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Calculating extra (quasi)moduli on the Abrikosov-Nielsen-Olesen string
with spin-orbit interaction
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Using a representative set of parameters, we numerically calculate the low-energy Lagrangian on the
world sheet of the Abrikosov-Nielsen-Olesen string in a model in which it acquires rotational (quasi)
moduli. The bulk model is deformed by a spin-orbit interaction, generating a number of “entangled”

terms on the string world sheet.
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L. INTRODUCTION

In the previous publications, simple models with
“spin-orbit” interactions supporting the Abrikosov-
Nielsen-Olesen (ANO) [1] or similar strings (vortices)
were considered [2—4] with “extra’ non-Abelian moduli
(or quasimoduli) on the string world sheet. Such extra
moduli fields can appear in the bulk models that have order
parameters carrying spatial indices, such as those relevant
for superfluidity in *He (see e.g. Ref. [5]). This particular
example was studied in Ref. [3], which in fact inspired a
more detailed numerical analysis, presented below. The
studies in Refs. [2-4] were carried out at a qualitative
level. Here we perform calculations needed for the proof
of stability of the relevant solutions and the derivation of
all constants appearing in the low-energy theory on the
string world sheet.

First, we will consider the simplest model [2]
assuming weak coupling in the bulk (to justify the
quasiclassical approximation), determine the profile
functions to find the string solution, and derive the
world-sheet model. The general theory of the string
moduli in the absence of the spin-orbit terms is dis-
cussed in Refs. [6,7].

Then we will introduce a spin-orbit interaction in the
bulk. The impact of this interaction on the string (vortex)
world sheet amounts to lifting all or some rotational zero
modes (i.e. those not associated with the spontaneous
breaking of the translational symmetry by the string).
However, under certain conditions on a parameter deter-
mining the spin-orbit interaction in the bulk, the mass gap
generated on the world sheet remains small, and the extra
zero modes survive as quasizero modes (some may re-
main at zero at the classical level). In addition to the
above mode lifting, the spin-orbit interaction generates a
number of interesting entangled terms on the string world
sheet which couple rotational and translational modes
(despite the fact that the translational modes remain
exactly gapless).
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II. FORMULATION OF THE PROBLEM

We start from the model suggested in Ref. [2]. Its overall
features are similar to those of the superconducting cosmic
strings [8]. The model is described by an effective
Lagrangian

L="Ly+L, (1
where
Ly = = 1y B+ DR = V()
D,d =, —iA,)e, 2)
V= 2A(¢l* - v?)?
and
L=, x0"x —Ux ¢) 3)
U=v[(—p*>+ 1o)X x + Bx'x)*] “4)

with self-evident definitions of the fields involved, the
covariant derivative, and the kinetic and potential terms.
The parameters e, A, B, i, and v can be chosen at will,
with some mild constraints (e.g. v > u) discussed in
Ref. [3]. In particular, the stability of the ¢ # 0 vacuum
we are interested in implies that 8 cannot be too small:

2
p="x_L 5)
m%ﬁ clc—1)
where
2
v

cf. Eq. (9). The relations between the parameters in
Egs. (2) and (4) and a, b, ¢ appearing below, on the one
hand, and the physical parameters (the particle masses and
the coefficients in front of the quartic terms ¢*, y* and
¢?x?, respectively), on the other hand, are shown in
Table I and Egs. (7) and (9).
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TABLE I. Parameters in Eqs. (2) and (4) in terms of the
partlcle masses and the coefficients in front of the quartic terms
¢*, x*, and ¢2x? (A, A, and v, respectively).
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We will assume the parameters to be chosen in such a
way that the bulk model is weakly coupled, and hence the
quasiclassical approximation is applicable.

Now let us discuss some parameters and the correspond-
ing notation. In the vacuum, the complex field ¢ develops
a vacuum expectation value |¢,,.| = v while its phase is
eaten up by the Higgs mechanism. The masses of the
(Higgsed) photon and the Higgs excitation are

m; = 2e*v?, mé = 402 7

We will denote the ratio of the masses as

62

=mi/m% =—. 8
a mA/m¢ o (8)
Moreover, in the vacuum, the field y’ does not condense.

Its mass is

= y(v* — u?). ()]

For what follows we will introduce two extra dimension-
less parameters:
_vc—1

b= mi / m(zb =i o
The first measures the ratio of the y to ¢ masses in the bulk
and, as explained in Ref. [2], has to be b = 1. The second
parameter is also constrained, ¢ > 1. We will treat both of
them as parameters of the order of unity. As for the spatial
orientation, the string will be assumed to lie along the z
axis. We introduce a dimensionless radius in the perpen-
dicular {x, y} plane:

p= mqﬂfxz + y2. an

The basis of our construction is the standard ANO string
(see e.g. Ref. [9]). The ¢ field winds, ensuring topological
stability, which entails in turn its vanishing at the origin.
This implies the following Ansdtze:

Eij 2(1_f(r))

c=v*/u’ (10)

Ay =0, A =— d = vep(p)e',

(12)

where « is the polar angle in the perpendicular plane, and
we assume for simplicity the minimal (unit) winding. The
boundary conditions supplementing Eq. (12) are
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f0) =1 ¢(0) = 0.
(13)

fle0) =0, p(c0) = 1,

In the core of such a tube, the ¢ field tends to zero; see
Eq. (13). The vanishing of the ¢ field results in the ' field
destabilization in the core of the string [as follows from
Eq. (4)]. Hence, inside the core, the y' field no longer
vanishes,

2

ﬁ;
as will be illustrated by the graphs given below. Choosing
the value of A judiciously, we can make w?/B > m?2,

implying that the O(3) symmetry is broken in the core.
The appropriate Ansatz is

X core = (14)

0
X' = h—X(p) 0l (15)
1
with the boundary conditions
x(©) =0, x(0)~1 (16)

Thus, we have three profile functions, f, ¢, and y, depend-
ing on p. Minimizing the energy functional, we derive the
system of equations for the profile functions

(-

P it p¢(so—1) pex* b
(@py =+ F . 28 =T (17)
b
X'p) = ﬁp)((cgoz +xX2 -0,

where the primes denote differentiation with respect to p.
In the numerical solution to be presented below, we will
assume for simplicity that

a=1, Le. my = my. (18)

In the absence of the y field, this would imply the
Bogomol’nyi-Prasad-Sommerfield (BPS) limit [10] with
the tension'

T, = 2mv>. (19)

Below, we will see how the presence of the y field changes
the tension, using 7T, as a reference point.

It is obvious that the solution y =0 and ¢ = ¢y =
@ano satisfies the set of equations in Eq. (17). First we
will show that this solution is unstable; i.e., it corresponds
to the maximum rather than the minimum of the energy
functional.

! Alternatively, this is the boundary between type-I and type-II
superconductors.
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III. INSTABILITY OF THE y = 0 SOLUTION

To prove instability we must demonstrate that for ¢ =
@y = @ano there is a negative mode in y, in much the
same way as in Ref. [8]. To this end it is sufficient
to examine the energy functional in the quadratic in y
approximation,

2 2
&, = %L[dxdy{x[—A + y,u,Q(—l + %@%)]X},
(20)

where L is the string length (tending to infinity), and find
the lowest eigenvalue of

V2
[—A + y,u,z(—l + F@%)]X = Ey. (21)

One can view Eq. (21) as a two-dimensional Schrodinger
equation. Given that the ground state is spherically
symmetric and introducing

¥(p) = x/p (22)

one can rewrite Eq. (21) as

2
co;— 1 1)
— 4 — = =
R e [

where the prime denotes differentiation over p. Numerical
solution at ¢ = 1.25 yields

{—1.479 at b =1
€ =

24
—4.19 atb=2. @)

IV. x # 0 SOLUTION

To find the asymptotic behavior of the profile functions
at p — o0, one can linearize these equations in this limit:
1
f~pe?,  (1—¢)~—e? e
ve 7 7
(25)

We integrated Eq. (17) numerically for a number of
points in the parameter space {b, ¢, B}, keeping a = 1.
Then the parameter A appears only as an overall factor,
with the analytically known dependence. Representative
plots are given in Figs. 1 and 2. The first plot at the very top
is given to show the domain of p in which an “effective”
m? for the y field is negative, forcing y' to condense in the
core. This is the domain of negative x’ contribution to the
potential energy. Then the three profile functions are pre-
sented: f(p), ¢(p), and y(p) (from top to bottom). In terms
2

of the physical parameters, Fig. 1 corresponds to mf( = my,

and A = 160\, while Fig. 2 corresponds to m? = 2m
and A = 640).
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These plots demonstrate that y(0) is indeed close to
unity. In scanning the parameter space we observe that
(i) increasing the parameter b (i.e. the y mass) increases
both the width of the domain where the “effective’ m? for
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FIG. 1 (color online). Profile functions defined in Egs. (12)
and (15) for the following values of parameters: b =1,
c=1.25,and B = 8.
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FIG. 2 (color online). The same as in Fig. 1 for the following
values of parameters: b = 2, ¢ = 1.25, and B = 16.

the y field is negative and the value of y(0), but decreases
the tension of the string; (ii) increasing the parameter
¢ (i.e. decreasing w) acts in the opposite direction; and
(iii) increasing the parameter B acts in the same way as
increasing ¢ but with a weaker impact.

PHYSICAL REVIEW D 88, 025011 (2013)

V. THE WORLD-SHEET THEORY WITHOUT
A SPIN-ORBIT TERM

Now let us introduce moduli. Two translational moduli
are obvious. Since they are well studied, we will not dwell
on this part. Of interest are the rotational moduli. Given the
nontrivial solution in Eq. (15) we can immediately gener-
ate a family of solutions which go through the system of
equations in Eq. (17), namely

"= —=x(p)S’, (26)
V2B
where the moduli S? are constrained (i = 1, 2, 3),
Sisi =1, 27

therefore, in fact, we have two moduli, as was expected. To
derive the theory on the string world sheet we, as usual,
introduce 7, z dependence, converting the S* moduli into
the moduli fields S(¢, z), and

= = St 2), k=1z 28
Substituting this in the Lagrangian [Eqgs. (3) and (4)], we
obtain the low-energy effective action

1 )
S=-— fdtdz(akS’)z, (29)
2g
where
1o /mz 2(p)d 30)
2¢>  8cBA Jo TOX PP
One can rewrite this as
2
g _ B 31
where
1= [ (o). (32)

For the parameters we used in Figs. 1 and 2 we obtain

I, = 1.107 (for Fig. 1), I, = 1.18 (for Fig.2), (33)

and, correspondingly,

2 2
8 ~0.915A (for Fig. 1), 5— ~ 1.717A (for Fig. 2).
a

27

(34)

VI. SPIN-ORBIT INTERACTION

The “two-component” ¢-y string solution presented
above spontaneously breaks two translational symmetries,
in the perpendicular x, y plane and in O(3) rotations. The
latter are spontaneously broken by the string orientation
along the z axis [more exactly, O(3) — O(2)], and by the
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orientation of the spin field x’ inside the core of the flux
tube introduced through S°.

Now, we deform Eq. (3) by adding a spin-orbit interac-
tion [4],

L,o=0,x0"x —€e0:x) = Ul &), (35

where ¢ is to be treated as a perturbation parameter.

If ¢ = 0 [i.e. Eq. (3) is valid], the breaking O(3) — O(2)
produces no extra zero modes (other than translational) in
the ¢-A, sector [6,7]. Due to the fact that y # 0 in the
core, we obtain two extra moduli S’ on the world sheet.
This is due to the fact that at &€ = O the rotational O(3)
symmetry is enhanced [3,4] because of the O(3) rotations
of the “spin” field y/, independent of the coordinate
spacial rotations.

What happens at ¢ # 0? [See Eq. (35).] If € is small, to
the leading order in this parameter, we can determine the
effective world-sheet action using the solution found above
at ¢ = 0. Two distinct O(3) rotations mentioned above
become entangled: O(3) X O(3) is no longer the exact
symmetry of the model, but, rather, an approximate sym-
metry. The low-energy effective action on the string world
sheet takes the form

S= ] dtdz(Log + L)),
(36)

Lo ={%gz[<aksf>2—s<aZSB>2]}—M2<1 —(s)2),

L, =

N

(03X 1)F — M2(S)*(9,%,)?
+ 2M*(S?)(S'9,x, 1 + S%9,x51), 37

where X = {x(t, z), y(¢, z)} are the translational moduli
fields, and T is the string tension. The mass term M? is

4
M2 = g2 2 (38)
where

I - [0 * o (p))2dp. (39)

For the values of parameters used in Figs. 1 and 2, we
obtain
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I, = 0.378 (for Fig. 1), I, = 0.467 (for Fig. 2).
(40)

As for the tension 7', we have

T T
— = 0.963 (for Fig. 1), — = 0.953 (for Fig. 2).

(41)

The impact of the x' field on the string tension is rather
small and negative. The positive contribution of its kinetic
energy is compensated by the negative potential energy;
see Figs. 1 and 2. This was expected given the result of
Sec. III.
Moreover, it is seen that
M?> &

T B

and is small for sufficiently small ratios £/ 3. This justifies
the above calculation.

VII. CONCLUSIONS

We discussed the theory supporting strings with extra
(rotational) moduli on the string world sheet. Our numeri-
cal analysis demonstrates that it is not difficult to endow
the ANO string with such moduli following a strategy
similar to that used by Witten in constructing cosmic
strings. Our discussion was carried out in the quasiclassical
approximation.

When the bulk model is deformed by a spin-orbit inter-
action, a number of entangled terms emerge on the string
world sheet. Quantum effects on the string world sheet
(which can be made arbitrarily small with a judicious
choice of parameters) is a subject of a separate study.
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