . . . ; ynðLÞþnðRÞÞt; etc:

(B4)

Define

MX;X0 ¼
�

@2V

@yi@yj

�
; yi 2 DX;

yj 2 DX0X; X0 are either L or R: (B5)

Equation (B3) reads

2V ¼ 1

2
ð~yR;MRR~yRÞ þ ð~yR;MRL~yLÞ

þ 1

2
ð~yL;MLL~yLÞ: (B6)

Varying Eq. (B2) with respect to ~yL and ~yR, we obtain

MLL~yL þMLR~yR ¼ 0: (B7)

Hence,

~yL ¼ �M�1
LLMLR~yR: (B8)

Substituting this into Eq. (B6), we obtain

2V ¼ 1

2
ð~yR; ðMRR �MRLM

�1
LLMLRÞ~yRÞ: (B9)

The generic scalar mass matrix in the text can be read off
MRR �MRLM

�1
LLMLR at the stationary value.
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