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We present the calculation of the spectral function of an unstable scalar boson coupled to fermions as

resulting from the resummation of the one-loop diagrams in the scalar particle self-energy. We work with a

large but finite high-energy cutoff; in this way, the spectral function of the scalar field is always correctly

normalized to unity, independent of the value of the cutoff. We show that this high-energy cutoff affects

the Breit-Wigner width of the unstable particle: the larger the cutoff, the smaller is the width at fixed

coupling. Thus, the existence of a high-energy cutoff (alias minimal length), and for instance the possible

opening of new degrees of freedom beyond that energy scale, could then be in principle proven by

measuring, at lower energy scales, the line shape of the unstable scalar state. Although the Lagrangian

here considered represents only a toy model, we discuss possible future extensions of our work which

could be relevant for particle physics phenomenology.
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I. INTRODUCTION

The aim of this work is to study the spectral
function of a scalar field, denoted as H, coupled via
a simple renormalizable Yukawa-type interaction to a
fermion field c ,

Lint ¼ gH �c c : (1)

We assume that the scalar boson H is heavy enough for
the decay process H ! �c c to take place. Thus, H is
unstable and does not have a definite mass: a spectral
function dHðxÞ can be obtained as the imaginary part of
the propagator of H. Intuitively, the quantity dHðxÞdx
represents the ‘‘mass distribution,’’ that is, the probabil-
ity that the unstable state H has a mass between x and
xþ dx [1–3]. While the Breit-Wigner function often
represents a good approximation for dHðxÞ, deviations
become evident when a more advanced treatment of the
problem is undertaken. A natural condition which must
be fulfilled is the normalization equation,Z 1

0
dHðxÞdx ¼ 1; (2)

which assures the normalization of the probability asso-
ciated to the mass distribution, i.e. the normalization of
the initial unstable state H. As we shall see, interesting
effects connected to Eq. (2) emerge when studying this
system in detail.

The determination of the propagator ofH is a necessary
step to obtain its spectral function, which is proportional
to the imaginary part of the propagator. We consider a
fermionic loop which dresses the bare propagator of H
and we perform a resummation of this loop contribution.
Simple power counting shows that the fermionic loop is
divergent. Thus, one has to cure the divergences accord-
ing to a certain regularization. In this work we shall use

the old-fashioned cutoff regularization1: we thus intro-
duce a finite, albeit large, high-energy scale �. Namely,
we argue that a finite cutoff is better suited to describe a
physical situation, in which high-energy contributions are
effectively suppressed when the energy of the particles
circulating in the loop is high enough. Although its pre-
cise value and the way the high momenta are suppressed
are unknown (a typical choice consists in taking � equal
to the Planck mass), the finiteness of the cutoff assures
that the condition (2) is always fulfilled. In turn, a loga-
rithmic dependence on the cutoff cannot be eliminated
(by using relations between bare and dressed parameters):
namely, we find that the form of dHðxÞ is (weakly) influ-
enced by the precise value of the cutoff. Before discussing
this main property of our results in detail we briefly recall
the ideas behind regularization and renormalization and
justify the use of a finite cutoff.
The appearance of divergences in quantum field theory

(QFT) plagued its first stages, up to the development of a
successful renormalization program [4–7]. The first step of
the renormalization is the regularization procedure, in
which the divergent integrals appearing at high orders in
perturbation theory are made finite according to a certain
prescription: in the already mentioned cutoff regularization
the momenta of the virtual particles are ‘‘cut’’ for high
values beyond a certain ultraviolet (UV) energy scale (the
cutoff) �; in the Pauli-Villars approach particles with a
large mass �PV (which plays the role of the high-energy
scale in this scheme) are formally introduced in such a way

1Of course, more sophisticated and effective regularization
procedures exist (as described later on and in the Appendix) and
are commonly used for calculations. However, the main aim of
this work is conceptual and we thus wish to explicitly keep track
of a finite high-energy scale.
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that the ultraviolet contributions cancel; in the dimensional
regularization the integrals are evaluated in 4� �
dimensions and the divergences appear as ��1 contribu-
tions. The use of a certain regularization scheme depends
on the problem under study. In fact, a regularization can
‘‘destroy’’ some original symmetries of the Lagrangian,
and therefore care is needed. For instance, a cutoff �
violates gauge invariance (its restoration is indeed
possible, but lengthy [8,9]), while the Pauli-Villars and
dimensional regularizations preserve it and are therefore
usually preferred in explicit calculations in the framework
of gauge theories (though the Pauli-Villars does not pre-
serve gauge invariance in non-Abelian gauge theories).

Once a QFT Lagrangian has been regularized, one can
reabsorb the divergences into the bare parameters of the
theory (masses and couplings) plus the wave-function
renormalizations (these steps can also be done by introduc-
ing proper counterterms, which order-by-order assure that
the divergences disappear). At this point the high-energy
scale has disappeared from the QFT and can be formally
set to infinity. Each quantity is perfectly finite and inde-
pendent of � (or of �PV and �). It is well known that, only
for a small subset of QFTs—the renormalizable theories—
this procedure is possible and no divergence (i.e., ex-
plicit dependence on the high-energy scale) emerges at
higher orders. Indeed, the Lagrangian of the Standard
Model (SM) contains only renormalizable interactions
(see e.g. Ref. [10] and references therein).

Nonrenormalizable QFTs were regarded in the past as
substantially ill-defined because the high-energy scale does
not decouple. Formally, one could introduce at each order
new counterterms, but the price is the need to introduce new
coupling constants at each order. However, it is interesting to
stress that the point of view toward nonrenormalizable theo-
ries changed in the last few decades. Especially in the frame-
work of quantum chromodynamics (QCD), the development
of a variety of QFTs which are not renormalizable was put
forward in order tomodel nonperturbativeQCDphenomena.
(i) Chiral perturbation theory is constructed as a theory of
the lightest hadronic states (the pions in its simplest form)
[11,12]; the Lagrangian is organized order-by-order with an
increasing number of derivatives, which in turn implies an
increasing number of pion momenta in the corresponding
Feynman diagrams. The Lagrangian of chiral perturbation
theory is nonrenormalizable, but a successful renormaliza-
tion program can be carried out order-by-order. (ii) The
Nambu-Jona-Lasinio model is a model of quarks with a
quartic, Fermi-like (nonrenormalizable) interaction. A finite
QCD-driven cutoff of about 600 MeV is introduced to
correctly describe the vacuum’s phenomenology; see for
instance Ref. [13]. (iii) Although the original � model was
renormalizable [14], modern versions of it are not [15].

More in general, nowadays also the SM itself is regarded
as an effective model of a yet-unknown theory which
represents its ultraviolet completion. It is indeed known

that at energies larger than the Planck mass gravity effects
are non-negligible. Although a quantum theory of gravity
is still not available, we can conclude that the cutoff of the
Standard Model �SM should be smaller than the Planck
mass,�SM & MPlanck. But this is an upper limit:�SM could
be much smaller than that, up to the order of 1 TeV ¼
103 GeV. It is then plausible to conclude that �SM lies in
the (quite broad) range ð103; 1019Þ GeV.
However, as long as the cutoff � (or, equivalently, �PV)

in a renormalizable theory is finite but much larger than
other dimensionful parameters of the theory, then the results
should depend on it at most as 1=�, 1=�2; . . . and are
therefore very difficult to be seen in low-energy processes.
(Moreover, such contributions obviously vanish when the
formal limit� ! 1 is taken.) Thus, the cutoff is a physical
energy scale, which however does not affect the low-energy
behavior of the theory. This point of view is very well
described in the QFT book by Zee [7], where it is stressed
that the regularization is not only a mathematical intermedi-
ate step but corresponds in some sense to a physical
situation: ‘‘I emphasize that � should be thought of as
physical, parametrizing our threshold of ignorance, and
not as a mathematical construct. Indeed, physically sensible
quantum field theories should all come with an implicit �.
If anyone tries to sell you a field theory claiming that it
holds up to arbitrarily high energies, you should check to
see if he sold used cars for a living’’ (pages 146–147 in
Ref. [7]).
Having clarified and motivated why we insist on work-

ing with a finite cutoff �, we come back to the purpose of
the present work: namely, we aim to investigate what is the
effect of the cutoff � on the spectral function dHðxÞ of the
unstable scalar state H. At first sight, this seems an ill-
posed question, because the cutoff � should not affect, for
all the reasons described above, a physical quantity such as
the spectral function. [In fact, dHðxÞ can be related, for
instance, to a fermionic pair-production process, whose
cross section is described in Sec. II D.] Quite surprisingly,
we find that this is not the case, and that dHðxÞ has a
logarithmic dependence on the cutoff: the finite value of
� influences the width of the peak of the function dHðxÞ. It
is then conceivable that one may pin down the value of the
high-energy scale � by studying the spectral function of
the low-energy resonance H. Note that this peculiar de-
pendence on the cutoff does not take place in superrenor-
malizable theories, in which the value of � does not affect
the form of the spectral function if it is large enough [3].
We shall also show that the limit x ! 1 and� ! 1 do not
commute. When � ! 1 is taken first, and consequently
the standard renormalization procedure is applied, no de-
pendence on the cutoff is left, but a series of inconsisten-
cies emerges: the spectral function is not localized in the
vicinity of the peak also for small values of the coupling
constant. This result represents a further hint toward the
existence of a finite cutoff.
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An immediate application of our formulas can be done in
a case which is reminiscent of the Higgs boson, which has a
coupling of the type (1) to fermions. It must be however
clearly stressed that with the simple Lagrangian in Eq. (1)
our calculation does not represent a realistic evaluation of
the spectral function of the Higgs boson: namely, no local
gauge invariance is realized in the present simple toy model
(and, in addition, it would also be explicitly broken by the
introduction of the cutoff), only one channel is taken into
account and other channels, such as the four-fermion and the
WW ones, are neglected, and finally background effects are
also not considered. Thus, the application of our formulas to
the case of the Higgs boson (coupled to only one fermion
channel) must be regarded as a first, simple test to evaluate
the possible relevance of the described effect (the influence
of the cutoff). The issue of including finite-width effects
in the propagators of the fundamental and unstable particles
of the SM is very complicated and there have been many
attempts to solve it (see Ref. [16] and references therein).
Presently, the complex-mass renormalization scheme
[17,18] represents a possible viable solution; see also
Ref. [19] for recent developments on the problem of unitar-
ity in this approach. Again, we do not tackle here the
problem of unstable SM particles, but analyze other
(nonperturbative) aspects related to unstable particles, such
as the normalization of their spectral functions, which
cannot be easily investigated within other schemes.

With all these important cautionary comments in mind, it
turns out that, for the determined Higgs mass of 125 GeV
[20], the Higgs spectral function is very narrow and thus
very well approximated by a simple Breit-Wigner form. The
dependence on the cutoff, although present in principle,
cannot be seen in practice, because its influence on the
form of dHðxÞ is vanishingly small. On the other hand it is
conceivable that other (pseudo)scalar resonances beyond the
minimal SM exist, which are broad and thus could show a
direct dependence on the cutoff in their spectral function.

The paper is organized as follows. In Sec. II we present
the model and the calculation of the self-energy and spec-
tral function. In Sec. III we show the numerical results for
some interesting cases and finally in Sec. IV we draw our
conclusions and describe possible future developments. A
rich appendix is also included in which we discuss differ-
ent technicalities and subtle points for the interested reader.

II. THE MODEL AND ITS IMPLICATIONS

A. The Lagrangian

We study the following renormalizable Lagrangian in
which the scalar particle H (with bare mass M0;H) is

coupled to the fermion field c (with mass mf),

L ¼ 1

2
ð@�HÞ2 � 1

2
M2

0;HH
2

þ �c ði��@� �mfÞc þ gH �c c ; (3)

where g is the dimensionless coupling constant. Thus, the
Lagrangian describes a simple Yukawa interaction of a
massive fermion with a massive scalar boson.

B. Decay width

As a first step we evaluate the tree-level decay width for
the process H ! �c c . For future purposes we evaluate it
for the arbitrary mass x of the particle H,

�t-l
H! �c c

ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

4 �m2
f

q
8�x2

ð4m2
fÞ
X
�;�

jM��j2�ðx� 2mfÞ; (4)

where the amplitude reads

�iM�� ¼ �ig �uð�Þð ~k1Þvð�Þð ~k2Þ: (5)

Following the usual steps (details in Appendix A1) the
tree-level decay width �H! �c c ðxÞ as function of the (run-

ning) mass x reads

�t-l
H! �c c

ðxÞ ¼ ðx24 �m2
fÞ3=2

�x2
g2�ðx� 2mfÞ: (6)

Naively, the on-shell tree-level decay width is evaluated by
setting x ¼ M0;H. However, care is needed because it is a

well-known fact that the mass of theH field is modified by
loop corrections. In particular, we will see in Secs. II C and
IID that

M0;H !loopsMH <M0;H; (7)

i.e. the loops reduce the mass. The numerical value of the
tree-level decay width is obtained by evaluating the tree-
level decay function at the dressed massMH (and not at the
bare mass M0;H): �

t-l
H! �c c

ðx ¼ MHÞ. This procedure is a

consequence of renormalization: the mass counterterm
added to the Lagrangian automatically leads to a tree-level
decay width computed at the dressed mass which is the
physical and thus measurable mass; see Appendix A 1 a for
details.
The spectral function, to be studied in detail later, can be

approximated by the following schematic behavior:

d
appr
H ðxÞ ’ 2x

�

x�t-l
H! �c c

ðxÞ
ðx2 �M2

HÞ2 þ x2ð�t-l
H! �c c

ðxÞÞ2 ; (8)

where the real part and cutoff effects in the imaginary
part of the loop have been neglected. For large x, the
approximate asymptotic behavior d

appr
H ðxÞ � 1=x holds be-

cause the decay function �t-l
H! �c c

ðxÞ scales as �t-l
H! �c c

ðxÞ �
x. Such a spectral function is clearly non-normalized.
We shall elaborate on this issue in more detail in the
following, where we will show that the presence of a cutoff
(no matter how large) assures that the correct normaliza-
tion

R1
0 dHðxÞdx ¼ 1 is obtained.
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C. The fermionic loop

The scalar state H is dressed by fermion loops. The
contribution of one fermion loop is easily evaluated by
using the Feynman rules,

�ðpÞ ¼ i
Z d4q

ð2�Þ4 Tr½�fðqþ p=2Þ�fðq� p=2Þ�; (9)

where the fermion propagator reads

�fðqÞ ¼ 1

��q� �mf þ i"
: (10)

The integral in Eq. (9) is quadratically divergent. It must
be therefore regularized; for the reasons described in the

Introduction we use here a regularization function
	�ðp; qÞ, which depends on the cutoff �,

�ðpÞ ¼ i
Z d4q

ð2�Þ4 Tr½�fðqþ p=2Þ�fðq� p=2Þ�	2
�ðp; qÞ:

(11)

Upon one-loop resummation the propagator of H takes
the form

�HðpÞ ¼ 1

p2 �M2
0;H þ g2�ðpÞ þ i"

; (12)

where the loop�ðpÞ can be rewritten in the following way:

�ðpÞ ¼ i
Z d4q

ð2�Þ4
Tr½½��ðq� þ 1

2p�Þ þmf�½�
ðq
 � 1
2p
Þ þmf��

½ðqþ p=2Þ2 �m2
f þ i"�½ðq� p=2Þ2 �m2

f þ i"�	
2
�ðp; qÞ: (13)

For 	�ðp; qÞ we make here the following assumption:

	�ðp; qÞ ¼ f�

�
q2p2 � ðq � pÞ2

p2

�
: (14)

Notice that the function is expressed in terms of scalar
products of four-vectors and it is thus manifestly covariant.
On a practical level we use the following form for f�ð�Þ:

f�ð�Þ ¼ �ð�þ�2Þ; (15)

where� is a cutoff; see Appendix A 1 a for more technical
details. The choice in Eq. (15) is simple and allows for an
analytic presentation of many formulas. However, one
could have used smooth and more complicated cutoff
functions; see for instance Ref. [3] and references therein.
Only small numerical changes would be found but no
conceptual changes would follow.

The trace in the integral (13) reads

Tr

��
��

�
q� þ 1

2
p�

�
þmf

��
�


�
q
 � 1

2
p


�
þmf

��

¼ 4

�
qþ p

2

�
�
�
q� p

2

�
þ 4m2

f

¼ 4

�
q2 � p2

4
þm2

f

�
: (16)

Then, working in the reference frame of the particle H, for
which p ¼ ðx; 0Þ ! p2 ¼ x2, and performing the integral
over q0 by utilizing the residue calculus, one finds

�ðxÞ ¼
Z d3q

ð2�Þ3
4f2�ð�q2Þ

2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

f

q 4xq2

½4ðq2 þm2
fÞ � x2 þ i"� ;

(17)

where we have taken into account the fact that, in the rest
frame of H, one has 	�ðp; qÞ ¼ f�ð�q2Þ (i.e., no explicit
dependence on q0 is present). Introducing the variable w
defined as w2 ¼ q2 we rewrite the loop as

�ðxÞ ¼ 1

2�2

Z 1

0
dw

8f2�ð�w2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þm2

f

q w4

ð4ðw2 þm2
fÞ � x2 þ i"Þ :

(18)

The quadratic divergence of the loop is again clear. The
validity of the optical theorem

x�t-l
H! �c c

ðxÞf�
0
@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

4
�m2

f

s 1
A ¼ g2 Im�ðxÞ (19)

can be easily verified from Eq. (18) by an explicit
calculation of the imaginary part.
Strictly speaking, the ‘‘correct’’ tree-level decay width,

including the effect of the cutoff function, is given by

�t-l;correct
H! �c c

ðxÞ ¼ �t-l
H! �c c

ðxÞf�
0
@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

4
�m2

f

s 1
A; (20)

where the vertex function directly enters into the expres-
sion. This result can be achieved by using a nonlocal
Lagrangian and its corresponding Feynman rules; see
Appendix A 1 a and Refs. [3,9,21].
In this work we make the choice in Eq. (15), for which

an analytic form of the loop is obtained as
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�ðxÞ ¼ �1

4�2x

8><
>:ðx2 � 4m2

fÞ3=2arctanh
2
64 �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�2 þm2
fÞðx2 � 4m2

fÞ
q

3
75

þ x

2
4�2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

f

q
þ ð6m2

f � x2Þ ln
0
@�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

f

q
mf

1
A
3
5
9>=
>;: (21)

We shall use the previous form for analytic and numerical calculations. Note that, as long as x fulfills the inequality

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

4
�m2

f

s
þ�> 0 ! x < 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

f

q
& 2�; (22)

one has for the adopted choice of the vertex function that

�t-l;correct
H! �c c

ðxÞ ¼ �t-l
H! �c c

ðxÞ. However, for x > 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

f

q
the correct tree-level decay function vanishes. Thus, for

large values of the cutoff the equality �t-l;correct
H! �c c

ðxÞ ¼
�t-l
H! �c c

ðxÞ holds for a very wide energy range. (Note that

by using a smooth cutoff function the strict equality

�t-l;correct
H! �c c

ðxÞ ¼ �t-l
H! �c c

ðxÞ would hold only approximately

in a wide energy region.)
In Fig. 1 we show the results for the real and imaginary

parts of the self-energy for the following choices of the free
parameters: 2mf � 1 sets an arbitrary energy unit, MH ¼
1:5 and � ¼ 3. Notice that the imaginary part vanishes for

values of the energy larger than 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

f

q
as explained

before. The gray line represents the quantity x�t-l
H! �c c

ðxÞ
which, due to the optical theorem, is equal to the imaginary

part of the self-energy up to 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

f

q
. The real part also

becomes very small for x * 2�; this is a crucial property

for showing the correct normalization, as it is presented in
the next subsection and in Appendix A 3.
A closer inspection of the loop expression (21) shows

that constant terms can still be reabsorbed in the bare mass
M0;H and have therefore no physical consequences; how-

ever, this does not hold for the term proportional to x2 ln�,
which is responsible for a mixing of two (in principle)
well-separated energy scales, i.e. x (which is the invariant
mass in a scattering experiment; see the following discus-
sion) and the cutoff �. Thus, in our scheme there is a
logarithmic dependence of the cutoff on the loop formula
and, consequently, on the form of the spectral function
dHðxÞ. This is indeed crucial for our results because this
dependence on the high-energy scale � does not decouple.
Indeed, in Ref. [7] it was stated that the physical results
(such as scattering lengths) do depend on the cutoff in a
power-suppressed form 1=�, 1=�2; . . . . The new point
here is that we find a dependence on the cutoff that is
logarithmic and not power-like suppressed. Of course, a
logarithmic dependence is weak, but can lead to interesting
phenomena, as we shall see in Sec. III.

D. The spectral function and its normalization

The spectral function (or mass distribution) of the scalar
field H, denoted as dHðxÞ, is defined as

dHðxÞ ¼ lim
"!0þ

2x

�
jIm�HðxÞj: (23)

Explicitly,

dHðxÞ¼ lim
"!0þ

2x

�

� g2jIm�ðxÞj
½x2�M2

0;Hþg2Re�ðxÞ�2þ½g2 Im�ðxÞ�2þ i"
:

(24)

We define the nominal massMH of the resonance H as the
zero of the real part of the propagator’s denominator,2

2 4 6 8 10
x[a.u.]

-0,5

0

0,5

1

a.
u.

Re[ Σ ]
Im[ Σ ]
x Γ t-l

H->Ψ----   Ψ

FIG. 1. Real and imaginary parts of the self-energy. The quan-
tity x�t�l

H! ���
ðxÞ is also shown to confirm the validity of the

optical theorem. Because of the cutoff, introduced for the sake
of having a correct normalization of the spectral function, the
imaginary part of the self-energy vanishes at high energies. Here
MH ¼ 1:5 and � ¼ 3, where the unit 2m ¼ 1 has been used.

2See Ref. [22] for a related study in which, instead of the
nominal mass, the pole on the II-Riemann sheet is investigated.
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x2 �M2
0;H þ g2 Re�ðxÞ ¼ 0 ! x ¼ MH: (25)

In general, the quantum loop generates a negative contri-
bution, and therefore MH <M0;H.

We assume here that Im�ðx ¼ MHÞ � 0 (we are
thus above threshold: MH > 2m and the decay channel
H! �c c is open). Then, the limit can be easily performed,

dHðxÞ ¼ 2x

�

g2jIm�ðxÞj
½x2 �M2

0;H þ g2 Re�ðxÞ�2 þ ½g2 Im�ðxÞ�2 :

(26)

In the limit g ! 0 the expected result dHðxÞ ¼
�ðx�M0;H) is obtained. One can compare Eq. (26) with

the previously approximate version in Eq. (8); besides the
real part, which is neglected in the approximate form, the
two expressions coincide in virtue of the optical theorem

for x < 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

f

q
.

We now turn to the normalization of dHðxÞ, i.e. to the
validity of the equationZ 1

0
dxdHðxÞ ¼ 1: (27)

To this end we recall that the propagator �HðxÞ
can be expressed via the so-called Källen-Lehman
representation [6],

�HðxÞ ¼
Z 1

0
dy

dHðyÞ
x2 � y2 þ i"

; (28)

which intuitively corresponds to expressing the full
propagator as the ‘‘sum’’ of free propagators of the form
½x2 � y2 þ i"��1, each of them weighted with the mass
distribution dHðyÞ. The physical interpretation of dHðyÞdy
as the probability that the unstable state H has a mass
between y and yþ dy is evident. When considering the
limit x ! 1 the propagator can be approximated as

�HðxÞ ’x2!1 1

x2
(29)

provided that a finite (no matter how large) cutoff �
is employed. In fact, in the case of a finite cutoff one has

that g2 Im�ðx2Þ ¼ x�t-l;correct
H! �c c

¼ 0 for x > 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

f

q
(see the previous section), and also that the real part of
�ðxÞ goes rapidly to zero for x ! 1. When Eq. (29) holds
(i.e. the cutoff is finite), Eq. (28) reduces to

�Hðx ! 1Þ ¼ 1

x2
¼

Z 1

0
dy

dHðyÞ
x2

!
Z 1

0
dydHðyÞ ¼ 1:

(30)

(See also Appendix A 3 for a rigorous proof and for its
extension to the case of a generic cutoff function, as long it
vanishes sufficiently fast for large values of x * �.)

The case of a large but finite cutoff corresponds to
realistic cases. In fact, the cutoff within a ‘‘fundamental

renormalizable theory’’ signifies the breaking of the theory
itself and its numerical value is typically much larger than
the other energy scales of the theory (such as the Planck
mass). Moreover, we have shown that the finite cutoff
(independently of its value) assures that the mass distribu-
tion is already correctly normalized to unity. There is no
need for a field-strength renormalization in this frame-
work; see the next section for numerical examples.
Some important points need to be discussed.
Standard renormalization treatment: It is possible, using

the standard procedure, to remove each dependence on the
cutoff. However, we shall show here and in Appendix A 4
that inconsistencies arise. The first step consists in choos-
ing a very large cutoff, � � MH, which allows us to
simplify the formula (21) for x � � as follows:

~�ðxÞ ¼ � ðx2 � 4m2
fÞ3=2

4�2x
arctanh

0
@ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 4m2
f

q
1
A

þ �2

2�2
þ ðx2 � 6m2

fÞ
4�2

ln

�
2�

mf

�
: (31)

Taking the limit � ! 1, the propagator corrections
require a quadratically divergent mass renormalization to
reabsorb the term ��2 and a field-strength renormaliza-
tion to reabsorb the term �x2 ln� [4]. This way can be
easily followed in the case of a stable scalar particle,MH <

2mf; these two operations correspond to the conditions that

the pole of the propagator occurs atMH and that the residue
at the pole is 1. When MH > 2mf (i.e., H is unstable) this

approach can be formally generalized, although it is not
evident which constraint should be imposed to fix the
renormalization constants. We shall discuss the possibil-
ities in Appendix A 4 where we describe in detail the
relevant procedure and formulas.
After the renormalization procedure, no dependence on

the cutoff is present and the limit for large x of the loop
function reads �ðxÞ � x2 ln x [and does not vanish as
Eq. (21) does]. As a consequence, the propagator in this
case has a different scaling than the one in Eq. (29):

�HðxÞ ’x2!1
1=ðx2 ln xÞ. Thus, the limits x ! 1 and

� ! 1 do not commute; this is indeed the main origin
of the (very) different results obtained in our framework
and the ones of the standard renormalization. Moreover,
due to the different scaling law, the correct normalization
of the spectral function is no longer guaranteed. Although
the integral of the spectral function is still (slowly) con-
vergent, one finds rather unphysical results: only a minimal
part of the normalization of the spectral function is located
in the vicinity of the peak, implying that the probability to
excite the resonance at energies close to its nominal mass
(corresponding to the position of the peak) is very small.
Moreover, the dependence of the normalization on the
coupling constant g also turns out to be unexpected: the
smaller g, the smaller is the probability that the unstable
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state H has a mass close to the peak. We regard these
properties as unphysical.

Other regularization procedures: For completeness we
have performed in the Appendix (Secs. A 2 b and A 2 c) the
calculation of the loop in the Pauli-Villars and the dimen-
sional regularization schemes. In both cases, as expected,
the imaginary part coincides with that obtained in the
cutoff scheme if it is sent to infinity, in agreement with
the optical theorem. In the Pauli-Villars scheme a very
similar expression for dHðxÞ with a finite cutoff � is
obtained in the vicinity of the peak (including a logarithmic
term of the type x2 ln�PV, as long as the corresponding
cutoff �PV is finite). However, the Pauli-Villars approach
breaks unitarity already at the level of the Lagrangian and
for�PV ! 1 the very same problems described above and
in Appendix A 4 arise. In the dimensional regularization,
instead of the term proportional to x2 ln�, a similar term
proportional to x2=� is present; removing the latter is also
completely equivalent to the case described above and in
Appendix A 4.

Gedanken experiment: One may ask to what extent the
spectral function dHðxÞ is a physical quantity. To show that
dHðxÞ can be considered such, we present a ‘‘Gedanken
experiment,’’ in which the introduced mass distribution
dHðxÞ directly enters into the form of the total cross sec-
tion. To this end, let us consider a (for simplicity massless)
scalar field ’ which is coupled to the scalar field H via the
following interaction term:

Lint;’ ¼ H’2: (32)

Writing x ¼ ffiffiffi
s

p
, the cross section for the fermionic

pair-production process ’’ ! �c c takes the form

�ðxÞ ¼ �

2

2

x3
dHðxÞ; (33)

which shows that the mass distribution dHðxÞ directly
enters into a ‘‘measurable’’ quantity. In Refs. [3,23,24] a
somewhat related ‘‘Gedanken experiment’’ with a decay-
ing particle was described, in which dHðxÞ also emerged as
a measurable quantity. Indeed, for a nice example from
hadron physics we refer to the radiative decay of the 	
meson theoretically described with the help of spectral
functions in Ref. [25] and experimentally measured in
Ref. [26].

Note that a new kind of particle is introduced in our
Gedanken experiment because the virtual state H appears
only in the s channel, thus making Eq. (33) valid and
simplifying the discussion. In fact, the t and the u channels
do not enter in such a production process.

In principle there is no restriction on the value of the
dimensionful coupling constant  of Eq. (32). One should
include the loops of the bosonic ’ field in the evaluation of
the propagator and the spectral function of the field H.
Namely, since the interaction in Eq. (32) is superrenorma-
lizable, it does not affect the described influence of the

high-energy cutoff on the spectral function dHðxÞ.
However, since here the bosonic ’ field is only a mathe-
matical tool of our Gedanken experiment for the genera-
tion of the virtual state H and its spectral function, we
assume for simplicity that  is small enough such that the
propagator of the state H is to a very good accuracy
determined by the loops of the fermionic field c only.
This means that the decay �H!’’ ¼ 2=ð8�MHÞ is as-

sumed to be much smaller than �H! �c c , a condition which

is satisfied for  � gMH. It should anyhow be stressed that
Eq. (33) will not be used further; it represents just a simple
example of how dHðxÞ can enter into the expression of a
measurable quantity such as a cross section.

III. NARROWING OF THE WIDTH FOR
INCREASING CUTOFF: NUMERICAL RESULTS

We now present the numerical results for the spectral
function of the boson H coupled to fermions via the
Lagrangian (3) using the expression (21) with a finite value
of the cutoff. For the conceptual purpose followed here, we
do not refer to a particular physical system but present the
results in terms of an energy unit equal to 2mf � 1.

The are five parameters entering in the model: besides
the bare parameters mf, g, M0;H, there are also the two

wave-function renormalizations Zc and ZH.

In the one-loop study presented here, however, no loop
corrections to the fermion field have been evaluated, and
therefore mf and Zc do not need any redefinition (mf

is the physical fermionic mass and Zc ¼ 1). The quantity

ZH does not need to be redefined, ZH ¼ 1, because for
each finite (no matter how large) value of the cutoff � the
mass distribution of the unstable state H is correctly nor-
malized to unity. (A redefinition of ZH would be necessary
if the cutoff is not kept finite but the limit � ! 1 is
performed first; see the discussions and the problems in
Appendix A 4.) No next-to-leading-order terms for the
vertex are considered, and therefore g corresponds, in the
study presented here, to the physical value of the coupling.
Finally, the bare mass M0;H is chosen in such a way that

(for a given cutoff �) the zero of Eq. (25) takes place at a
fixed value of MH.
We now turn to the spectral function of the unstable

boson. We first discuss first the phenomenological problem
we are studying: (i) the fermion mass mf is known (and the

quantity 2mf sets the energy scale in our model); (ii) the

cutoff� is supposed to be given and to be sizably larger than
2mf; (iii) in a fermionic pair-production process, the mea-

surement of the cross section, �ðxÞ of Eq. (33), allows us to
determine the function dHðxÞ. In particular, one could mea-
sure the position of the peak and its height. In this way one
can fix the two (remaining) free parameters of the model: g
and M0;H. Once g and M0;H have been determined in order

to reproduce the position and the height of the peak of
dHðxÞ, the function is fixed. In principle, one can compare
the rest of its behavior with putative experimental points.
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In Fig. 2 we show the spectral function for fixed values
of g ¼ 1 and MH ¼ 1:5 and for two extreme values of the
cutoff: � ¼ 2, close to MH, and � ¼ 2� 1020, a situation
reminiscent of the Standard Model of particle physics
where the Planck scale is much larger than any mass of
the fundamental particles. As explained before, a term in
the self-energy (21) that mixes the cutoff energy scale
and the typical energy scale of the unstable particle is
present. Thus, dHðxÞ is explicitly dependent on the cutoff
�; in particular, an increase of the cutoff implies a loga-
rithmic decrease of the width of the spectral function
dHðxÞ. In turn, this means that there is not a full decoupling
of the cutoff. We also notice another remarkable property:
the height of the peak does not depend on the cutoff, which
regulates solely the width of the peak.

To quantify this peculiar behavior we have done the
following analysis. We define the Breit-Wigner width W
of the particle as the width at half maximum. We calculate
W for two values of g as functions of the cutoff. In Fig. 3
we show the corresponding results (the widths have been
divided by their values at � ¼ 2 to better appreciate the
effect of the coupling on the narrowing). In both cases W
decreases as a function of �: the larger the coupling the
faster is the narrowing of W. This result clearly shows that
it is in principle possible to determine the value of a high-
energy cutoff by ‘‘measuring’’ the spectral function of such
an unstable boson. It is also interesting to calculate the
primitives of the spectral functions to see how the normal-
ization is ‘‘distributed’’ in the energy range. We show
results in Fig. 4: for the small value � ¼ 2, the normal-
ization to one is obviously reached very close to the peak,
at x� 3MH. On the other hand, for the large value of the
cutoff, � ¼ 2� 1020, within an energy scale of �3MH

only roughly 50% of the normalization is reached. This is
clearly due to the long high-energy tail of the spectral
function that is obtained in this case. (Note that, as

discussed in Appendix A 4, by removing the cutof-
dependent terms, one obtains that most of the normaliza-
tion is distributed at extremely large energy scales, a
situation which is clearly unphysical.)
A side remark about the time evolution of the unstable

system jHi is in order: the survival probability amplitude
aðtÞ ¼ hHje�iHtjHi is obtained by computing the Fourier
transform of the spectral function of the unstable state H
[23,24]. The cutoff, as it has been shown in Ref. [27],
regulates the temporal window during which the decay
law is not exponential and possible interesting phenomena,
such as the quantum Zeno and anti-Zeno effects, could
arise. That is, in the present example the interval of time, in
which the survival probability pðtÞ ¼ jaðtÞj2 deviates from
the exponential law, lasts for a time interval of about 1=�.
Thus, for a very large cutoff, the nonexponential regime
elapses for a very short time. This result is different from
the corresponding one in the case of a superrenormalizable
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FIG. 3. Variation of the Breit-Wigner width as a function of the
cutoff and for two values of the coupling. The larger the coupling
the faster the width drops for increasing values of the cutoff.
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FIG. 2. Spectral functions at fixed coupling g ¼ 1 and for two
very different choices of the cutoff value. Notice the narrowing
of the spectral function as the cutoff is increased. MH is as in
Fig. 1.
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theory, where the duration of the nonexponential time
interval is sizable and practically independent of the
cutoff [23].

As a last result of this section we study a numerical case
which resembles the situation of the Higgs boson. As
stressed in the Introduction, for obvious reasons our analy-
sis cannot be considered a realistic treatment of the Higgs
spectral function. In fact, our Lagrangian (1) is by far too
simple for this purpose. Namely, while it is true that Eq. (1)
is one of the terms which couples the Higgs boson to a
single fermion pair, many other interaction terms are not
included, such as the coupling to other fermion pairs, loops
of the Higgs field itself due to the terms H3 and H4, and so
on. Most importantly, local gauge invariance is fully
ignored in our toy model. (For a treatment of the Higgs
boson line shape in the framework of the SM, in which
dimensional regularization is used, we refer to Ref. [16].)
Thus, with the example of the Higgs boson, we want only
to estimate if the main result of this paper, i.e. the narrow-
ing of the spectral function for increasing cutoff, could be
phenomenologically relevant by using numerical values
compatible with the recently determined Higgs particle
for the mass and the coupling constant to fermions. For
the Higgs mass we useMH ¼ 125 GeV [20], for which the
Higgs couples sizably in a �bb. Then we use mf ¼ mb ¼
4:18 GeV [28]. The coupling g can be easily determined as

g ¼ ffiffiffi
3

p mb

v
;

where v ¼ 246 GeV is the vacuum expectation value of

the Higgs field and
ffiffiffi
3

p
takes into account the color degree

of freedom (not present in our Lagrangian). The tree-level
decay width turns out to be �t-l

H! �c c
ðx ¼ MHÞ ¼ 4:28 MeV

and is thus much smaller than the Higgs mass. The Breit-
Wigner approximation is very good in this case. For these
numerical values, when varying the cutoff between the
wide range � ¼ 103 GeV and 1019 GeV, no visible varia-
tion of the spectral function is found. The spectral function
for these numerical values is presented in Fig. 5. (In order
to obtain a visible effect one should consider a very large
and unphysical cutoff of about 1010000 GeV.)

A hypothetical broad scalar boson, eventually also
coupled to the vector bosons, would show more visible
effects: in the case of large couplings the influence of the
cutoff on the spectral function would be sizable. In some
extensions of the Standard Model, which go beyond the
minimal Higgs coupling, possible other massive scalars
and broad particles are predicted, for which the described
effects could possibly be seen. Clearly, the detection of
such particles would be itself proof of physics beyond the
SM, but the effect that we point out here is the possibility to
determine the value of the cutoff (i.e. the minimal length)
by using such hypothetical broad states beyond the
SM. Presently, albeit appealing, this is only a speculative
possibility.

Interestingly, the dependence on the cutoff described
previously is not only a characteristic of a scalar field
coupled to fermions as in the Lagrangian of Eq. (3), but
would be present in each renormalizable Lagrangian. In
fact, the behavior of the decay width �� x would be such
in each two-body decay involving a renormalizable inter-
action. For instance, the coupling of the weak bosons Z0

and W	 to leptons is of such a type. Indeed, for a detailed
study of Z0 and W	, the full complications of the SM
described above should be taken into account as well. This
is a difficult task; an interesting intermediate step could be
the study of a vector boson coupled to fermions (and a
Higgs-like particle) in the framework of a U(1) local
gauge-symmetric theory. While this study would not be
realistic enough, it would constitute an attempt to take into
account the described cutoff effect by using a theoretical
model that embodies some of the most salient features of
the SM.
On the contrary, the dependence on the cutoff changes if

a superrenormalizable [3,22] or a nonrenormalizable
Lagrangian [25] is considered. As already mentioned, in
the superrenormalizable case �� x�1 and no dependence
of the spectral function on a (large) cutoff is visible. On the
other hand, for a nonrenormalizable theory �� x3 the
theory makes sense only if the cutoff is small.

IV. CONCLUSIONS

In this work we have computed the spectral function of a
scalar boson coupled to fermions via resummation of the
one-loop contributions into the scalar propagator. The
propagator satisfies the Källen-Lehman representation
and the corresponding spectral function is normalized to
unity when a finite (no matter how large) cutoff on the
energy of the unstable boson is used. The correct normal-
ization is clearly connected with the completeness of the
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FIG. 5. Higgs spectral function obtained by considering only
its decay into b �b. No dependence on the cutoff is visible in
this case.
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basis of the states into which the unstable particle state is
decomposed.

The finite cutoff, in turn, affects the properties of the
spectral function: the Breit-Wigner width indeed narrows
as the cutoff increases. In a fundamental theory, the exis-
tence of an energy cutoff is often connected to a change of
degrees of freedom and thus, within the Standard Model of
particle physics, the cutoff would indicate the energy scale
at which ‘‘new physics’’ is expected. Another possibility is
the existence of a minimal length such as the one coming
from a discrete structure of the space-time. From a phe-
nomenological point of view, the measurement of the line
shape of an unstable boson could signal the existence of the
cutoff: phenomena occurring at very high energy could
influence low-energy properties of the system. Using the
recently determined Higgs boson mass and its coupling to a
fermion type (the b quark) only, we have provided a simple
order-of-magnitude estimate of the effect of the finite cut-
off on the spectral function. It turned out that this effect is
vanishingly small. The situation could be different if new
and broad particles beyond the SM would exist but, at the
moment, this is only a speculative possibility.

Interestingly, in hadronic physics, where the cutoff is
related to the scale of confinement, some interesting
modifications of the spectral function could also have a
phenomenological relevance, for instance for the medium
modification of the �-meson spectral function which heavy
ion experiments are looking for.

There are two possible future directions to be taken. On
the theoretical side, one should go beyond the resummed
fermionic one-loop approximation considered here. The
next-to-leading-order correction for the propagator of the
unstable state H arises when considering an insertion of a
scalar virtual exchange in the fermionic loop. This
diagram, which is of order g4, should also be resummed.
As the scalar propagator is also part of the dressing, one has
a problem of the Dyson-Schwinger type, which is obvi-
ously more difficult to solve and the renormalization of the
charge would be necessary within this context. Moreover,
the renormalization of the charge would also be necessary
at this order. Anyhow, considering that the presented con-
siderations about the finiteness of the cutoff are rather
general, we do not expect a qualitative change of our
results. However, a mathematical proof that this is the
case would be very valuable. On the phenomenological
side, we plan to compute the spectral functions of vector
bosons coupled to fermions, which is potentially relevant
for the weak interaction. Namely, the presented phe-
nomena are quite general for each renormalizable theory,
and therefore should apply to the weak gauge bosons. In
this way we can study the effect of a putative cutoff in the
weak sector as well.

In the end, we think that it would also be possible to
check our results using lattice quantum field theory. In that
case, a cutoff is naturally present (the finite lattice spacing)

which resembles closely our finite cutoff used here. The
simulation of the simple Yukawa Lagrangian in Eq. (1)
should also be feasible in Minkowski space.
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APPENDIX: DETAILS OF THE CALCULATIONS

1. The decay width

The decay width is explicitly evaluated by making use of
the following standard relations:

�þð ~kÞab ¼
X
�

uð�Þa ð ~kÞ �uð�Þb ð ~kÞ ¼
�
��k� þmf

2mf

�
ab
; (A1)

�ð ~kÞab ¼ �X
�

vð�Þ
a ð ~kÞ �vð�Þ

b ð ~kÞ ¼
����k� þmf

2mf

�
ab
: (A2)

Out of the latter expressions, one rewrites the squared
amplitude asX

�;�

jM��j2 ¼ X
�;�

g2½ �uð�Þa ð ~k1Þvð�Þ
a ð ~k2Þ�½ �uð�Þb ð ~k1Þvð�Þ

b ð ~k2Þ�y

(A3)

¼ g2
X
�;�

½ �uð�Þa ð ~k1Þvð�Þ
a ð ~k2Þ�½ �vð�Þ

b ð ~k2Þuð�Þb ð ~k1Þ�

(A4)

¼ �g2�þð ~k1Þba�ð ~k2Þab
¼ g2 Tr

�
��k1� þmf

2mf

�
k2
 �mf

2mf

�
(A5)

¼g2
4ðk1 �k2Þ�4m2

f

4m2
f

¼g2
8ðx24 �m2

fÞ
4m2

f

; (A6)

where in the last step we have taken into account that

k1 � k2 ¼
x2 � 2m2

f

2
: (A7)

2. Regularizations

a. Cutoff scheme

Here we show the formal expression of the nonlocal
Lagrangian necessary to generate the cutoff vertex func-
tion described in Sec. II,

FRANCESCO GIACOSA AND GIUSEPPE PAGLIARA PHYSICAL REVIEW D 88, 025010 (2013)

025010-10



ðLintÞcutoff ¼ g
Z

d4zd4y1d
4y1Hðxþ zÞ �c ðxþ y1Þ

� c ðxþ y2Þ ~	ðz; y1; y2Þ; (A8)

where the vertex function ~	ðz; y1; y2Þ in position space has
been introduced. The case ~	ðz; y1; y2Þ ¼ �ðzÞ�ðy1Þ�ðy2Þ
delivers the local limit of the Lagrangian (3). (For similar
approaches see Refs. [9,21] and references therein.)

By performing the usual steps, we obtain that the
vertex function in momentum space is given by the

Fourier transform of ~	ðz; y1; y2Þ,

	ðp; k1; k2Þ ¼
Z

d4zd4y1d
4y2e

ipze�ik1y1e�ik2y2 ~	ðz; y1; y2Þ:
(A9)

Here we assume that ~	ðz; y1; y2Þ is such that

	ðp; k1; k2Þ ¼ 	�

�
p; q ¼ k1 � k2

2

�

¼ f�

�
q2p2 � ðq � pÞ2

p2

�
: (A10)

Note that to this end ~	ðz; y1; y2Þ must be of the form
~	ðz; y1; y2Þ ¼ ’ðz; y1 � y2Þ�ðy1 þ y2Þ. In fact, by intro-
ducing y ¼ y1 � y2 and Y ¼ y1 þ y2 one finds

	ðp; k1; k2Þ
¼

Z
d4zd4yd4Yeipze�ik1y1e�ik2y2’ðz; yÞ�ðYÞ

¼
Z

d4zd4yd4Yeipze�iðk1�k2Þye�iðk1þk2ÞY’ðz; yÞ�ðYÞ

¼
Z

d4zd4yeipze�i2qy’ðz; yÞ ¼ 	�ðp; qÞ: (A11)

Moreover, in Sec. II we worked with a bare mass M0;H

and a ‘‘physical’’ mass MH. Alternatively, one could work
with the inclusion of counterterms and assume that the
quantity MH entering in the Lagrangian is the nominal
mass of the resonance (thus M0;H ¼ MH). In the present

case one introduces the counterterm

Lct ¼ � g2Re�ðM0;HÞ
2

H2: (A12)

Considering at the one-loop level the Lagrangian

Lcutoff;counterterms ¼ L0 þ ðLintÞcutoff þLct; (A13)

whereL0 describes the free Lagrangian, Eq. (25) takes the
modified form

x2 �M2
0;H þ g2Re�ðx2Þ � g2Re�ðM0;HÞ ¼ 0; (A14)

thus implying the solution to

x ¼ MH ¼ M0;H: (A15)

Obviously, nothing substantial would change by following
this procedure. Note that the introduction of counterterms
can be applied to other regularization schemes as well.

b. Pauli-Villars scheme

In the Pauli-Villars (PV) approach one subtracts from
the original loop of particles with mass mf a second loop

with particles of mass �PV � mf,

�ðxÞ ! �PVðxÞ ¼ lim
�!1

ð�ðxÞ � ð�ðxÞÞmf!�PV
Þ: (A16)

Formally, we can still use the previous expression with the
cutoff �, but here the condition mf � �PV � � must

hold. In the end each dependence on � disappears and its
value can be sent to infinity, but the dependence on the new
high scale �PV is present. The explicit expression for
�PVðxÞ reads

�PVðxÞ ¼ � ðx2 � 4m2
fÞ3=2

4�2x
arctanh

0
@ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 4m2
f

q
1
A

þ x2

4�2
ln

�
�PV

mf

�
þ ðx2 � 4�2

PVÞ3=2
4�2x

� arctanh

0
@ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 4�2
PV

q
1
Aþ const: (A17)

As long as x � �PV, this result is equivalent to the form
(31), also including the term proportional to x2 ln�PV.
Thus, if one numerically sets � ¼ �PV � mf one finds,

in the vicinity of the peak, a behavior which is very similar
to the one obtained in the cutoff case. The narrowing of the
spectral function is obtained as well. However, for values
of x comparable to �PV, the loop contribution �PVðxÞ is
modified due to the fact that the additional degree of free-
dom related to the ‘‘particle’’ with mass �PV becomes
active.
Moreover, the normalization of the spectral function to

unity is not fulfilled. We can easily understand what goes
wrong in the present case by writing the modified
Lagrangian which delivers the Pauli-Villars formulas,

ðLHc ÞPV ¼ 1

2
ð@�HÞ2 � 1

2
M2

0;HH
2 þ �c ði��@� �mfÞc

þ �c PVði��@� ��PVÞc PV þ gH �c c

þ igH �c PVc PV: (A18)

The new fermion field c PV with mass �PV is introduced.
Tt should be noticed that, in order to obtain the required
cancellation, the coupling of the latter with the boson field
H is an imaginary number ig. For this reason, the S matrix
is not unitary. As a consequence, the normalization of
dHðxÞ is lost (the ‘‘new’’ particle gives rise to a negative
contribution to the spectral function). In conclusion, the
use of the Pauli-Villars scheme delivers similar results to
those of the cutoff scheme as long as �PV is finite, but we
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prefer the latter because it explicitly guarantees the correct
normalization of the spectral function to unity. Conversely,
sending �PV to infinity generates the same problems
discussed in Secs. II D and A 4.

c. Dimensional regularization

Within the dimensional regularization scheme, one
calculates the integral of the fermion loop in d dimensions
with d ¼ 4� � and then takes the limit � ! 0. In this
case the coupling constant g has the dimension of
[energy�], and therefore the spectral function should scale
as x�1�2�, which is convergent for each value of �, no
matter how small. This is mathematically reminiscent of
the finite cutoff case, but the physical interpretation of a
nonzero � is not meaningful.

When calculating the self-energy �ðxÞ using the stan-
dard formulas [see also Eq. (10.33) of Ref. [4]] one finds

�ðxÞ ! �DRðxÞ ¼ 4i
Z 1

0
dy

Z ddl

ð2�Þd
�þ l2

ðl2 � �Þ2 ; (A19)

then, after integrating in ddl, we obtain

�ðxÞDR ¼ �4
Z 1

0
dy

1

ð4�Þd=2
�
��ð2� d=2Þ 1

�2�d=2

� 2�ð1� d=2Þ 1

�1�d=2

�
; (A20)

where � ¼ m2
f � yð1� yÞx2 and where � is the Euler

function. Making use of Eqs. (A49) and (A50) of
Ref. [4], we obtain

�ðxÞDR ¼ �12
Z 1

0
dy

1

ð4�Þ2 �ð2=�� �þOð�ÞÞ

�
�
1� �

2
log�

�
: (A21)

Calculating the integral and keeping the leading terms in �
for the real part we get

�ðxÞDR ¼ x2 � 6m2
f

4�2�
� ðx2 � 4m2

fÞ3=2
4�2x

� arctanh

0
B@ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 4m2
f

q
1
CA: (A22)

Notice that the imaginary part obtained in this scheme is,
as it should be, equal to the one obtained in the other
schemes when the cutoff is sent to infinity. Comparing
the previous equation with Eq. (31), one sees the corre-
spondence 1=� / ln�. The divergence of the real part is—
as is well known—linear and nonlogarithmic, and it is
usually reabsorbed in the mass and field-strength renor-
malization in the case of stable particles. In the case of
unstable particles, in the so-called ‘‘complex-mass renor-
malization scheme’’ [17], the renormalization procedure is
performed by introducing a complex mass for the

resonance. For the Higgs particle for instance, to simplify
the calculation, one expands the mass counterterm for
�H=MH ! 0, an approximation which definitely holds as
the mass of the Higgs is only 125 GeV. However, eliminat-
ing the term proportional to 1=� is completely equivalent to
neglecting the term proportional to x2 log� in Eq. (31). It
generates many inconsistencies, as mentioned in Sec. II D
and shown in Sec. A 4.

3. Correct normalization to unity of the spectral
function in the presence of a cutoff

Let us consider the state jHi as the eigenstate of the
unperturbed Hamiltonian H0 which fulfills the normaliza-
tion condition hHjHi ¼ 1. The full set of eigenstates of the
Hamiltonian H reads fjxig with Hjxi ¼ xjxi and x 
 0.
Expressing jHi in terms of jxi implies

jHi ¼
Z 1

0
dxaðxÞjxi: (A23)

The quantity dHðxÞ ¼ jaðxÞj2 is the ‘‘spectral function,’’
which is evaluated in this work as the imaginary part of the
propagator (see also Ref. [24] for a more detailed discus-
sion of these relations). It naturally follows that

1 ¼ hHjHi ¼
Z 1

0
dxdHðxÞ: (A24)

Taking into account that, in the case of a hard cutoff,

dHðyÞ vanishes for y > 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

f

q
, the Källen-Lehman

representation can be rewritten as

�HðxÞ ¼
Z 2

ffiffiffiffiffiffiffiffiffiffiffiffi
�2þm2

f

p
0

dy
dHðyÞ

x2 � y2 þ i"
: (A25)

For x � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

f

q
no pole is encountered in the inte-

gral; at the same time the loop function �ðxÞ is very small

(the real part goes to zero very fast for x � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

f

q
while the imaginary part is identically zero). It then follows
that

1

x2
¼ 1

x2

Z 2
ffiffiffiffiffiffiffiffiffiffiffiffi
�2þm2

f

p
0

dydHðyÞ for x�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þm2

f

q
; (A26)

that is,

Z 2
ffiffiffiffiffiffiffiffiffiffiffiffi
�2þm2

f

p
0

dydHðyÞ ¼
Z 1

0
dydHðyÞ ¼ 1: (A27)

We now turn to the case of a smooth cutoff function, which
assures that the loop contribution �ðxÞ is very small be-
yond a certain energy scale �. However, the imaginary
part, and so the spectral function, do not vanish exactly for
x � �. The proof of the correct normalization is in this
case more difficult. As a first step, we decompose the
integral as
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�HðxÞ ¼
Z mf

ffiffi
x

p

0
dy

dHðyÞ
x2 � y2 þ i"

þ
Z 1

mf

ffiffi
x

p dy
dHðyÞ

x2 � y2 þ i"
: (A28)

When mf

ffiffiffi
x

p � � (which also implies x � �) the propa-

gator is �HðxÞ ¼ 1=x2. We thus obtain

1

x2
¼ 1

x2

Z mf

ffiffi
x

p

0
dydHðyÞ þ P

Z 1

mf

ffiffi
x

p dy
dHðyÞ

x2 � y2 þ i"
;

(A29)

where P stands for the principal part. In the large-energy
limit the spectral function dHðyÞ can be approximated as

dHðyÞ ’ g2

8�y
f2�

0
@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

4
�m2

f

s 1
A ’ g2

8�y
f2�ð�y=2Þ: (A30)

Finally, by taking the limit x ! 1 we obtain

1 ¼
Z 1

0
dydHðyÞ

þ lim
x!1

�
x2P

Z 1

mf

ffiffi
x

p dy
g2

8�y

f2�ð�y=2Þ
x2 � y2 þ i"

�
: (A31)

If the cutoff function is such that

lim
x!1

�
x2P

Z 1

mf

ffiffi
x

p dy
g2

8�y

f2�ð�y=2Þ
x2 � y2 þ i"

�
¼ 0 (A32)

it follows that the correct normalization condition holds,

1 ¼
Z 1

0
dydHðyÞ: (A33)

Indeed, as long as f2�ð�y=2Þ falls off sufficiently fast,

Eq. (A32) is fulfilled. A power-like or exponential decrease
introduced to ensure the convergence of the loop integral
automatically implies the validity of Eq. (A32), and hence
the correct normalization to unity of the spectral function
(which is also independent of the precise value of the
cutoff).

4. Completely removing the � dependence

We describe here the standard renormalization of the
Lagrangian under study in the case of unstable particles.
The starting point is the loop expression in Eq. (31). First,

we rewrite the real and the imaginary part of ~�ðxÞ as
follows:

Re ½~�ðxÞ� ¼ AðxÞ þ �2

2�2
� 6m2

f

4�2
ln

�
2�

mf

�
þ x2

4�2
ln

�
2�

mf

�
;

(A34)

jIm½~�ðxÞ�j ¼ x

g2
�t-l
H! �c c

ðxÞ ¼ ðx24 �m2
fÞ3=2

�x
�ðx� 2mfÞ;

(A35)

where the cutoff independent quantity AðxÞ is given by

AðxÞ ¼ � ðx2 � 4m2
fÞ3=2

8�2x
ln

0
B@xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4m2

f

q
x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4m2

f

q
1
CA: (A36)

The propagator takes the form

~�HðxÞ ¼
�
x2 �M2

0;H þ g2AðxÞ þ g2�2

2�2

� 6g2m2
f

4�2
ln

�
2�

mf

�
þ g2

x2

4�2
ln

�
2�

mf

�

þ ig2 Im½~�ðxÞ� þ i"

��1
: (A37)

The renormalized mass MH;ren is defined as the solution of

the equation in a way similar to Eq. (25),

M2
H;ren �M2

0;H þ g2AðMH;renÞ þ g2�2

2�2
� 6g2m2

f

4�2
ln

�
2�

mf

�

þ g2
M2

H;ren

4�2
ln

�
2�

mf

�
¼ 0: (A38)

By performing a Taylor expansion of the real part around
MH;ren we obtain

~�HðxÞ¼
�
ðx2�M2

H;renÞ
�
1þg2ð@x2AÞx2¼M2

H;ren
þ g2

4�2
ln

�
2�

mf

��

þg2 ~AðxÞþig2Im½~�ðxÞ�þi"

��1
; (A39)

where

~AðxÞ ¼ AðxÞ � Aðx ¼ MH;renÞ
� ð@x2AÞx2¼M2

H;ren
ðx2 �M2

H;renÞ: (A40)

By introducing the wave-function renormalization
H ! ffiffiffiffiffiffiffi

ZH

p
H the propagator takes the form

~�HðxÞ¼ 1

ZH

�
ðx2�M2

H;renÞ
�
1þg2ð@x2AÞx2¼M2

H;ren

þ g2

4�2
ln

�
2�

mf

��
þg2 ~AðxÞþ ig2 Im½~�ðxÞ�þ i"

��1

(A41)

¼ 1

ZHK

�
ðx2 �M2

H;renÞ þ
g2

K
~AðxÞ

þ i
g2

K
Im½~�ðxÞ� þ i"

��1
; (A42)

where the (formally divergent) quantity K reads
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K ¼ 1þ g2ð@x2AÞx2¼M2
H;ren

þ g2

4�2
ln

�
2�

mf

�
: (A43)

Now, one also needs to perform a renormalization of the
coupling g ! gren (which is obtained here through a multi-
plicative constant, and thus no running coupling arises at this
level), leading to the following equations for ZH and gren:

ZHK ¼ N; (A44)

g2

K
¼ g2ren; (A45)

whereas N and gren are finite constants. In this way the
propagator takes the renormalized form

~�HðxÞ ¼ 1

N
½ðx2 �M2

H;renÞ þ g2ren ~AðxÞ
þ ig2ren Im½~�ðxÞ� þ i"��1; (A46)

in which the dependence on � has been completely elimi-
nated. One might think that each problem is solved here, but
this is not the case. To show this we turn our attention to the
spectral function,

~dHðxÞ ¼ lim
"!0þ

2x

�
jIm~�HðxÞj: (A47)

For x � 2mf (that is, away from threshold) the following

simplifications are valid:

~AðxÞ ¼ � x2

4�2
ln x; (A48)

x�t-l;ren
H! �c c

ðxÞ ¼ x2

8�
: (A49)

Then, the spectral function for x � 2mf is approximated by

the following expression:

~dHðxÞ ’ 1

N

g2renx
3

8�

1

ðx2 � g2renx
2

4�2 ln xÞ2 þ ðx2g2ren8� Þ2
: (A50)

Let us define the point x� as the solution of the following
transcendental equation:

1 ¼ g2ren
4�2

ln x� ! x� ¼ e
4�2

g2ren : (A51)

Then, for 2mf � x & x� the function ~dHðxÞ scales as 1=x
and for x * x� the logarithm starts to dominate and ~dHðxÞ
scales as 1=ðxln 2xÞ, which assures a (slow) convergence of
the integral

R1
0 dHðxÞdx. A numerical evaluation shows that

the following approximate scaling law holds:Z 1

0

~dHðxÞdx ’ 80

Ng2ren
: (A52)

At a general level we can immediately discuss two basic

problems of the spectral function ~dHðxÞ.
(a) The ‘‘distribution’’ of the normalization in the en-

ergy range of the particle is spread over very large

values of x. In Fig. 6, we show the quantity FðxÞ ¼
N
R
x
100

~dHðyÞdy for two values of the coupling

constant g (the value 100 as the lower limit of
integration corresponds to a value much larger
than the peak position and is suited to studying the
energy localization of the state far away from the
peak). The saturation of FðxÞ is reached only at
extremely high energies, very far from the nominal
mass of the particle. This fact is clearly connected to
the slow logarithmic convergence of the integral of
the spectral function.

(b) The effect of changing the coupling is evident: the
smaller the coupling gren, the larger the normal-
ization is and the later it is reached. This property
also implies that the small-gren limit is completely
at odds with the basic expectation of having the
unstable particle mostly localized around the
peak.

In order to evaluate the spectral function one has to
determine the normalization condition N. To this end, it is
useful to recall the case of a stable scalar state: MH;ren <

2mf, which implies Im½~�ðx ¼ MH;renÞ� ¼ 0. In this case,

the requirement is that the free propagator with residue 1
at the pole is obtained, and thus N ¼ 1, which is a clear
and physically meaningful requirement. The state H is a
stable asymptotic state entering, for instance, as the initial
or final state in a two-body process, for which the ca-
nonical normalization holds. However, in our case we
deal with an unstable state for which MH;ren > 2mf: there

is no pole below the threshold and it is not clear
which condition should be used. Two possibilities are
the following.
(i) N ¼ 1: In this way the coefficient multiplying the

term ðx2 �M2
H;renÞ in the denominator of the propa-

gator is unity; this represents a simple generalization
of the stable case. However, setting N ¼ 1 means

0 20 40 60 80
Log(x[a.u.])

0

100

200

300

F
(x

)

g
ren

 = 1
g

ren
 = 0.5

FIG. 6. The integral function FðxÞ is displayed for two values
of the coupling. The normalization of the spectral function (not
normalized to one) is obtained at extremely large energies.
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that the normalization to unity of
R1
0
~dHðxÞdx is in

general lost and one violates a very basic property of
quantum mechanics. We regard this ‘‘solution’’ as
unphysical. It would rather correspond to an ad hoc
prescription to ignore the problems. Notice that
within this prescription the curve in the vicinity of
the peak looks very similar to the case of a not too
large but finite cutoff.

(ii) One can set N as being dependent on g, in such

a way that
R1
0
~dHðxÞdx ¼ 1 is fulfilled. Still, as

discussed above, the amount of the integral in the

vicinity of the peak represents only a very small
contribution to the normalization of the spectral
function (due to the slow convergence of the latter).
Additionally, if we aim to describe the situation in
which the spectral function has a certain given
(measured putative) height for x ¼ MH;ren ¼ 1:5,
one runs into problems because the quantity
~dHðx ¼ MH;renÞ is practically independent of gren
which is a quite unrealistic feature.

In conclusion, we believe that the procedure outlined
here is not physical.
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