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We construct an equation of state of strange quark matter in a strong magnetic field within a confining

model. The confinement is modeled by means of the Richardson potential for quark-quark interaction

modified suitably to account for a strong magnetic field. We compare our results for the equation of state

and magnetization of matter to those derived within the MIT bag model. The differences between these

models arise mainly due to the momentum dependence of the strong interaction between quarks in the

Richardson model. Specifically, we find that the magnetization of strange quark matter in this model

has much more pronounced de Haas-van Alfvén oscillations than in the MIT bag model, which is the

consequence of the (static) gluon-exchange structure of the confining potential.
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I. INTRODUCTION

Compact stellar objects can be tentatively divided into
two broad classes: one includes stars made of the ordinary
baryonic matter either in the confined (hadronic) or decon-
fined (quark-gluon) state, the second includes stars made of
strange matter. The latter possibility goes back to Witten’s
idea [1] that the deconfined quark matter composed of
an equal number of up, down, and strange quarks may be
the true ground state of matter at high density. Since then,
the possibility of strange quark matter (SQM) and strange
stars made of SQM, as an alternative to hadronic/quark
compact objects, has been continuously explored.

Soft �-ray repeaters and anomalous x-ray pulsars are
commonly identified with compact stars with surface
magnetic fields Bs � 1014–1015 G. These objects, which
feature the largest stationary B fields observed in Nature to
date, are collectively termed as ‘‘magnetars.’’ The inter-
pretation of astrophysical manifestations of magnetars
requires good knowledge of the properties of dense matter
in the presence of a large magnetic field. There have been
some recent advances in this context in our understanding
of the properties of strange quark matter in strong magnetic
fields. The stationary properties, hydrodynamics, transport,
and macroscopic dynamics have been studied in Refs. [2–7].
More general but related aspects of the physics of fermionic
(quark) matter in strong fields have been discussed recently
in, e.g., Refs. [8–13].

In the present work we study the effect of a large mag-
netic field on SQM. The properties of cold quark matter at
large baryon density is poorly known due the nonperturba-
tive nature of quantum chromodynamics (QCD) at densities
and temperatures relevant for compact stars. Because the
ab initio lattice calculations at low temperatures and finite
chemical potentials presently encounter serious problems,
effective phenomenological models are commonly used.
Among the the most popular ones are the MIT bag model
[14] and the Nambu-Jona-Lasinio model [15]. Both models

have some merits and some disadvantages. For example,
the Nambu-Jona-Lasinio model exhibits chiral symmetry
breaking but does not account for the confinement property
of QCD. On the other hand, the bag models are built to
confine through the introduction of an ad hoc bag pressure
but are unable to account for the chiral symmetry breaking.
An alternate to the bag model way to introduce the confine-
ment is to take density-dependent quark masses. Many
phenomenological models have been proposed in the past
that are based on density-dependent quark masses [16–19].
We will base our discussion of quark matter in a strong
magnetic field on one such model, that was originally
introduced by Dey et al. [18]. In this model, the quarks
interact among themselves through the Richardson potential
[20], in which the asymptotic freedom and confinement is
built in. Initially, it was used in the meson phenomenology
and later tested in the baryon sector [21]. This latter model
will serve as a basis for studying confining strange matter at
nonzero temperatures.
Substantial changes in the strange matter properties ap-

pear when the electromagnetic scales become of the order of
the nuclear scales, which is the case for fields B � 1018 G.
Such fields have not been observed directly in astrophysics,
but theoretical extrapolations of surface fields observed in
magnetars suggest that the fields of this magnitude can be
reached in the deep interiors of compact objects. An upper
value of the B field is set by the equilibrium that can be
sustained by the gravitational forces and pressure compo-
nents of matter in a strong magnetic field. The anticipated
value of the maximal field is in the range 1018 � Bmax �
1020 G, but the precise value of Bmax remains uncertain
(Ref. [9] and references therein).
This work is organized as follows. In Sec. II we intro-

duce the Richardson-potential model (hereafter RP model)
and demonstrate its modifications due to the strong mag-
netic fields. The results of our numerical computations
are shown in Sec. III. Finally, our findings are summarized
in Sec. IV.
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II. MODEL

We consider SQM in a strong magnetic field at high
densities and nonzero temperature. The u, d, and s quarks
interact via the Richardson potential [20]

Vðq2Þ ¼ � 4

9

�

ln ½1þ ðq2 þm2
gÞ=�2�

1

ðq2 þm2
gÞ
; (1)

where mg is gluon mass and � is a scale parameter. The

finite gluon mass is responsible for screening in medium
and is related to the screening length D via

m2
g ¼ D�2 ¼ 2�0

�

X

i¼u;d;s

kiF�
�
i ; (2)

where �0 is the perturbative quark gluon coupling, ��
i �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkiFÞ2 þm2
i

q
, kiF is the Fermi momentum, andmi the quark

mass. The index i labels quark flavors. An important
feature of our model is that quark masses depend on the
density. We parametrize this dependence as

mi ¼ Mi þMqsech

�
�
nb
n0

�
; i ¼ u; d; s; (3)

where nb ¼ ðnu þ nd þ nsÞ=3 is the baryon number
density, n0 is the normal nuclear matter density, and � is
a parameter. At large nb the second term in (3) decays
exponentially and the quark mass mi falls off from its
constituent value Mq to its current value Mi.

The number and energy densities of each quark flavor in
the absence of quantizing magnetic field are given by

n ¼ 6

ð2�Þ3
Z 1

0
fð�Þd3k; (4)

" ¼ 6

ð2�Þ3
Z 1

0
fð�Þ�d3k; (5)

where � is the single particle energy, fð�Þ ¼ f1þ
exp ½ð���Þ=T�g�1 is the Fermi distribution function,
with� being the chemical potential and T the temperature;
factor 6 is the sum over the spin and color degrees of
freedom. Note that the full single-particle energy � consists
of the kinetic energy of relativistic particle with mass mi

and the potential energy arising from the interaction with
other quarks via the Richardson potential (1). As is well
known, in a magnetic field the motion of charged particles
is Landau quantized in the direction perpendicular to the
field. For sufficiently large magnetic fields one needs to
take into account the modification of the single particle
energies and the phase space due to the Landau quantiza-
tion of quark orbitals.

We assume that the field is along the z direction
of the Cartesian coordinate system, B ¼ Bẑ. Then, the
motion is quantized in the x-y plane and the momentum
of quarks of mass mi and charge eQi can be decomposed

into components parallel and perpendicular to the z direc-
tion, k�ðkz;k?Þ, with k2? ¼ 2nejQjB, where e is the

(positive) unit of charge. Consequently, the single particle
kinetic energy in the nth Landau level is given by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þm2 þ 2nejQjB

q
: (6)

The number density of any quark flavor is then given by

n ¼ 3

ð2�Þ3 ejQjB X1

n¼0
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Z 2�

0
d�

Z 1

�1
fð�Þdkz: (7)

The kinetic part of the energy density for a particular quark
flavor is given by

"kin ¼ 3

ð2�Þ3 ejQjB X1

n¼0
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Z 1
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(8)

The potential part of the energy density due to interaction
between the flavors i and j is given by

"ijpot ¼
e2jQijjQjj
ð2�Þ5 B2

X
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X
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where

N ¼ ð�i þmiÞð�j þmjÞ
4�i�j

;

S ¼ 1þ k2i k
2
j

ð�i þmiÞ2ð�j þmjÞ2
þ 2ki 	 kj

ð�i þmiÞð�j þmjÞ :

The total energy density is obtained, after summation over
the quark flavors, as

" ¼ X

i

"kin þ 1

2

X

i;j

"ijpot; i; j ¼ u; d; s: (10)

The net entropy density is given by the combinatorial
expression for quark quasiparticles

s ¼ � 3

ð2�Þ3 e
X

i

jQijB
X1

n¼0

Z 2�

0
d�

Z 1

�1
dkzffð�iÞ ln fð�iÞ

þ ½1� fð�iÞ� ln ½1� fð�iÞ�g; (11)

where i summation is over the quark flavors. Then, the
thermodynamic pressure is given by

p ¼ X

i

�ini þ Ts� "; i ¼ u; d; s: (12)

The magnetization of the matter at a given temperature and
constant baryon number density is given by
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M ¼ dp

dB
: (13)

A number of authors [2,5,9–11] have noticed that in the
presence of a strong magnetic field the pressure is aniso-
tropic and it is useful to decompose the pressure in com-
ponents along (pk) and perpendicular (p?) to the field as

pk ¼ p; p? ¼ p�MB: (14)

In strange quark matter the 	 equilibrium can be sustained
among the quark flavors; therefore, the abundances of
leptons (electrons and muons) are negligible. The charge
neutrality condition can be written as

nu ¼ 1

2
ðnd þ nsÞ ¼ nb: (15)

The weak interactions establish an equilibrium among the
quark flavors via the nonleptonic weak process uþ d Ð
uþ s. Thus, the equilibrium with respect to these weak
reactions requires that the chemical potentials of quark
flavors obey the condition

�d ¼ �s: (16)

To summarize, the key equations of our model are
Eqs. (6)–(12) that are subject to the constraints (15)
and (16). These equations are solved self-consistently.

III. RESULTS

In this section we discuss the results of a numerical
solution of the self-consistent equations presented above.
Our main focus will be the effect of the Richardson poten-
tial on the properties of strange matter in strong magnetic
fields at finite temperature. The numerical values of the
parameters of our model are � ¼ 100 MeV, � ¼ 0:333,
�0 ¼ 0:2, Mq ¼ 310, Mu ¼ 4, Md ¼ 7, and Ms ¼ 150

with all masses given in MeV. A discussion of the feasible
parameter space can be found in Ref. [18].

In Fig. 1 we show the function pðTÞ for the RP model
together with the results obtained with the MIT bag model
with two values of the bag constant along with the result
for noninteracting matter. The case of nonmagnetized and
stronglymagnetizedmatter (B ¼ 3� 1019 G) are displayed.

The bag model and noninteracting gas results are self-
similar, because they differ only by a temperature-
independent constant. In the absence of a magnetic field
the pressure shows T2 power-law behavior with tempera-
ture. In the magnetic field the temperature dependence is
nonmonotonic in the bag model, but in the RP model the
temperature dependence shows the same features as in the
absence of a magnetic field.

In Fig. 2 we show the equation of state of SQM in the RP
model and the bag model for fixed T ¼ 20 MeV. The bag

model equations of state show p / n4=3 scaling inherent to
the ultrarelativistic noninteracting gas. In the case of the
RP model the scaling is different because the Richardson

potential introduces additional momentum dependence in
the single particle energies, which results in nearly linear
dependence of pressure of density. Furthermore, in the
absence of a magnetic field the equation of state in the
RP model is softer than in the bag model at low densities
and reaches asymptotically the equation of state with
BMIT ¼ 110 MeV fm�3 at high densities. While the high
values of bag constant can mimic the RP model, for such
large values of BMIT the strange matter is not the absolute
ground state of matter.
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FIG. 1 (color online). Dependence of the thermodynamic
pressure p on the temperature at fixed baryon number density
nb ¼ 6n0 for the RP model (solid, black line), for the MIT bag
model with BMIT ¼ 60 MeV fm�3 (dashed, red line), and for
BMIT ¼ 72 MeV fm�3 (dash dotted, blue line) and without
potential (double-dash-dotted, green line). The upper and lower
panels correspond to the field values B ¼ 0 and B ¼ 3� 1019 G.
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The upper and lower panels display the differences
arising due to the strong magnetic field (B¼3�1019G).
The magnetic field introduces some oscillations in the
pressure with density; in each case the increase of the
pressure after a plateau is caused by the opening of a
new Landau level. The oscillations are much stronger in
the RP model and this can be traced back to the momentum
dependence of the potential. The major contribution comes
from the static gluon propagator part of the potential

[the term ðq2 þm2
gÞ�1], while the logarithmic factor in

the potential weakly depends on momentum. Note that
at some density the pressure has a plateau and slight
negative downturn, which can be interpreted as an insta-
bility of homogeneous magnetized matter towards phase
separation.
Figure 3 displays the magnetization of matter as a

function of the magnetic field for the bag model and RP
model at fixed n ¼ 6n0 and T ¼ 20 MeV. Note that the
magnetization does not depend on the bag constant. For
fields B> 1019 G the magnetization shows de Haas–
van Alfven oscillations in both models. However, the
oscillations are much more pronounced in the RP model
than in the bag model. This is the consequence of the
momentum dependence of the RP interaction, which has
the structure of the static gluon exchange. A similar effect
was observed in Ref. [2] in a noninteracting strange quark
matter model. Note also, the absolute value of the magne-
tization is by a factor 2 lager in the RP model for suffi-
ciently large fields.
At large magnetic fields the anisotropy due to the mag-

netic field is important. The pressure components in par-
allel and perpendicular direction to the magnetic field are
not the same. We show the variations of pk and p? with B
in the RP and bag models at n ¼ 6n0 in Fig. 4. We note that
below B ¼ 3� 1018 G, both pk and p? are practically

equal to the pressure of matter in absence of a magnetic
field. Hence, for the SQM with the model under consid-
eration the effect of the magnetic field is not significant
below B� 1018 G. With the increase of B, pk increases
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FIG. 2 (color online). Dependence of the thermodynamic pres-
sure p on the normalized baryon number density at T ¼ 20 MeV
for B ¼ 0 (upper panel) and B ¼ 3� 1019 G (lower panel). The
pressure is shown for the RP model (solid, black line), for the
MIT bag model with BMIT ¼ 60 MeV fm�3 (dashed, red line),
BMIT ¼ 72 MeV fm�3 (dash-dotted, blue line), and BMIT ¼
110 MeV fm�3 (double dash-dotted, green line).
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FIG. 3 (color online). Dependence of the magnetization on
the magnetic field at baryon number density nb ¼ 6n0 and
T ¼ 20 MeV for the RP model (solid line, black line) and
MIT bag model (dashed, red line). The bag model result does
not depend on the value of the bag constant.
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whereas p? decreases for both models. For large fields, at a
certain value of B, p? becomes negative and this critical
value is almost the same in both models. Recalling that
without the confining potential, at a very large magnetic
field p? ! 0 [2,10], we see that the confining potential
provides additional ‘‘attraction’’ inside the SQM, and its

effect becomes more transparent at larger B. The oscilla-
tions of the function p? reflect the oscillations in the
magnetization.
The mass-radius relation for the underlying models in

the absence of a magnetic field are shown in Fig. 5, which
demonstrates the key difference between the RP and bag
models in the astrophysics context. Because of the softer
equation of state of the RP model the strange stars are more
compact (the radii are smaller) and their maximum mass is
by about 20% smaller than for the models with BMIT �
60–70 MeV fm�3. The computation of the mass-radius
relation in the case of strongly magnetized matter can be
carried out on the basis of the equations of state obtained
in this work. Such calculation requires the solution of
Einstein’s equations in axial symmetry, because of the
anisotropy in the pressure induced by the magnetic field
and is beyond the scope of this work (see e.g., [22]).

IV. SUMMARY

In this work we studied the effects of strong magnetic
fields, quark-quark confining interaction, and chiral sym-
metry restoration on the equation of state of the charge
neutral strange quark matter. The confining interaction is
modeled by the Richardson potential (RP) which features
both the asymptotic freedom and the confinement. The
chiral symmetry restoration is parametrized as a smooth
crossover of the quark masses from their constituent values
at low baryon densities to their current ones at large baryon
densities. We compared the RP model to the MIT bag
model. We find significant differences between the equa-
tion of state and the magnetization of the strange quark
matter predicted by these models. This is the result of the
intrinsic momentum dependence in the interaction of the
RP model, which mimics the one-gluon-exchange inter-
action of the QCD. Specifically, we find that (a) the
thermodynamic pressure in the RP model is more sensitive
to temperature and baryon density when the magnetic
field is strong; (b) the magnetization is larger in the RP
model than in the bag model in the limit of large fields,
B> 1019 G; (c) the de Haas-van Alfvén oscillations in the
magnetization and in the transverse pressure p? is more
pronounced in the RP model.
Furthermore, we find that the presence of a confining

potential, modeled either in terms of the RP potential or the
MIT bag, suppresses the pressure components pk and p?
and, at large B, the anisotropy in the equation of state.
The splitting between the longitudinal pressure pk and the

transverse pressure p? was found to be weaker than that in
free (noninteracting) SQM. This underlines the importance
of taking into account the confining potential in studies of
strongly magnetic SQM matter in cores of neutron stars
and in strange stars. It remains an interesting task to
explore the effects of the confining potential in a strong
magnetic field on the structure and geometry of such stars.
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The strong magnetic fields in the interiors of strange
stars will affect the transport process and weak interaction
rates. The strong de-Haas–van Alfvén oscillations in the
magnetic field will induces oscillations in, for example,
the transport coefficients, as demonstrated for the bulk
viscosity in Ref. [2]. They will affect the kinematics of
Urca processes, as in the case of nucleonic matter [23]
and may open an additional channel of neutrino brems-
strahlung due to the Pauli paramagnetic shift in the Fermi
levels of quarks [24].

In this work we assumed that the strange matter is in
the normal (unpaired) state. It is likely that the flavor
symmetric quark matter at low temperatures will be a

superfluid. The interplay between the superfluidity and
magnetism in quark matter has been studied in a number
of contexts [25–31]; however, much remains still unex-
plored, one possible subject being the extension of the
present setup to the case of superfluidity of strange matter.
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